ebook img

A Fully Distributed Opportunistic Network Coding Scheme for Cellular Relay Networks PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Fully Distributed Opportunistic Network Coding Scheme for Cellular Relay Networks

A Fully Distributed Opportunistic Network Coding Scheme for Cellular Relay Networks Yulong Zou, Jia Zhu, and Baoyu Zheng Inst. of Signal Process. and Transm., Nanjing Univ. Post & Telecomm., Nanjing, P. R. China Email: Yulong.Zou,Jiazhu2010 @gmail.com,[email protected] { } Abstract—In thispaper, we propose an opportunisticnetwork to destination [5]. To alleviate such an issue, two-way relays 3 coding(ONC)schemeincellularrelaynetworks,whichoperates have been proposed by using a so-called physical network 1 dependingonwhethertherelaydecodessourcemessagessuccess- coding (PNC) that enables the transmission of two messages 0 fullyornot.Afullydistributedmethodispresentedtoimplement 2 the proposed opportunistic network coding scheme without the in two orthogonal channels [6]. However, the PNC requires n need of any feedback between two network nodes. We consider complex symbol-level synchronization between distributed a theuseofproposedONCforcellulardownlinktransmissionsand network nodesforsignal combinationand exact channelstate J derive its closed-form outage probability expression considering information (CSI) of all network nodes at receiver side for cochannel interference in a Rayleigh fading environment. Nu- 1 signal decoding, which is challenging in practical systems. mericalresultsshowthattheproposedONCschemeoutperforms 3 In this paper, we investigate network coding without the the traditional non-cooperation in terms of outage probability. We also develop the diversity-multiplexing tradeoff (DMT) of complex symbol-level synchronization between distributed ] T proposed ONC and show that the ONC scheme obtains the full network nodes and propose an opportunistic network coding I diversity and an increased multiplexing gain as compared with (ONC) scheme for cellular relay networks. It is worth men- . the conventional cooperation protocols. s tioning that, although the proposed ONC is an opportunistic c IndexTerms—Networkcoding,cellularnetworks,outageprob- scheme that operatesdependingon whetherthe relay decodes [ ability, diversity-multiplexing tradeoff, cochannel interference. sourcemessagessuccessfullyornot,itcanbeimplementedin 1 a fully distributed manner without any feedback between two v I. INTRODUCTION network nodes. This differs from the conventional network 6 Next-generation cellular mobile networks, including Inter- coding approacheswhere the cooperativeusers have to notify 0 nationalMobile Telecommunications- Advancedand Beyond the destination whether or not they succeed in decoding 5 7 (IMT-Advanced and Beyond) [1], are expected to provide a each other’s message so that the destination can perform the . peak download speed at 100Mbit/s (or higher) for mobile maximal ratio combining (MRC) among different network 1 0 receptions and 1Gbit/s (or higher) for stationary receptions nodesindifferentsituationsofdecodingoutcomes(successful 3 to meet continuously growing demand on mobile multime- or not). In addition, differing from conventional network 1 dia services (e.g., video-on-demand, mobile game/TV, and coding research (e.g., [7]-[9]), we study the ONC design : v so on). Although the multiple-input multiple-output (MIMO) anditsdiversity-multiplexingtradeoff(DMT)in cellular relay i and orthogonal frequency division multiplexing (OFDM) are networks, where cochannel interference should be taken into X shown as effective methods to combat wireless fading and account. r a increase per-link throughput, they do not inherently mitigate The rest of this paper is organized as follows. In Section the cochannel interference and fail to benefit cell-edge users II, we first present the system model of a cellular network significantly[2]. To that end,one promisingsolution is to use with relay and then propose the ONC scheme for cellular wireless relayswhich assist the transmissionsbetween mobile downlink transmissions. Section III derives a closed-form users and a base station [3], [4]. outage probability expression of the proposed ONC scheme Typically, relays are categorized into two broad types [2]: by considering cochannel interference in a Rayleigh fading full-duplex relay and half-duplex relay, where the full-duplex environment, based on which a DMT analysis is also con- relay refers to the relay capable of transmitting and receiving ducted.In SectionIV, numericalresults arepresentedto show radio signals overthe same channel, however,the half-duplex the outageprobabilityand DMT performanceof the proposed relay means that two channels (in terms of time/frequency) ONCschemeand conventionalcooperationprotocols.Finally, are required at a relay for transmitting and receiving signals. Section VI provides concluding remarks. While full-duplex relays are attractive in terms of spectrum II. PROPOSED OPPORTUNISTICNETWORKCODING utilization, they are generally considered as impractical due to the significant difference in the power levels of incoming A. System Model andoutgoingsignals.Thus,thehalf-duplexrelayconfiguration ConsideracellularrelaynetworkasshowninFig.1,where is typically used, which, however, reduces the data rate since a base station (BS) is located in the center of a cell and a two channels are required to forward a message from source relay station (RS) serves the BS. At present, such a cellular (cid:4)(cid:5)(cid:6)(cid:6)(cid:6)(cid:6)(cid:2)(cid:6)(cid:6)(cid:2)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:7)(cid:2)(cid:8)(cid:7)(cid:3)(cid:9)(cid:6)(cid:10)(cid:5)(cid:11) (cid:4)(cid:5)(cid:6)(cid:6)(cid:6)(cid:6)(cid:2)(cid:6)(cid:6)(cid:3)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:7)(cid:3)(cid:8)(cid:7)(cid:2)(cid:9)(cid:6)(cid:10)(cid:5)(cid:11) (cid:10)(cid:5)(cid:6)(cid:6)(cid:8)(cid:6)(cid:12)(cid:6)(cid:6)(cid:9)(cid:6)(cid:2)(cid:6)(cid:6)(cid:2)(cid:6)(cid:6)(cid:11)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:8)(cid:6)(cid:12)(cid:6)(cid:6)(cid:9)(cid:6)(cid:2)(cid:6)(cid:6)(cid:3)(cid:6)(cid:11)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:7)(cid:2)(cid:9)(cid:6)(cid:7)(cid:3) (cid:1) (cid:1)(cid:1)(cid:2) (cid:1)(cid:1)(cid:3) Fig. 2. The encoding structure of proposed ONC for cellular downlink transmissions considering timedivision multiplexing (TDM). check(CRC)codeisgenerallyusedasforwarderrordetection for every data package. Hence, RS can recognize whether or (cid:1)(cid:25) not it succeeds in decoding b1 or b2 by CRC checking, i.e., a successfulCRCcheckingimpliesacorrectlydecodedoutcome (cid:12) (cid:15)(cid:23) and vice versa. We here consider that both b and b consist of CRC- (cid:1)(cid:24) 1 2 encoded bits in two different CRC codes, as denoted by CRC 1 and CRC 2, respectively. Accordingly, in case that RS only forwards b or b during slot n+2 as shown in 1 2 (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:3)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11) Fig. 