A free parametrized TOV: Modified Gravity from 6 Newtonian to Relativistic Stars 1 0 2 n a J 2 HermanoVelten∗† 1 CPT,AixMarseilleUniversité,UMR7332,13288Marseille,France UniversidadeFederaldoEspíritoSanto(UFES),Vitória,Brazil ] O E-mail: [email protected] C AdrianoM.Oliveira . h InstitutoFederaldoEspíritoSanto(IFES),Guarapari,Brazil p UniversidadeFederaldoEspíritoSanto(UFES),Vitória,Brazil - o E-mail: [email protected] r t s AnetaWojnar a [ IFT,UniversityofWroclaw,pl. M.Borna9,50-204,Wroclaw,Poland, INFNSez. diNapoli,Univ. diMonteS.Angelo,Ed. G,ViaCinthia,I-80126Napoli,Italy. 1 E-mail: [email protected] v 0 0 WetestafreeadhocparametrizationoftheTolman-Oppenheimer-Volkoff(TOV)equation. We 0 3 do nothave in mind anyspecific extendedtheoryof gravity (ETG)but each new parameterin- 0 troducedhasaphysicalinterpretation. Ouraimisfullypedagogicalratherthanaproposalfora . 1 newETG.Givenarealisticneutronstarequationofstatewemapthecontributionsofeachnew 0 6 parameterintoashiftintrajectoriesofthemass-radiusdiagram. Thisexerciseallowsustomake 1 thecorrespondencebetweeneachTOVsectorwithpossiblemodificationsofgravityandclarifies : v howneutronstarobservationsarehelpfulfordistinguishingtheories. i X r a TheModernPhysicsofCompactStars2015 30September2015-3October2015 Yerevan,Armenia Speaker. ∗ †ThiscontributionwassupportedbyA*MIDEXproject(nANR-11-IDEX-0001-02)fundedbythe“Investissements d’avenir" FrenchGovernment program, managed bytheFrench National ResearchAgency (ANR).HV andAO also thankCNPqandFAPES.AWacknowledges support fromINFNSez. diNapoli(IniziativeSpecificheTEONGRAV). Moreover,HVandAWwouldliketothanktheOrganizersforwarmhospitalityduringtheconference. Wealsothank DavidEdwinAlvarezCastilloforacriticalreadingofthemanuscript. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ AfreeparametrizedTOV HermanoVelten 1. Introduction One of the main challenges in modern astrophysics concerns the equation of state (EoS) of neutron stars (NSs). Recent observations point outtoM 2M [1,2]objects preferring therefore ∼ ⊙ stiffnuclear EoS.However,itisworthnoting thatthislatterconclusion isvalidonlyinthegeneral relativity (GR)domain. Another important property of NSs is the stellar radius R. The mass-radius (M R)diagram − has become a comprehensive tool for matching theoretical predictions to observations. Modifica- tions of GR can produce shifts in the trajectories along the M R diagram but sometimes higher − masses are achieved at the price of having undesirable larger radii configurations. Thecurrent ra- dius determination isnotsoprecise asinthemasscasebutfuture satellites willplace veryprecise constraints on both M and R for the same object. As specific examples one can cite The Neutron starInterior CompositionExplorer(NICER)missionandtheSKAradioproject. Although GR is a very well tested theory and its predictions have been confirmed with solar system and binary pulsars observations the cosmological arena still challenges it. Actually, by adoptingGRweareleftwiththestrongindicationthat 95%oftheenergybudgetoftheuniverse ∼ is unknown. According to the most recent observations, this fraction is divided into the probably fraction of 25%fordarkmatterand 70%fordarkenergy. ∼ ∼ One possible solution relies in modifying GR on large (cosmological) scales. By replacing eitherthedarkmatterorthedarkenergycomponentbysomeextendedtheoryofgravity(ETG)the