A FORMULA REPRESENTING MAGNETIC BEREZIN TRANSFORMS ON THE BERGMAN BALL OF CN AS FUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR ALLALGHANMIANDZOUHAIRMOUAYN ABSTRACT. WegiveaformulathatrepresentsmagneticBerezintransformsassociatedwith generalized Bergmanspaces as functions of the Laplace-Beltrami operator on the Bergman 1 ballofCn.Inparticular,werecovertheresultobtainedbyJ.Peeter[J.Oper.Theory,24,1990]. 1 0 Key-Words: Bergman ball; Magnetic Schrödinger operator; Generalized Bergman spaces; 2 GeneralizedBerezinTransforms;Laplace-Beltramioperator. n a Mathematical Subject Classification 2010:47B35;46B38;47G10 J 9 1 ] P 1 Introduction S . h The Berezin transform was introduced and studied by Berezin [2] for certain classical t symmetricdomainsinCnandnextextensivelyconsideredinthecontextofBergman,Hardy a m and Bargmann-Fock spaces [4, 7, 11]. It is closely related to Topelitz operators [19] and is ⋆ [ useful in the quantization theory and corresponding -product on a suitable algebras of functionsaswellasinthecorrespondenceprinciple[2,4]. 2 This transform is defined as follows. Let Ω be a domain of Cn with a Borel measure µ v 8 and a closed subspace of L2(Ω,dµ) consisting of continuous functions and possessinga 4 H reproducingkernelK( , ). Then,theBerezinsymbolσ(A)ofaboundedlinearoperatorAon 2 · · 1 isthefunctiononΩgivenbyσ(A)(x) := Ae ,e ,wheree ( ) := K( ,x)K(x,x) 1/2 . x x x − 1. THhus the Toeplitz operator Tf with symbohl f Li∞(Ω) is the· operat·or defined on ∈ Hby ∈ H 0 T (ϕ) = P(fϕ); ϕ , where P is the orthogonal projection from L2(Ω,dµ) into . The 1 f ∈ H H 1 Berezin transform associated to is then defined to be the positive self-adjoint operator v: B := σT,whichturnsouttobeaHboundedoperatoron L2(Ω,K(x,x)dµ(x)). Xi In this paper, we deal with the Bergman unit ball Ω = Bn in (Cn, , ) as domain en- h· ·i dowedwithitsLebesguemeasuredµ. SincetheBerezintransformcanbedefinedprovided r a that thereis agiven closedsubspaceof L2(Bn,dµ) possessingareproducingkernel,weare concernedherewiththe L2-eigenspaces A2m,ν(Bn) = ϕ ∈ L2(Bn,(1−|z|2)−n−1dµ); Hνϕ = ǫmν,nϕ , (1.1) n o associatedtothediscretespectrum n ǫν,n = 4ν(2m+n) 4m(m+n); m = 0,1,2, ,[ν ], (1.2) m − ··· − 2 oftheSchrödingeroperatorwithuniformmagneticfieldonBn givenby n ∂2 n ∂ ∂ H = 4(1 z 2) ∑(δ z z ) +ν∑ z z +ν2 +4ν2, (1.3) ν ij i j j j − −| | − ∂z ∂z ∂z − ∂z (j=1 i j j=1(cid:18) j j(cid:19) ) 1 2 ALLALGHANMIANDZOUHAIRMOUAYN provided that