2, both U1 and U2 are able to recognize through CRC (cid:16)(cid:14)(cid:7)(cid:7)(cid:17)(cid:9)(cid:8)(cid:18)(cid:10)(cid:6)(cid:8)(cid:14)(cid:9)(cid:5)(cid:11)(cid:8)(cid:9)(cid:19) checking that either b or b is transmitted, assuming a 1 2 (cid:12)(cid:3)(cid:11)(cid:10)(cid:13)(cid:5)(cid:2)(cid:6)(cid:10)(cid:6)(cid:8)(cid:14)(cid:9) (cid:16)(cid:14)(cid:18)(cid:20)(cid:10)(cid:9)(cid:9)(cid:3)(cid:11)(cid:5)(cid:21)(cid:9)(cid:6)(cid:3)(cid:4)(cid:22)(cid:3)(cid:4)(cid:3)(cid:9)(cid:18)(cid:3)(cid:5) perfecterrordetection.Inthisway,theproposedONCscheme can be implemented in a fully distributed manner without (cid:15)(cid:10)(cid:2)(cid:3)(cid:5)(cid:2)(cid:6)(cid:10)(cid:6)(cid:8)(cid:14)(cid:9) any feedback information between two nodes. The detailed illustration of this fully distributed implementation method Fig.1. Systemmodelofacellular relaynetwork. will be presented in Section II-D. In addition, it is pointed outthat, if there are multiplecell-edgeusers, we can pairwise relayarchitecturehasbeenadoptedinthecommercialwireless themtogeneratemultipleuserpairs,wheredifferentuserpairs network IEEE 802.16j, where relay stations are allowed to proceedwiththeproposedopportunisticcodingidenticallyand communicatewithBS anduserterminalsin onedirectionata independentlyof each otherwith differentorthogonalchannel time(i.e.,eitheruplinkordownlink).Inthispaper,weassume groups.Sincedifferentuserpairscanbedifferentiatedthrough that the channels are narrowband and modeled as Rayleigh theidentificationoforthogonalchannelgroups,theycanreuse fading, which correspond to ideal LTE OFDM subchannels. the same set of CRC codesforthe distributedimplementation Fig. 1 illustrates two cell-edge users (i.e., U1 and U2) that of the ONC scheme. receivedatafromBSoverdownlinkswiththeassistanceofone As shown in Fig. 2, BS first transmits b to U1 in time 1 relaystation(RS),whereinterferences(receivedatU1,U2and slot n and, at the same time, both U2 and RS overhear this RS)arefromneighboringcochannelbasestations.Thereasons transmission. Hence, the received signal at U1 in time slot n forconsideringthetwo-usercooperationaretwofold.First,the can be expressed by two-usercooperationissimpleforimplementationinpractical K cellular systems, which is also shown as an effective means y (n)=√Ph (n)b +(cid:229) √Pg (n)I (n)+z (n), (1) 1 b1 1 ik1 ik 1 toimprovewirelesstransmissionperformance[5].Secondly,a k=1 generalscenariowithmultipleuserscanbetypicallyconverted wherePistransmitpower,h (n)istheBS-U1channelintime b1 to the two-usercooperationby designingan additionalgroup- slotn,K isthenumberoftotalcochannelinterferers,g (n)is ing and partnerselection protocol. In addition, this paper will ik1 thechannelfromk-thinterferertoU1,I (n)isthetransmitted focus on the cellular downlink transmission, while a similar ik symbolofk-thinterfererintimeslotn,andz (n)istheadditive 1 analysis can be applied to the uplink. white Gaussian noise (AWGN) at U1 with zero mean and variance N . Notice that subscripts 1, b and i represent U1, B. Proposed ONC Scheme 0 k BS and k-th interferer, respectively. We can similarly express Fig. 2 shows the proposed ONC encoding structure for the received signals at U2 and RS in time slot n as cellulardownlinktransmissions, whereBS intendsto transmit b1 andb2 toU1andU2intimeslotsnandn+1,respectively. y (n)=√Ph (n)b +(cid:229)K √Pg (n)I (n)+z (n), (2) During time slot n+2, the information to be transmitted 2 b2 1 ik2 ik 2 k=1 (from RS to U1 and U2) dependson whether RS succeeds in decodingb andb ornot.Specifically,ifRSdecodesbothb and 1 2 1 and b successfully, it transmits an XOR coded version of b K 2 1 (cid:229) andb2toU1andU2.IfRSsucceedsindecodingb1(orb2)and yr(n)=√Phbr(n)b1+ √Pgikr(n)Iik(n)+zr(n), (3) failstodecodeb (orb ),ittransmitsb (orb )toU1andU2. k=1 2 1 1 2 Otherwise,anullsequenceistransmittedfromRSintimeslot whereh (n)andh (n)are,respectively,the channelsofBS- b2 br n+2. Notice that, in practical systems, a cyclic redundancy U2andBS-Rintimeslotn,g (n)andg (n)arethechannels ik2 ikr (cid:23)(cid:4)(cid:24)(cid:4)(cid:3)(cid:3)(cid:2)(cid:3)(cid:10)(cid:20)(cid:2)(cid:11)(cid:18)(cid:20)(cid:14)(cid:15)(cid:16)(cid:10)(cid:17)(cid:22)(cid:24)(cid:21)(cid:11)(cid:22)(cid:21)(cid:24)(cid:2) (cid:24)(cid:22)(cid:3)(cid:3)(cid:10) (cid:9)(cid:17)(cid:22)(cid:10)(cid:25)(cid:24)(cid:4)(cid:15)(cid:11)(cid:12) (cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10) (cid:18)(cid:2)(cid:25)(cid:22)(cid:2)(cid:15)(cid:11)(cid:2) (cid:11)(cid:12)(cid:2)(cid:11)(cid:13)(cid:14)(cid:15)(cid:16) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5) (cid:1)(cid:2)(cid:20)(cid:19)(cid:21)(cid:22)(cid:3)(cid:4)(cid:23)(cid:14)(cid:19)(cid:15) (cid:1)(cid:9) (cid:5)(cid:15)(cid:2)(cid:19)(cid:18) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5) (cid:1)(cid:2)(cid:19)(cid:18)(cid:20)(cid:21)(cid:3)(cid:4)(cid:22)(cid:14)(cid:18)(cid:15) (cid:1)(cid:9) (cid:15)(cid:5)(cid:18)(cid:2)(cid:17) (cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10) (cid:26)(cid:15)(cid:20)(cid:10)(cid:25)(cid:24)(cid:4)(cid:15)(cid:11)(cid:12) (cid:1) (cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10) (cid:11)(cid:12)(cid:2)(cid:11)(cid:13)(cid:14)(cid:15)(cid:16) (cid:1) (cid:1) (cid:1)(cid:2)(cid:19)(cid:18)(cid:20)(cid:21)(cid:3)(cid:4)(cid:22)(cid:14)(cid:18)(cid:15) (cid:26) (cid:11)(cid:12)(cid:2)(cid:11)(cid:13)(cid:14)(cid:15)(cid:16) (cid:9) (cid:17) (cid:11)(cid:6)(cid:12)(cid:2)(cid:7)(cid:11)(cid:6)(cid:13)(cid:8)(cid:14)(cid:15)(cid:17)(cid:16)(cid:10) (cid:5)(cid:2)(cid:18) (cid:1)(cid:2)(cid:19)(cid:18)(cid:20)(cid:21)(cid:3)(cid:4)(cid:22)(cid:14)(cid:18)(cid:15) (cid:1)(cid:9) (cid:1)(cid:26) (cid:1)(cid:9) (cid:15)(cid:5)(cid:18)(cid:2)(cid:17) (cid:28)(cid:2)(cid:3)(cid:2)(cid:11)(cid:22)(cid:14)(cid:18)(cid:15) (cid:1)(cid:9) (cid:1)(cid:2)(cid:20)(cid:19)(cid:21)(cid:22)(cid:3)(cid:4)(cid:23)(cid:14)(cid:19)(cid:15) (cid:1) (cid:15)(cid:19) (cid:17) (cid:27)(cid:24)(cid:20)(cid:10)(cid:25)(cid:24)(cid:4)(cid:15)(cid:11)(cid:12) (cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10) (cid:11)(cid:12)(cid:2)(cid:11)(cid:13)(cid:14)(cid:15)(cid:16) (cid:24)(cid:22)(cid:3)(cid:3)(cid:10) (cid:18)(cid:2)(cid:25)(cid:22)(cid:2)(cid:15)(cid:11)(cid:2) (cid:1)(cid:2)(cid:19)(cid:18)(cid:20)(cid:21)(cid:3)(cid:4)(cid:22)(cid:14)(cid:18)(cid:15) (cid:1)(cid:9) (cid:1)(cid:9) (cid:15)(cid:5)(cid:18)(cid:2)(cid:17) Fig.3. Areceiver structure attherelaystation. Fig. 4. A parallel decoder structure at U1 in decoding b1. The process at U2indecoding b2 issimilar. from k-th interfererto U2 and RS, respectively,and z (n)and 2 z (n) are AWGN with zero mean and variance N at U2 and r 0 and CRC 2 checking both pass, CRC 1 checking passes and RS,respectively.Then,duringnextslot n+1,BStransmitsb 2 CRC 2 checking fails, CRC 1 checking fails and CRC 2 to U2 and, meanwhile, both U1 and RS overhear. Thus, the checking passes, and both CRC 1 and CRC 2 checking fail. received signal at U2 in time