alreadyconfirmedpredictionofGRshouldbereconquered. Thishappensusuallyviatheinclusion of screening mechanisms around anastrophysical environment where theETGpredictions should suffer a metamorphopsia back to the GR ones. If this is actually the case, it is therefore expected that the NS interior and its habitat remains described by GR. However, the use of NSs for con- straining ETGshasbecome afruitful routeofinvestigation. See[3]forafewrecent worksonthis topic. The first usual procedure is to compute the analogue of the Tolman-Oppenheimer-Volkoff (TOV) equation [4, 5]—the GR structure for static and spherical objects—for your favorite ETG. In general, departures from the standard TOV equation are non-trivial. However, it can be useful to understand how masses and radii of NSs are shifted in the M R plane according to specific − changes in the TOV structure. In this sense, a recent and interesting work [6] proposed a “Post- TOV” formalism based on the parametrized post-Newtonian theory in which non-GR effects can be separately studied inrelativistic stars. Wealso point out the analysis done inRef. [7]in which thespecificpressurecontribution totheactivegravitational massinNSsisstudied indetail. Our aim in this contribution is to propose a free parametrization for the TOV equation. The curiousreadercangodirectlytoEqs. (3.1)and(3.2). Insomesense,thisisanextensionof[7]. Our approachshouldbeseenasapedagogicalguidetounderstand theroleplayedbydifferentphysical contributions totheTOVequation ratherthannewaETG. Inthe next section wereview aquick derivation of the TOVequation. Section 3presents our free parametrization for stellar equilibrium equations. Wewill adopt one realistic EoS for the NS interiorandshowinsection4resultsontheM Rplanewhenvaryingsuchnewparameters. Inthe − finalsectionwediscussinmoredetailtheroleplayedbyeachparameter. Weusec=ℏ=1units. 2 AfreeparametrizedTOV HermanoVelten 2. The Tolman-Oppenheimer-Volkoff equation In this section we review the derivation of the TOV equation which can be found in most textbooks aboutGRorrelativistic astrophysics. The first and simplest step in studying stellar objects is to consider that matter is spherically symmetricdistributed inastaticgeometryi.e.,timereversalaboutanyoriginoftime, ds2= B(r)dt2+A(r)dr2+r2(dq 2+sin2q df 2) . (2.1) − wherehereafter B(r) B;A(r) A. Generalrelativity isbasedonEinstein’s equations ≡ ≡ 1 Rmn gmn R=8p GTmn , (2.2) −2 whereRmn istheRiccitensorandRisthecurvaturescalar(traceoftensorRmn ). Themattercontent, inthiscase,theinternaldescription ofthestar,isencapsulated intheenergy-momentum tensor Tmn = (r +p)um un +pgmn , (2.3) where respectively r and p are the density and pressure of the fluid which depend on the radial m coordinate only. Also,um isthe4-velocity (withum u = 1). Noticedthatthefluidisatrest,then − ur =uq =uf =0andut = ( gtt)−1/2= √B. − − − mn InordertoderivetheTOVequation weneedtoconsider theconservation T ;n =0,whichis concomitant withBianchi’sidentities. Thisreads 1dB 2 dp = . (2.4) B dr −r +p dr Theinformation fromthecomponents Gtt,Grr andGqq provides theequation d r =1 8p Gr r2 . (2.5) dr(cid:16)A(cid:17) − Itssolution, demandingthatA(0)isfinite,is r M(r) 4p r 2r (r)dr . (2.6) ′ ′ ′ ≡Z0 This solution issimilar to the Newtonian equation and therefore one calls M(r)the massfunction foragivenradiusr. Adoptingthisassociation withtheclassical framework,thegravitational mass insidethestarwillbecalculated usingM=M(R)whereRisthefinitestellarradius. Finally,itisalsopossible tocombinealltheseequations intothefinalform dp GM(r)r 1+rp 1+4Mp (rr3)p = (cid:16) (cid:17)(cid:16) (cid:17) , (2.7) dr − r2 1 2GM(r) − r whichisknowastheTOVequation [4,5]. 