ν > n/2. Above [x] denotesthe greatest integer not exceeding x. Note that for m = 0, the space 2,ν(Bn) reduces further to be isomorphic to the weighted Bergman spaceofholomorphicAfu0nctions gonBn satisfyingthegrowthcondition g(z) 2(1 z 2)2ν−n−1dµ(z) < +∞. (1.4) Bn| | −| | Z TheassociatedBerezintransformcanbeexpressedas B[ϕ](z) = (2ν−n)Γ(2ν) (1−|z|2)(1−|ξ|2) 2ν ϕ(ξ) 1 ξ 2 −(n+1)dµ(ξ). (1.5) πnΓ(2ν n+1) Bn 1 < z,ξ > 2 −| | − Z (cid:18) | − | (cid:19) (cid:0) (cid:1) Moreover, it can be written as a function of the Laplace-Beltrami operator ∆Bn ([15, p.182]) as 2 B = Γ α+1+ n2 + 2i −∆Bn −n2 , (1.6) (cid:12) (cid:16) Γ(α+1)Γ(αp+n+1) (cid:17)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) where Γ(x) being the usual Gamma function and α = 2ν n 1 occurring in the measure − − weight ofthe Bergman space underconsideration in [15] by Peeterwho derived(1.6) from a formula representing the Berezin transform on the Bergman ball as function of the ∆Bn, whichwasfirstestablishedbyBerezinin[3]. Our aim is then to generalize (1.5) and (1.6) to the case of the spaces in (1.1). We pre- cisely attach to each of these eigenspaces a Berezin transform B following the formalism m describedaboveas Γ(n)m!(2(ν m) n)Γ(2ν m) (1 z 2)(1 ξ 2) 2(ν−m) B [ϕ](z) : = − − − −| | −| | (1.7) m πnΓ(n+m)Γ(2ν m n+1) Bn 1 z,ξ 2 − − Z (cid:18) | −h i| (cid:19) 2 Pm(n−1,2[ν−m])(1 2 ξ 2) ϕ(ξ)(1 ξ 2)−(n+1)dµ(ξ), × − | | −| | (cid:16) (cid:17) (α,β) where P ( ) denotes the Jacobi polynomial [10]. Moreover, we have to prove that such m · transformcanalsobeexpressedasafunctionoftheLaplace-Beltramioperator∆Bn interms ofthe ̥ -sumas 3 2 B = Cν,n ∑2m( 2)jA Γ(n+j)Γ 2(ν−m)− 12 n−i −∆Bn −n2 (1.8) m m j=0 − j Γ 2(ν−(cid:16)m)+j+ 21 n(cid:16)+i p−∆Bn −n2 (cid:17)(cid:17) (cid:16) (cid:16) p (cid:17)(cid:17) ̥ 12 n+i −∆Bn −n2 , n+j, 12 n+i −∆Bn −n2 1 , 3 2 × (cid:16) (νp−m)+j+ 21(cid:17) n+i −(cid:16)∆Bn −pn2 , n (cid:17) (cid:12)(cid:12) (cid:16) p (cid:17) (cid:12) where (cid:12) (2(ν m) n)Γ(n+m) Cν,n = − − (1.9) m m!Γ(2ν n m+1)Γ(2ν n) − − − and min(m,j) (m!)2Γ(2ν m)Γ(2ν m+j p) A = 2 j ∑ − − − . (1.10) j − (j p)!(m+p j)!p!(m p)!