slot n+1 is given by It is assumed that a failed CRC checking indicates that an y2(n+1)=√Phb2(n+1)b2+z2(n+1) outage event occurs. Hence, given a data transmission rate R K (4) over downlink, we can describe events q =1, 2, 3, and 4 as (cid:229) + √Pgik2(n+1)Iik(n+1), (in an information-theoreticsense [5]) k=1 q =1: I (n)>R and I (n+1)>R where h (n+1) is the BS-U2 channel in time slot n+1, br br b2 q =2: I (n)>R and I (n+1)<R g (n+1) is the channel from k-th interferer to U2, and br br ik2 (7) z (n+1) is the AWGN at U2 with zero mean and variance q =3: I (n)<R and I (n+1)>R 2 br br N0. Meanwhile, the received signals at U1 and RS are, q =4: Ibr(n)<R and Ibr(n+1)<R, respectively, given by where I (n) and I (n+1) are the mutual information from br br y1(n+1)=√Phb1(n+1)b2+z1(n+1) BS to RS in time slots n and n+1, respectively. Following K (5) Eq. (3) and considering coherent detection, I (n) are given (cid:229) br + √Pgik1(n+1)Iik(k+1), by k=1 2 h (n)2g br I (n)= log (1+ | | ), (8) and br 3 2 K (cid:229) g (n)2g +1 yr(n+1)=√Phbr(n+1)b2+zr(n+1) k=1| ikr | +(cid:229)K √Pgikr(n+1)Iik(n+1). (6) wfrohnerteofg l=ogP/(N)0isisdsuiegntoalt-htoe-nfaocitsethraattitohr(eSeNtRim)eansldotfsacatroeru23seidn k=1 2 · fortransmittingtwoinformationsymbolsb andb .Similarly, whereh (n+1)andh (n+1)are,respectively,thechannels 1 2 b1 br fromEq.(6),we canobtain I (n+1)with coherentdetection of BS-U1 and BS-R in time slot n+1, g (n+1) and br ik1 as gikr(n+1) are the channels from k-th interferer to U2 and 2 hbr(n+1)2g RS, respectively, and z1(n+1) and zr(n+1) are AWGN at Ibr(n+1)= 3log2(1+ K | | ). (9) U2 and RS, respectively. (cid:229) |gikr(n+1)|2g +1 k=1 C. Decoding Structure at a Relay Station Meanwhile, given q =1, 2, 3, and 4, the received signal at In what follows, we present a decoder design of the pro- U1 in time slot n+2 is given by Eq. (10) at the top of the posedONCattherelaystation.AsshowninFig.3,ifCRC 1 following page, where h (n+2)is the R-U1 channel in time r1 and CRC 2 checking both pass, b1⊕b2 will be transmitted slotn+2,gik1(n+2)isthechannelfromk-thinterferertoU2, at RS in time slot n+2. If RS fails in both CRC 1 and z (n+2) is the AWGN at U2 with zero mean and variance 1 CRC 2 checking, a null sequence will be transmitted. One N , and b represents a null sequence transmitted at RS. 0 can see from Fig. 3 that, if RS succeeds in CRC 1 checking D. Decoding Structure at User Terminals (or, CRC 2 checking) and fails to pass CRC 2 checking (or, CRC 1 checking), it transmits b (or, b ) in time slot n+2. In this subsection, we present the decoding process of 1 2 For notational convenience, let q =1, 2, 3, and 4, respec- proposed ONC scheme at user terminals. We focus on the tively, denote the above-mentioned four cases, i.e., CRC 1 details of the decoder structure at U1 in decoding b , and 1 K √Ph (n+2)(b b )+ (cid:229) √Pg (n+2)I (k+2)+z (n+2), q =1 r1 1⊕ 2 ik1 ik 1  k=1 K y1(n+2)=√√PPhhrr11((nn++22))bb12++k(cid:229)(cid:229)=K1√√PPggiikk11((nn++22))IIiikk((kk++22))++zz11((nn++22)),, qq ==23 (10) k=1 K √Phr1(n+2)b+k(cid:229)=1√Pgik1(n+2)Iik(k+2)+z1(n+2), q =4 a similar design can be applied to U2 in decoding b . As Given q =2 (i.e., RS decodes b , but fails to decode b ), U1 2 1 2 shown in Fig. 4, we utilize three parallel branches at U1 in would possibly succeeds in decoding b either from the first 1 decoding b , where the first branch is to decode the direct branch or third branch as shown in Fig. 4. Hence, in given 1 transmission of b from BS to U1, the second branch is