3 AfreeparametrizedTOV HermanoVelten 3. Parametrized TOV The TOV equation (2.7) represents the full general relativistic equilibrium configuration for stars. The compactness h =2GM/R of a star measures the relevance of GR effects. The New- tonian counterpart is enough for low compactness h 1 stars. For instance, in white dwarfs ≪ h 10 6 whereas in main sequence stars h 10 4. Typical NS compactness values are in WD − MS − ∼ ∼ therange0.2.h .0.4. Ingeneral,relativisticeffectscanbecapturedbypressurecontributions NS and curvature effects. Also, having in mind that typical predictions of ETG replace the gravita- tional coupling by some effective quantity we therefore propose for the equilibrium equation the followingparametrization dp G(1+a )M(r)r 1+brp 1+cM4p(rr3)p = (cid:16) (cid:17)(cid:16) (cid:17) . (3.1) dr − r2 1 g2GM(r) − r Wealsogeneralize themassfunction M(r)in(3.1)bywriting dM(r) =4p r2(r +s p) . (3.2) dr Note that this is an effective mass which is used in the integration of (3.1). For s =0 this defi- 6 nition should be different from the conventional mass as calculated in (2.6). However, the actual gravitational mass remains being M M(R). Since this definition can also be written in terms of ≡ l themetriccomponents(asusuallydefinedviaA(r)=e )thereexistsaalternativevisualizationfor thatwhichreads M(r)=r(1 e l (r)) . (3.3) − − Now,thereare5newparameters, namelya ,b ,g ,c ands . a parametrizes the effective gravitational coupling, i.e., G =G(1+a ). In particular, in eff • f(R)theories onehasa =1/3[8]. InGRa =0. b couplestotheinertialpressure. Theterm(r +p)appearsfromthehydrostaticequilibrium • Tmn;n =r =0,whereristheradialcoordinate. InGRb =1. g isanintrinsic curvature contribution whichisabsent inthe Newtonian physics, i.e., inthe • classical caseg =0. InGRg =1. c measures theactivegravitational effects ofpressure which isaremarkable feature ofGR. • Itseffecthasalready investigated inRef. [7]. InGRc =1. s changes thewaythemassfunction iscomputed taking intoaccount possible gravitational • effectsofpressure. InGRs =0. ThestrategywhichwillbeadoptedhereafteristoassumeonerealisticEoSandthenvarysuch parameters. This somehow follows the reasoning discussed in Ref. [9]. In this reference, it is argued thattheoretical EoSusedforNSsareonlyanorder ofmagnitude larger thantypical values innucleonscatteringexperiments. Ontheotherhand,curvatureeffectswithinNSsaremanyorders 4 AfreeparametrizedTOV HermanoVelten of magnitude above the domain where GR is confined. Therefore, it is safer to claim we have a betterknowledgment abouttheNSEoSthanthegravitational theoryinsidetheseobjects. Someparticular configurations oftheseparametershavethefollowinginterpretation: a =b =g =c =s =0: Thiscorresponds totheNewtonianhydrostatic equilibrium which • givesrisetotheLane-Endemequation. a =0;b =1;g =c =0;s =3: Theneo-Newtonianhydrodynamic—aproposalwhichtries • to include relativistic inspired pressure effects at Newtonian level—has been applied to the stellarequilibriumprobleminRef. [10]. ContrarytotheNewtoniancase,theneo-Newtonian case leads to the existence of maximum masses for NS as well as the GR prediction. How- ever, the maximum masses found in the neo-Newtonian formalism are slightly higher than theGRones. a =0;b =0;g =c =s =0: Thiswouldconsist inthesimplest manifestation ofmodified • 6 gravity in Newtonian stars. In general, some f(R) theories gives rise to the modification a =1/3togetherwiths =0. 