Γ(n+j p)Γ(n+ p) p=max(0,j m) − − − − − Inparticular,whenm = 0,thetransform(1.7)reducestothewellknownBerezintransform B in(1.5)ontheunitball[2]andtheexpression(1.8)becomestheformula(1.6). The paper is organized as follows. In Section 2, we fix some notations and we review brieflysomeneededtoolsonthebi-holomorphicmapsoftheball,thespectralfunctionofthe MAGNETICBEREZINTRANSFORMS 3 Laplace-BeltramioperatorandtheFourier-Jacobitransformofthisoperator. InSection3,we are dealing with the L2-spectraltheoryoftheSchrödingeroperatorwith uniformmagnetic fieldontheunitballandweareconcernedinparticularwiththereproducingkernelsofthe eigenspaces associated with the discrete spectrum. In Section 4, we construct for each of theseeigenspacesaBerezintransformthatweexpressintermsofthebi-holomorphicmaps of the ball. In Section 5, we give a formula representingthe constructedBerezin transform asfunctionoftheLaplace-Beltramioperator. 2 SOME NOTATIONS AND TOOLS Herewefixsomenotationsandwerecallsomeneededtoolswewillbeusingsuchasthe bi-holomorphicmapsoftheball,thespectralfunctionoftheLaplace-Beltramioperatorand theFourier-Jacobitransform. 2.1 TheMoebiusgroupofBn. LetCnbeendowedwithitsstandardinnerproduct z,w = z w + z w + + z w for every z = (z , ,z ), w = (w , ,w ) in Cn,hso thiat 1 1 1 2 1 n 1 n 1 n ··· ··· ··· z = z,z = z 2+ + z 2. We denote by Bn = z Cn : z < 1 the unit ball 1 n o|f|Cn. Thhe Mioebius|gr|oup·o·f·Bn|, de|noted Aut(Bn), i.e. the{set∈of the|b|iholo}morphic map- p p pings ϕ : Bn Bn (called also the autormorphisms of Bn) acts transitively on Bn. For fixed a Bn, l−e→t P be the orthogonalprojection of Cn onto the subspace < a > generated a by a and∈let Q = I P betheprojectionontotheorthogonalcomplementof< a >. Tobe a a quite explicit, we ha−ve P (z) = z,a a/ a,a if a = 0 and P (z) = 0. For every a Bn, set a 0 h i h i 6 ∈ s = (1 a 2)1/2 anddefine −| | a P (z) (1 a 2)1/2Q (z) ϕ (z) = − a − −| | a . (2.1) a 1 z,a −h i Then, the maps ϕ have the following properties [16]: (i) ϕ (0) = a and ϕ (a) = 0, (ii) a a a ϕ (0) = s2P sQ and ϕ (a) = 1P 1Q , (iii) ϕ is an involution: ϕ (ϕ (z)) = z, ′a − a− a ′a −s2 a− s a a a a (iv) ϕa : Bn → Bn is an homeomorphismand belongsto Aut(Bn), (v) The Jacobian |DDwξ| of | | thetransformationξ = ϕ (w)isequalto a n+1 2 Dw 1 a | | = −| | (2.2) Dξ 1 a,ξ 2! | | | −h i| and(vi)Theidentity (1 a,a )(1 w,w ) ′ 1 ϕa(w),ϕa(w′) = −h i −h i (2.3) − (1 w,a )(1 a,w ) ′ −h i −h i (cid:10) (cid:11) holdsforeveryw,w Bn. ′ The elements of A∈ut(Bn) are the maps ϕ ; a Bn, and their unitary transformations. a ∈ Indeed,ifψ Aut(Bn)and a = ψ 1(0),thenthereisauniqueU intheunitarygroupU(n) − ∈ suchthatψ = U.