to case q =2, the conditional mutual information from BS to 1 combine the transmissions from BS (i.e., b ) and RS (e.g., U1 is obtained as 2 b b )to U1,andthe thirdbranchisused todemodulatethe p1os⊕sib2le transmission of b1 from RS. Typically, the branch Ib1(q =2)=max{Ib1(n),Ir1(n+2)}. (15) that passes CRC 1 checkingis selected as the decoderoutput Finally, either event q =3 or q =4 occurs, U1 can rely on at U1. Moreover, if more than one branch succeed in CRC the first branch only to decode b . Thus, given case q =3 or 1 checking,wecanchooseoneofthesuccessfulbranchesasthe q =4, the corresponding conditional information from BS to output.OnecanobservefromFig.4that,intheproposedONC U1 is given by scheme, signal transmissions from different network nodes at I (q =3)=I (q =4)=I (n), (16) different slots are demodulated separately at receiver without b1 b1 b1 thesignalcombinationbetweendifferenttransmissions,which whereI (n)isgivenbyEq.(12).Now,wecompletethesignal b1 canavoidthecomplexsymbol-levelsynchronizationissueand modelingforthe decodingprocessof proposedONC scheme. shows the advantage of the proposed opportunistic network codingoverconventionalPNC[6].Also,Fig.4showsthatU1 III. PERFORMANCE ANALYSIS OFPROPOSED ONC can decode b locally withoutany feedbackinformationfrom SCHEME OVERRAYLEIGHFADINGCHANNELS 1 RS, implying that the proposed ONC scheme is implemented In this section, we focus on the performance analysis of in a fullydistributedmanner.Asshownin Fig.4, given q =1 the transmission from BS to U1 and the BS-U2 transmission (i.e., RS decodes both b and b ), U1 would possibly recover has similar performance results. We first examine outage 1 2 b eitherfrom the first branchor second branch.Thus, in this probabilityof theONC scheme,followedbya DMT analysis. 1 case, the conditional mutual information from BS to U1 is As is known [5], an outage event occurs when the channel given by capacityfallsbelowapredefineddatarateR.Hence,anoutage probability of the ONC scheme is given by I (q =1)=max I (n),min[I (n+1),I (n+2)] , (11) b1 b1 b1 r1 { } Pout =Pr[I <R] ONC b1 where Ib1(n), Ib1(n+1), and Ir1(n+2) are the mutual infor- = (cid:229) Pr(q =k)Pr[I (q =k)<R]. (17) mation from BS to U1 in time slot n, from BS to U1 in time b1 k=1,2,3,4 slot n+1, and from RS to U1 in time slot n+2, respectively. FollowingEqs.(1)and(5),we,respectively,obtainthemutual Using Eqs. (7) - (9), we can obtain term Pr(q =1) as information Ib1(n) and Ib1(n+1) as Pr(q =1)=Pr[I (n)>R]Pr[I (n+1)>R] br br Ib1(n)= 23log2(1+k(cid:229)=K1||ghibk11((nn))||22gg +1), (12) =. Pr[k(cid:229)=K|1h|bgri(knr()n|2)|2 >23R/2−1] (18) and Pr[ |hbr(n+1)|2 >23R/2 1], Ib1(n+1)= 23log2(1+ (cid:229)K |ghb1((nn++11))|22gg +1). (13) × k(cid:229)=K1|gikr(n+1)|2 − | ik1 | where the second equation is obtained by ignoring the noise. k=1 This is valid when the interference becomes a dominant con- Similarly,onecaneasilyobtainthemutualinformationI (n+ r1 cern, e.g., in interference-limited systems. Note that random 2) from Eq. (10) as variables h (n)2, h (n+1)2, g (n)2, and g (n+1)2 2 hr1(n+2)2g follow exp|obnrenti|al d|isbtrribution|s a|ndikrare |indepen|deiknrt of eac|h Ir1(n+2)= 3log2(1+ K | | ). (14) other.Thus,wecanfurtherobtainPr(q =1)asEq.