6 a =b =g =0;c =0;s =0: Configurationtestedin[7]. Theparameter c wouldberelated • 6 tothegeneration ongravitational fieldbypressure whichisabsentintheclassical context. In(3.2)wehaveassumedaquitesimplemodificationofthestandardGRmassequationwhich disappears when p= p(R)=0, where R is the star’s radius. In general, instead of s p one deals with a much complicated function that may depend even on higher derivatives of pressure. That dependence isvisibleifoneconsiders themodifiedEinstein’sequations as Gmn =Tmneff , Tmneff =s¯Tmnmat+Wmn , (3.4) whereTmatisthestandardperfectfluidenergy-momentumtensor,s¯ isacouplingindicatingoneof mn the ETG’s andWmn originates from geometric corrections. Following that approach one gets that thehydrostaticequilibriumequationsdiffersfrom(2.4)(seeforexample[11]). TheTOVequations arisingfromsuchequationshavemuchmorecomplicatedforms. SomeofsuchTOV-likeequations canbewrittenasaparametrized TOVequations considered inthatworkbutthere isstillroom for amoredetailed discussion inthis direction (in progress). Here, wewould like tostress how small modificationsofGRstellarequationsaffecttheM Rdiagram. Itisimportanttopointoutdifficul- − ties appearing in integrating the mass function coming from the new possible modifications. The mass of the NS is calculated as M = R4p r2r (r)dr independent of the functional form involved 0 for the effective mass M in these equRations. In GR we have always s =0 and therefore there is nodifferencebetweentheeffectivemassandthephysicalmeaningfulgravitational massM. More- over,thereimmediatelygivesriseaquestiononthestabilityoftheconsideredsystem(seeTheorem 2 in page 306 of Ref. [12]) which should be also investigated in the terms of ETG’s. Here, as in GR, we have adopted the condition dM/dr >0 for determining the maximum mass. However, c thestabilityproblemforstaticequilibrium configurations—stars—in ETGisstillanopenproblem inthefield. Toclosethesystemofequations anEoSofthetype p p(r ) , (3.5) ≡ 5 AfreeparametrizedTOV HermanoVelten should be specified. Equilibirum configurations are found by numerically solving the coupled system (3.1), (3.2) and (3.5) with the condition on the central pressure p(0)= p (corresponding 0 toacentraldensityr )anddemandingtha p(R)=r (R)=0. 0 4. Numerical results ontheMass-Radius diagram Inorder tonumerically solve the setof equations (3.1), (3.2)and (3.5) wedetermine the EoS ofthe stellar interior. Theusual technique converts dp/dr into dp/dr dr /dr in(3.5) insuch way that the central density (r (r =0)=r ) becomes a free parameter. A given r value determines 0 0 onesinglepointintheM Rdiagram. Byvaryingr someordersofmagnitudearoundthenuclear 0 − saturation densityoneobtainsacurveinthisplaneM R. − AmongavastnumberofpossibleEoSfoundintheliteraturetheBSkfamilyprovideanunified description of the stellar interior treating in a consistent way transitions between outer and inner