ϕ . Moreover,inviewof(2.3),ψsatisfiestheidentity a (1 a,a )(1 w,w ) 1 ψ(w),ψ(w′) = −h i −h ′i ; w,w′ Bn. (2.4) − (1 w,a )(1 a,w ) ∈ −h i −h ′i (cid:10) (cid:11) Forourpurpose,wewillbeconcernedwiththeautomorphism A w+z z ϕ (w) := , (2.5) z 1+ w,z h i 4 ALLALGHANMIANDZOUHAIRMOUAYN where A isthen nmatrixgivenby z × zz Az := (1 z 2)12In+ ∗ , (2.6) −| | 1+ 1 z 2 −| | I beingtheidentitymatrix. p n 2.2 TheLaplace-Belramioperator. RecallthattheBergmankerneloftheunitballisgiven by n! K(z,w) = , (2.7) πn(1 z,w )n+1 −h i sothatonedefines n+1 g = ∂ ∂ (logK(z,z)) = 1 z 2 δ z z , (2.8) ij i j (1 z 2)2 −| | ij− i j −| | (cid:0)(cid:0) (cid:1) (cid:1) wherewehaveusedthenotation∂ and∂ tomean k k ∂ 1 ∂ ∂ ∂ 1 ∂ ∂ ∂ = = i and ∂ = = +i (2.9) k k ∂z 2 ∂x − ∂y ∂z 2 ∂x ∂y k (cid:18) k k(cid:19) k (cid:18) k k(cid:19) withz = x +iy C. Therefore,theBergmanmetriconBn definedthrough k k k ∈ n ds2 := ∑∂ ∂ logK(K(z,z))ξ ξ = (1 z 2) 2 ∑ (1 z 2)δ +z z dz dz , (2.10) z i j i j −| | − −| | i,j i j i⊗ j i,j i,j=1 (cid:0) (cid:1) sothattheBergmanball(Bn,ds2)carriesaKählerianstructure. Thecorrespondinginvariant volumemeasureis n! dV dg(z) = K(z,z)dV(z) = πn (1 z 2)n+1 = (1−|z|2)−(n+1)dµ(z) (2.11) −| | andthegeodesicdistanced(z,w) reads 1 z,w 2 cosh2(d(z,w)) = | −h i| . (2.12) (1 z 2)(1 w 2) −| | −| | TheLaplace-Beltramioperatorassociatedto(Bn,ds2)isdefinedtobe ∆Bn = 4∑gij∂j∂i = 4(1 z 2)∑ δij zizj ∂i∂j; (2.13) − −| | − i,j i,j (cid:0) (cid:1) (gij) being the inverse matrix of (gij). Note that ∆Bn is invariant under the action of the group SU(n,1) and its spectrum σ(∆Bn) in the Hilbert space L2(Bn,(1 z 2)−n−1dµ) is − | | purelycontinuousandequalsto] ∞, n2]. Insteadof∆Bn,wehave todealwiththenon- − − negativeellipticself-adjoint operator Ln := ∆Bn n2 sothat σ( Ln) = [0,+∞[. Hence, foragivensuitablerealvaluedfunctio−n f : R− R−,theoperator f−( L )isdefinedby n −→ − f( L )[ϕ](z) := K (z,w)ϕ(w)(1 w 2) n 1dµ(w), (2.14) n f − − − Bn −| | Z whosethekernelfunctionhastheintegralrepresentation +∞ K (z,w) = Ψ(z,w;λ)f(λ)dλ, (2.15) f Z0 MAGNETICBEREZINTRANSFORMS 5 wherethespectralkernelisgivenby([13,p.13]): Γ(n+iλ) 4 n+iλ, n iλ Ψ(z,w;λ) = | 2 | ̥ 2 −2 sinh2(d(z,w)) , (2.16) 4πn+1Γ(n) Γ(iλ) 2 2 1 n − | | (cid:20) (cid:12) (cid:21) (cid:12) intermsofthe2̥1( )-Gausshypergeometricfunction[10]. (cid:12)(cid:12) · 2.3 TheFourier-JacobiTransform. LetusrecallthattheJacobifunctionsaredefinedby φλ(α,β)(t) := 2̥1 12 (α+β+1+iλα)+, 211(α+β+1−iλ) −sinh2(|t|) . (2.17) (cid:20) (cid:12) (cid:21) (cid:12) Theparticularcaseoft = iθ andλ = i(2n+α+β+1)leadsto(cid:12)(cid:12) φ(α,β) (iθ) := ̥ −n,n+α+β+1−iλ sin2( θ ) (2.18) i(2n+α+β+1) 2 1 α+1 | | (cid:20) (cid:12) (cid:21) (cid:12) n! (α,β) (cid:12) = (α+1) Pn (cos(|2θ|)), (cid:12) (2.19) n ( 1,1) anormalizedJacobipolynomial. Wehavethefollowingspecialcasesφ −2 2 (t) = cos( λt ) λ | | (0,0) and φ (t) = P (cosh( 2t )), where P ( ) is the Legendre function. Now, let us as- λ 21(iλ−1) | | ν · sumethatα > 1and β R iR,andset − ∈ ∪ ∆ (t) := (2sinh( t ))2α+1(2cosh( t ))2β+1. (2.20) α,β | | | | Then the Jacobi function φ(α,β) in (2.17) is an even C∞-function on R satisfying the second λ orderdifferentialequation d2 + ∆′α,β(t) d +λ2+(α+β+1)2 φ(α,β)(t) = 0 (2.21) dt2 ∆ (t)dt λ α,β ! with φ(α,β)(0) = 1, and is uniquely definedby theseproperties. Moreover, for α > 1 and λ − β [ α 1,α+1] iR,wehavetheintegraltransformpair ∈ − − ∪ +∞ g(λ) = f(t)φ(α,β)(t)∆ (t)dt (2.22) λ α,β Z 0 +∞ f(t) = (2π)−1 g(λ)φλ(α,β)(t) cα,β(λ) −2dλ, (2.23) Z0 (cid:12) (cid:12) where (cid:12) (cid:12) 2α+β+1 iλΓ(α+1)Γ(iλ) − c (λ) := . (2.24) α,β Γ 1 (α+β+1+iλ) Γ 1 (α β+1+iλ) 2 2 − Thisestablishesaone-to-oneco(cid:0)rrespondencebetw(cid:1)ee(cid:0)nthespaceofeven(cid:1)C∞-functionsonR withcompactsupportanditsimageundertheFourier-cosinetransform,ascharacterizedby theclassical Paley-Wienertheorem. Themapping f g, whichiscalled theFourier-Jacobi 7→ transform,can beextendedtoan isometryoftheHilbertspacesbetween L2 R ,∆ (t)dt + α,β and L2 R+,(2π)−1 cα,β(λ) −2dλ . Notethatin thecase ofα > 1and β (cid:0)> α+1, (2.22(cid:1)) − | | (cid:16) (cid:12) (cid:12) (cid:17) (cid:12) (cid:12) 6 ALLALGHANMIANDZOUHAIRMOUAYN remains valid except that we have to add to the right hand side of the second formula in (2.23)theterm ∑ g(λ)d (λ), (2.25) α,β λ D ∈ α,β where D is afinitesubsetofiR and theweightsd (λ) can be givenexplicitly. Formore α,β α,β information on the Fourier-Jacobi transform see Koornwinder’s paper [12] and the refer- encestherein. 3 THE GENERALIZED BERGMAN SPACES ν (Bn) Am Associated to the Kählerian manifold (Bn,ds2), modeling the complex hyperbolic space ofnegativeholomorphicsectionalcurvature,thereisacanonicalvectorpotential θ(z) = √ 1(∂ ∂¯)Log(1 z 2). (3.1) − − − −| | Thus,themagneticSchrödingeroperator,describingachargedparticlemovinginBn under theactionofthederivedmagneticfielddθ,canbedefinedas Hν := (d+√ 1νθ)∗(d+√ 1νθ). (3.2) − − ItappearsthenastheLaplace-Beltramioperatorin(2.13)perturbedbyafirstorderdifferen- tialoperator. Itsexpressioninthecomplexcoordinatesisgivenby([9]): n ∂2 n ∂ ∂ H = 4 1 z 2 ∑ (δ z z¯ ) +ν∑ z z¯ +ν2 +4ν2. (3.3) ν ij i j j j − −| | − ∂z ∂z¯ ∂z − ∂z¯ (i,j=1 i j j=1(cid:18) j j(cid:19) ) (cid:16) (cid:17) Different aspects of the spectral analysis of H have been studied by many authors under ν different names and notations (like Maass Laplacians, Landau Hamiltonians, ... ), see for example [18, 1, 5] for n 2 and [6, 14] for n = 1. For instance, note that H is an elliptic ν ≥ denselydefinedoperatorontheHilbertspaceL2(Bn,(1 z 2) n 1dµ)andadmitsaunique − − −| | self-adjoint realization denoted also by H . Moreover, it is a known fact that the discrete ν spectrumof H on L2(Bn,(1 z 2) n 1dµ) isnottrivialwheneverν > n/2andconsistsof ν − − −| | afinitenumberofinfinitelydegenerateeigenvaluesoftheform ǫν,n := 4ν(2m+n) 4m(m+n) (3.4) m − for varying integer m such that 0 m < ν n/2. The corresponding L2-eigenfunctions, ≤ − i.e.,theelementsofthespace 2,ν(Bn)in(1.1)canbewrittenexplicitlyintermsoftheJacobi m A polynomials P(α,β)(x) and the complex spherical harmonics hp,q(z,z¯) [8, 16]. Namely, from j [18,9]wecheckthatthefunctions ψνp,,mq(z) := (1−|z|2)ν−mPm(n+qp+q−1,2[ν−m]−n)(1−2|z|2)hp,q(z,z¯), (3.5) − constitute an orthogonal basis of the space in (1.1), for varying integers p and q such that p = 0,1,2, , and q = 0,1,2, ,m, whose the square norms in L2(Bn,(1 z 2) n 1dµ) − − ··· ··· −| | aregivenby 2 πnΓ(n+m+p)Γ(2ν n m q+1) ψν,m = − − − . (3.6) p,q 2n!(2[ν m] n)(m q)!Γ(2ν m+p) (cid:13) (cid:13) − − − − (cid:13) (cid:13) Furthermore, the(cid:13)space(cid:13) 2,ν(Bn) is a reproducing kernel Hilbert space, i.e., for every fixed m z Bn,thereexistsafunActionKν belongingtothisspacesuchthat ∈ m,z f(z) = f,Kmν,z = Bn Kmν,n(z,w)f(w)(1−|z|2)−n−1dµ(w) (3.7) Z (cid:10) (cid:11) MAGNETICBEREZINTRANSFORMS 7 for every f 2,ν(Bn), where we have set Kν,n(z,w) = Kν (w). Its expressionis given in ∈ Am m m,z termsofthehyperbolicdistancein(2.12)as ν 1 z,w Kmν,n(z,w) = γmν,n 1−hz,wi (cosh(d(z,w)))−2(ν−m) (3.8) ! −h i Pm(n−1,2[ν−m]−n) 1 2tanh2(d(z,w)) , × − (cid:16) (cid:17) where (2(ν m) n)Γ(2ν m) γν,n = − − − . (3.9) m πnΓ(2ν m n+1) − − For m = 0, the L2-eigenspaceassociatedto thebottomeigenvalue ǫν,n = 4νn is isomorphic 0 to the usual weighted Bergman Hilbert space of holomorphic functions g on Bn such that (1.4)holds. Thecorrespondingreproducingkernelreads (2ν n)Γ(2ν) 2ν Kν,n(z,w) = − cosh(d(z,w)) − . (3.10) 0 πnΓ(2ν n+1) − (cid:16) (cid:17) Definition3.1. Assumethat ν > n/2andlet m bean integer suchthat0 m < ν n/2. Then ≤ − thespace 2,ν(Bn)iscalledhereageneralized Bergmanspaceofindexm. m A 4 GENERALIZED BEREZIN TRANSFORMS ON THE UNIT BALL WeadopttotheformalismpresentedinSection1tothecaseoftheBergmanballΩ = Bn as domain of Cn and 2,ν(Bn) as a closed subspace of L2(Bn,(1 z 2) n 1dµ). Then, the m − − A −| | Berezinsymbolofaboundedoperator Aon 2,ν(Bn)isthefunction m A σ (A)(z) := A K , K ; z Bn. (4.1) m m m z z L2(Bn,(1 z2) n 1dµ) ∈ D (cid:16) (cid:17) (cid:16) (cid:17) E −| | − − f f Here(K ) denotesthenormalizedreproducingkernelwithevaluationatz,thatis m z Kν,n(z,w) f (K ) (w) = m , w Bn, (4.2) m z Kν,n(z,z) ∈ m whereKν,n(z,w) isgiveninf(3.8). Therefpore,forgivencomplex-valuedfunction φ suchthat m φK L2(Bn,(1 z 2) n 1dµ), the Berezin transform of φ is defined to be the Berezin m − − ∈ −| | symbol of the Toeplitz operator T (φ) with symbol φ defined on 2,ν(Bn) by T (φ)[f] := m m m Pf[φf]. Thatis, A m B [φ](z) = σ (T (φ))(z) = T (φ) K , K = P φ. K , K . (4.3) m m m m m m m m m z z z z D (cid:16) (cid:17) (cid:16) (cid:17) E D (cid:16) (cid:16) (cid:17) (cid:17) (cid:16) (cid:17) E Byexpressing(4.3)asanintegral,wegetf f f f Bm[φ](z) = Bm(z,w)φ(w)(1 w 2)−n−1dµ(w), (4.4) Bn −| | Z where Kν,n(z,w) 2 B (z,w) := | m | , z,w Bn. (4.5) m Kν,n(z,z) ∈ m 8 ALLALGHANMIANDZOUHAIRMOUAYN Explicitly, Bm(z,w) = Γm(m!Γ+(nn))γmν,n(coshd(z,w))−4(ν−m) Pm(n−1,2[ν−m]) 1−2tanh2(d(z,w)) 2, (cid:16) (cid:16) (cid:17)(cid:17)(4.6) whereγν,n isasin(3.9). Wethenstatethefollowing m Definition 4.1. Let m = 0,1,2, ,[ν n] and let γν,n as in (3.9). Then, the integral operator ··· − 2 m actingonφ L∞(Bn)as ∈ m!Γ(n) Bm[φ](z) =Γ(m+n)γmν,n Bn(cosh(d(z,w)))−4(ν−m) (4.7) Z Pm(n−1,2[ν−m]) 1 2tanh2(d(z,w)) 2φ(w) 1 w 2 −n−1dµ(w). × − −| | (cid:16) (cid:16) (cid:17)(cid:17) (cid:0) (cid:1) iscalledthegeneralized Berezintransformofindexm. Proposition4.2. ThetransformB definedin(4.7)canbewrittenas m m!Γ(n) Bm[φ](z) = Γ(m+n)γmν,n Bn(1−|w|2)2(ν−m) (4.8) Z 2 Pm(n−1,2[ν−m])(1 2 w 2) φ(ϕz(w))(1 w 2)−n−1dµ(w), × − | | −| | (cid:16) (cid:17) where ϕ (w)isasin(2.5). z Proof. Fixz Bn andsetw = ϕ 1(ξ),where ϕ (w)isasin(2.5). Wehave ϕ Aut(Bn)and ∈ −z z z ∈ ϕ (0) = z. Thequantityintherighthandsideof(4.8)reads,intermsofξ,as z Γm(m!