(19)atthe (cid:229) g (n+2)2g +1 k=1| ik1 | top of this page, where s b2r=E(|hbr(n)|2)=E(|hbr(n+1)|2), (cid:229)K l br-ikr (cid:213)K l b−r-1ikr 2, l = =l Pr(q =1)= k=1l br-likr+(23R/2−12)Kj=1,j6=kl b−r-1ikr−l b−r-1ijr! br-i1r6 ···6 br-iKr (19) br-ikr , l = =l (cid:18)l br-ikr+(23R/2−1)(cid:19) br-i1r ··· br-iKr s 2 =E(h (n)2)=E(h (n+1)2),andl =s 2/s 2 is ikr | ikr | | ikr | br-ikr br ikr 100 viewedas the signal-to-interferenceratio(SIR) of the channel R = 1bit/s/Hz gain from BS to RS to that from k-th interferer to RS. We can similarly determine terms Pr(q = 2), Pr(q = 3), and Pr(q =4) in closed-form. Besides, following Eqs. (11) - (14) a(1n7d)iagsnoring noise, we obtain term Pr[Ib1(q =1)<R] in Eq. bility10−1 a b o pr R = 0.5bit/s/Hz e g Pr[I (q =1)<R]=Pr[ |hb1(n)|2 <23R/2 1] Outa b1 K − (cid:229) |gik1(n)|2 10−2 k=1 non−cooperative (Analyt.) h (n)2 non−cooperative (Simul.) Pr[ | b1 | <23R/2 1] proposed ONC (Analyt.) − K − proposed ONC (Simul.) (cid:229) g (n)2 | ik1 | 5 10 15 20 25 30 k=1 (20) SIR (dB) h (n+1)2 Pr[ | b1 | >23R/2 1] × K − Fig.5. Outageprobabilityversussignal-to-interferenceratio(SIR)ofthenon- k(cid:229)=1h|gi(kn1(+n+2)12)|2 clor1o-pike1ra=tiolnrb-aiknbd=plro1pr-oiksre=d Ol1Nb-Cikbs=chlem21e-isk1w=ithl2rK-ik=r.7 and lb1-ik1=lbr-ikr= Pr[ | r1 | >23R/2 1], × K − (cid:229) g (n+2)2 | ik1 | Meanwhile, the multiplexing gain r is defined as k=1 R(l ) r= lim b1-i11 . (22) wherePr[k(cid:229)=K|1h|bg1ik(n1)(|n2)|2 <23R/2−1],Pr[k(cid:229)=K|1h|bg1ik(n1(+n1+)1|2)|2 >23R/2−1], Following the generalilzbe1-di11D→M¥ lTogd(elfib1n-ii1ti1o)n as given by Eqs. and Pr[ |hr1(n+2)|2 >23R/2 1] can be easily determined in (21) and (22), we can obtain the DMT performance of pro- k(cid:229)=K1|gik1(n+2)|2 − posed ONC scheme as closed-form.Similarlyto Eq.(20),we can also obtainclosed- form solutions to Pr[I (q =2)<R], Pr[I (q =3)<R] and dONC+3r=2. (23) b1 b1 Pr[Ib1(q = 4)<R]. So far, we have completed the closed- One can observefrom Eq. (23)that a diversity gain dONC=2 form outage probability analysis for proposed ONC scheme, is achieved as r 0 and, on the other hand, a maximum based on which the DMT will be developed in the following. multiplexing gain→of two-third (i.e., r=2/3) can be achieved Note that the traditional diversity gain is defined as d = as the diversity gain approaches to zero. lim logPe(SNR) [12] whereSNR is SNR and P represents −bitSNeRrr→or¥ raltoeg,SwNRhich is not applicable here since tehe interfer- IV. NUMERICALRESULTS ence, rather than AWGN noise, becomes a dominant concern Fig. 5 shows the outage probability versus the signal-to- indeterminingthetransmissionperformance,asshowninEqs. interference radio (SIR) of the non-cooperationand proposed (18) and (20). Therefore, we present a generalized diversity ONC schemes for different data rates, where the simulation gain as an asymptotic ratio of the outage performanceto SIR results are also given. It is shown from Fig. 5 that the l =s 2 /s 2 with l ¥ , where s 2 =E(h 2) is simulation results match analytical results very well. One can b1-i11 b1 i11 b1-i11→ i11 | i11| the average gain of the channel from the 1st interferer to U1. observefromFig.5thatinlowSIRregions,theproposedONC Accordingly, the diversity gain of proposed ONC scheme is scheme performs worse than the non-cooperation in terms of given by outageprobabilityforboth R=0.5bit/s/HzandR=1bit/s/Hz. Thisisbecausethatahalf-duplexrelayconstraintisconsidered log(PoutONC) forthe ONC scheme, whichsacrifices the spectrumefficiency d = lim . (21) ONC −lb1-i11→¥ log(l b1-i11) (also known as multiplexing gain) to achieve the diversity [3] K.Loa,C.-C.Wu,S.-T.Sheu,Y.Yuan,M.Chion,D.Huo,andL.Xu, 2 “IMT-advancedrelaystandards,”IEEECommun.Magazine,vol.48,no. Ideal DMT 1.8 Proposed ONC 8,pp.40-48,Aug.2010. Conventional cooperation [4] S. W. Peters and R. W. Heath, “The future of WiMAX: Multi-hop 1.6 Non−cooperative scheme relaying with IEEE 802.16j,” IEEE Commun. Magazine, vol. 47, no. 1,pp.104-111,Jan.2009. 