crust (and core). The BSk structure has 23 free coefficients which have to be fitted numerically. Each BSk equation of state correspond to one specific numerical fit. For example, the unified BSk19, BSk20, and BSk21 EoSs approximate, respectively, the EoSs FPS [13, 14] (soft), APR [15](moderate), andV18[16](stiff)—see also[17]fordiscussion andreferences. In general, predictions for the maximum masses in BSk models slightly differ. BSk19 EoS does not allow masses larger than 2M and therefore observations of very massive neutron stars ⊙ withradius 13KmwouldfavortheBSk20andBSk21fits. Anuptodatecompilationofobserved ∼ neutron starsviadifferent observational methodscanbefoundin[2]. We will use in this contribution the BSk20 only. Our strategy is to fix the GR configuration and letone ortwoparameters change simultaneously. ThiswillbeshowninFig. 1. Ineach panel ofthisfigurethesolidblacklinerepresents theGRconfiguration. 5. Discussion Inthiscontribution wehaveproposedafree“ad-hoc”parametrizationoftherelativisticequa- tionforequilibrium. Ouraimisfullypedagogical ratherthanaproposalforanewextendedtheory forgravity. BykeepingtheBSk20EoSfortheneutronstarinterior—whichisrealisticinthesense thatequilibriumconfigurationsachieve2M usingGR—weseektheimpactofthenewparameters a ,b ,g ,c ands . Theycanbevisualized in⊙Eq. (3.1). The simplest expected manifestation of modified gravity theories occurs via a redefinition of theeffectivegravitationalcouplingG G(1+a ). Theeffectsofa ontheM Rplaneareseen eff → − inthepanelsbelonging torowA(seethecaptionofFig. 1). Thelargerthea value,thesmallerthe typical radiusoftheequilibrium configurations. Themaximummassisalsoreduced. The parameter b is clearly related to the maximum mass. The larger the inertial effects of pressure (b ),thesmallerthemaximummass. Concerning the parameter c we have confirmed the findings of [7], i.e., the self-gravity of pressure contributes toreducing themaximum allowedNSwithalmostnoimpactontheradiusof thestar. Theimpactofparameterg isrelevanttopanels AIII,BI andCI. IntheNewtonianhydrostatic equilibrium g =0. However,byre-performing theNewtonianclassical casewithamodifiedNew- 6 AfreeparametrizedTOV HermanoVelten 3.0 3.0 3.0 3.0 Α=0,Β=0 Α=0,Γ=0 Α=0,Χ=0 Α=0,Σ=3 2.5 Α=0,Β=1 2.5 Α=0,Γ=1 2.5 Α=0,Χ=1 2.5 Α=0,Σ=0 Α=1(cid:144)3,Β=0 Α=1(cid:144)3,Γ=0 Α=1(cid:144)3,Χ=0 Α=1(cid:144)3,Σ=3 2.0 Α=1(cid:144)3,Β=1 2.0 Α=1(cid:144)3,Γ=1 2.0 Α=1(cid:144)3,Χ=1 2.0 Α=1(cid:144)3,Σ=0 Ÿ Ÿ Ÿ Ÿ MM(cid:144) 1.5 ΑΑ==--11(cid:144)(cid:144)33,,ΒΒ==01 MM(cid:144) 1.5 ΑΑ==--11(cid:144)(cid:144)33,,ΓΓ==01 MM(cid:144) 1.5 ΑΑ==--11(cid:144)(cid:144)33,,ΧΧ==01 MM(cid:144) 1.5 ΑΑ==--11(cid:144)(cid:144)33,,ΣΣ==30 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22 RHkmL RHkmL RHkmL RHkmL 3.0 3.0 3.0 Β=1,Γ=0 Β=1,Χ=0 Β=1,Σ=3 2.5 Β=1,Γ=1 2.5 Β=1,Χ=1 2.5 Β=1,Σ=0 Β=0,Γ=0 Β=0,Χ=0 Β=0,Σ=3 2.0 Β=0,Γ=1 2.0 Β=0,Χ=1 2.0 Β=0,Σ=0 Ÿ Ÿ Ÿ MM(cid:144) 1.5 MM(cid:144) 1.5 MM(cid:144) 1.5 1.0 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0 8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22 RHkmL RHkmL RHkmL 3.0 3.0 Χ=1,Γ=0 Γ=1,Σ=3 2.5 Χ=1,Γ=1 2.5 Γ=1,Σ=0 Χ=0,Γ=0 Γ=0,Σ=3 2.0 Χ=0,Γ=1 2.0 Γ=0,Σ=0 Ÿ Ÿ MM(cid:144) 1.5 MM(cid:144) 1.5 1.0 1.0 0.5 0.5 0.0 0.0 8 10 12 14 16 18 20 22 8 10 12 14 16 18 20 22 RHkmL RHkmL 3.0 Χ=1,Σ=3 2.5 Χ=1,Σ=0 Χ=0,Σ=3 2.0 Χ=0,Σ=0 Ÿ MM(cid:144) 1.5 1.0 0.5 0.0 8 10 12 14 16 18 20 22 RHkmL Figure 1: Mass-radius diagram for various choices of the parameters a ;b ;g ;c ;s . In order to mention a specific panelin the textwe will introducethe followingnotation: Thepanelin the first row (A) and in thefirstcolumn(I),top-left,iscalledAI.Itthispaneltheeffectsofvaryinga andb canbeseenwhilethe otherparametersarefixedtotheGRconfiguration(g =1;c =1;s =0). Thesamestrategyisadoptedin theremainingpanels. IneachpanelthestandardGRconfigurationisdenotedbythesolid-blackline. The massiscalculatedviaM= R4p r2r drevenifs =0wasadoptedwhennumericallysolvingthesystemof 0 6 equationsi.e.,wealwaysploRtthegravitationalmassMratherthantheeffectivemassM. Effectsofvarying s canbeseeninpanelsAIV,BIII,CIIandDI. 7 AfreeparametrizedTOV HermanoVelten tonian potential of the typeV(r)= GM, where A is a constant, it is possible to obtain a similar −r A contribution with a singularity in the d−enominator of the TOV equation like the g =1 case. The existence ofamaximum mass(absent intheNewtonian case) isapure relativistic prediction. But itisworthnotingthatthecurveswithg =0produceindeedamaximummass,butwithaverylarge valuewhichcannotbeseenintheseplots. References [1] D.Niceetal. A2.1solarmasspulsarmeasuredbyrelativisticorbitaldecayApJ634(2005)1242. [2] http://www.stellarcollapse.org/nsmasses [3] A.M.Oliveira,H.E.S.Velten,J.C.FabrisandL.Casarini,NeutronstarsinRastallgravity,Phys. Rev.D92(2015)044020;C.Palenzuela,S.Liebling,Constrainingscalar-tensortheoriesofgravity fromthemostmassiveneutronstars,[gr-qc/1510.03471v1];S.Capozziello,R.Farinelli,M.D. Laurentis,A.D.Odintsov,TheMass-RadiusrelationforNeutronStarsin f(R)gravity, [gr-qc/1509.04163v3];A.Cisterna,T.Delsate,M.Rinaldi,Neutronstarsingeneralsecondorder scalar-tensortheory:Thecaseofnonminimalderivativecoupling Phys.Rev.D92(2015)4,044050. [4] J.R.OppenheimerandG.M.Volkoff,OnMassiveneutroncores,Phys.Rev.55,(1939)374. [5] R.C.Tolman,StaticSolutionsofEinstein’sFieldEquationsforSpheresofFluid,Phys.Rev.55, (1939)4. [6] K.Glampedakis,G.Pappas,H.O.Silva,E.Berti,Post-Tolman-Oppenheimer-Volkoffformalismfor relativisticstars,Phys.Rev.D92(2015)024056. [7] J.Schwab,S.A.HughesandS.Rappaport,TheSelf-GravityofPressureinNeutronStars, [astro-ph/0806.0798] [8] P.Brax,C.vandeBruck,A.C.Davis,D.J.Shaw, f(R)GravityandChameleonTheoriesPhys.Rev. D78,(2008)104021. [9] K.YavuzEksi,CanGüngör,MuratMetehanTürkoglu,Whatdoesameasurementofmassand/or radiusofaneutronstarconstrain:Equationofstateorgravity?Phys.Rev.D89(2014)063003. [10] A.M.Oliveira,H.E.S.Velten,J.C.FabrisandI.G.Salako,NewtonianViewofGeneralRelativistic Stars,Eur.Phys.J.C74(2014)11,3170. [11] E.Santos,Neutronstarsingeneralizedf(R)gravity,Astrophys.andSpaceSc.,341,2(2012)411. [12] S.Weinberg,Gravitationandcosmology:principlesandapplicationsofthegeneraltheoryof relativity,Wiley1972 [13] C.P.Lorenz,D..RavenhallandC.J.Pethick,NeutronStarcrusts,Phys.Rev.Lett.70,(1993)379. [14] B.FriedmanandV.R.Pandharipande,Hotandcold,nuclearandneutronmatter,NuclearPhys.A 361,(1981)5. [15] A.Akmal,Equationofstateofnucleonmatterandneutronstarstructure,Phys.Rev.C58,(1998)3. [16] Li,Z.H.,Neutronstarstructurewithmodernnucleonicthree-bodyforces,Phys.Rev.C78,(2008)2. [17] A.Y.Potekhin,A.F.Fantina,N.Chamel,J.M.Pearson,andS.Goriely,Analyticalrepresentationsof unifiedequationsofstateforneutron-starmatter,Astron.Astrophys.560,(2013)A48. 8