1.4 [5] Y. Zou, Y.-D. Yao, and B. Zheng, “Opportunistic distributed space- timecodingfordecode-and-forward cooperationsystems,”IEEETrans. n1.2 ai SignalProcess.,vol.60,no.4,pp.1766-1781, April2012. g ersity 1 [6] rPe.lPayopcohvasnkniealns,d”Hin.YPormoco.,I“EPEhEysIiCcaCln2e0tw07o,rkppc,od7i0n7g-in71tw2o,-2w0a0y7.wireless Div0.8 [7] R.YeungandZ.Zhang,“Distributedsourcecodingforsatellitecommu- nications,” IEEETrans.Inform.Theory, vol. 45,no.4,pp. 1111-1120, 0.6 May1999. [8] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information 0.4 flow,” IEEE Trans. Inform. Theory, vol. IT-46, no. 4, pp. 1204-1216, 0.2 Jul.2000. [9] L. Xiao, T. Fuja, J. Kliewer, and D. Costello, “A network coding 0 approach to cooperative diversity,” IEEE Trans. Inform. Theory, vol. 0 0.2 0.4 0.6 0.8 1 Multiplexing gain 53,no.10,pp.3714-3722, 2007. [10] Y. Zou, J. Zhu, B. Zheng, and Y.-D. Yao, “An adaptive cooperation diversityschemewithbest-relayselectionincognitive radionetworks,” Fig.6. Diversity-multiplexingtradeoffsofthenon-cooperation,conventional IEEETrans.SignalProcess.,vol.58,no.10,pp.5438-5445,Oct.2010. cooperation andproposedONCschemes. [11] Y. Zou, Y.-D. Yao, and B. Zheng, “Cooperative relay techniques for cognitive radio systems: Spectrum sensing and secondary user trans- missions,”IEEECommun.Mag.,vol.50,no.4,pp.98-103,Apr.2012. [12] L. Zheng and D. Tse, “Diversity and multiplexing: A fundamental gain. However, in higher SIR regions, the benefits achieved tradeoffinmultipleantennachannels,”IEEETrans.Inform.Theory,vol. fromdiversitygainovertakecostsduetothehalf-duplexrelay 49,no.5,pp.1073-1096,May2003. constraintandtheoutageprobabilityperformanceoftheONC scheme becomes better than that of the non-cooperation. Fig. 6 compares the DMT performance of the non- cooperation,conventionalcooperationprotocols,andproposed ONC scheme. As shown in Fig. 6, as the multiplexing gain approaches zero, the non-cooperation achieves a diversity gain of only one; however the conventional cooperation and proposed ONC schemes obtain the full diversity gain of two, showing the advantage of cooperation over non-cooperation. On the other hand, one can also see from Fig. 6 that as the diversity gain decreases to zero, the conventionalcooperation schemes achieve a maximum multiplexing gain of one-half. In contrast, the proposed ONC scheme obtains a maximum multiplexing gain of two-third, which is better than the con- ventional cooperation. V. CONCLUSION In this paper, we investigated opportunisticnetwork coding for cellular relay networks and proposed a fully distributed ONC scheme. We derived a closed-form outage probability expressionoftheproposedONCschemeoverRayleighfading channels.Numericaloutageprobabilityresultsshowedthatthe ONC scheme performs better than the non-cooperation. We also studied the DMT performanceof proposedONC scheme and showed that the proposed ONC strictly outperforms the conventionalcooperation in terms of DMT performance. REFERENCES [1] A.Hashimoto,H.Yoshino,andH.Atarashi,“RoadmapofIMT-advanced development,” IEEE Micro. Magazine, vol. 9, no. 4, pp. 80-88, Aug. 2008. [2] S. W. Peters, A. Y. Panah, K. T. Truong, and R. W. Heath, “Relay architectures for3GPPLTE-advanced,”EURASIPJ.WirelessCommun. andNet.,Vol.2009,Article ID618787,doi:10.1155/2009/618787.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.