Γ+(nn))γmν,n 1− ϕ−z 1(ξ) 2 2(ν−m) (4.9) (cid:18) (cid:12) (cid:12) (cid:19) (cid:12) (cid:12) 2 n 1 × Pm(n−1,2[ν−m](cid:12)) 1−2(cid:12) ϕ−z 1(ξ) 2 φ(ξ) 1− ϕ−z 1(ξ) 2 − − dµ ϕ−z 1(ξ) . (cid:18) (cid:18) (cid:12) (cid:12) (cid:19)(cid:19) (cid:18) (cid:12) (cid:12) (cid:19) (cid:16) (cid:17) (cid:12) (cid:12) (cid:12) (cid:12) Bywritingdowntheidentity(2.4)(cid:12)forψ =(cid:12)ϕ 1andw = w ,(cid:12)weget(cid:12) −z ′ 2 (1 z 2) 1 ξ 2 1− ϕ−z 1(ξ) = −1| | ξ(cid:0),z−2| | (cid:1) = cosh−2(d(z,ξ)) = 1−tanh2(d(z,ξ)). (4.10) (cid:12) (cid:12) | −h i| (cid:12) (cid:12) Also, by(cid:12)making(cid:12)use of (4.11) giving the explicit expression of the Jacobian of the transfor- mationξ = ϕ (w)isgiventhrough(4.11),weseethat z n 1 n 1 1− ϕ−z 1(ξ) 2 − − dµ ϕ−z 1(ξ) = 1− ϕ−z 1(ξ) 2 − − |DDwξ|dµ(ξ) (cid:18) (cid:12) (cid:12) (cid:19) (cid:16) (cid:17) (cid:18) (cid:12) (cid:12) (cid:19) | | (cid:12)(cid:12) (cid:12)(cid:12) = (1 ξ(cid:12)(cid:12) 2)−n−1(cid:12)(cid:12)dµ(ξ). (4.11) −| | Therefore,theexpressionin(4.9)canalsobewrittenas 2(ν m) m!Γ(n) (1 z 2) 1 ξ 2 − γν,n −| | −| | (4.12) Γ(m+n) m ZBn 1 ξ(cid:0),z 2 (cid:1)! | −h i| Pm(n−1,2[ν−m]) 1 2tanh2(d(z,ξ)) 2φ(ξ) 1 ξ 2 −n−1dµ(ξ) × − −| | (cid:16) (cid:16) (cid:17)(cid:17) (cid:0) (cid:1) MAGNETICBEREZINTRANSFORMS 9 orequivalentlyas m!Γ(n) Γ(m+n)γmν,n Bn (coshd(z,ξ))−4(ν−m) (4.13) Z Pm(n−1,2[ν−m]) 1 2tanh2(d(z,ξ)) 2φ(ξ) 1 ξ 2 −n−1dµ(ξ), × − −| | whichisexactlyt(cid:16)heexpression(cid:16)ofB asdefinedin(cid:17)(4(cid:17).7). (cid:0) (cid:1) (cid:3) m 5 Bm AS FUNCTION OF THE LAPLACE-BELTRAMI OPERATOR Our task here is to express the generalized Berezin transform B as a function of the m Laplace-Beltramioperator∆Bn. Precisely,weestablishthefollowingresult. Theorem 5.1. Let m = 0,1,2, ,[ν n]. Then, the transform B defined in (4.7) can be ex- ··· − 2 m pressed intermsoftheLaplace-Beltarmi operator ∆Bn as B = Cν,n ∑2m( 2)jA Γ(n+j)Γ 2(ν−m)− 21 n−i −∆Bn −n2 m m j=0 − j Γ 2(ν−(cid:16)m)+j+ 12 n(cid:16)+i p−∆Bn −n2 (cid:17)(cid:17) (cid:16) (cid:16) p (cid:17)(cid:17) ̥ 21 n+i −∆Bn −n2 , n+j, 12 n+i −∆Bn −n2 1 , 3 2 × (cid:16) (νp−m)+j+ 21(cid:17) n+i −(cid:16)∆Bn −pn2 , n (cid:17) (cid:12)(cid:12) (cid:16) p (cid:17) (cid:12) where (cid:12) (2(ν m) n)Γ(n+m) Cν,n = − − m m!Γ(2ν n m+1)Γ(2ν n) − − − min(m,j) (m!)2Γ(2ν m)Γ(2ν m+j p) Aj = 2−j ∑ (j p)!(m+ p j)!−p!(m p)!−Γ(n+j− p)Γ(n+p). p=max(0,j m) − − − − − Proof. Ononehand,thetransformB istheintegraloperator m B [ϕ](z) = B (z,w)ϕ(w)(1 w 2) n 1dµ(w) (5.1) m m − − Bn −| | Z withthekernelfunction m!Γ(n) 2 Bm(z,w) = Γ(n+m)γmν,n(cosh(ρ))−4(ν−m) Pm(n−1,2[ν−m]) 1−2tanh2(ρ) , (5.2) (cid:16) (cid:16) (cid:17)(cid:17) where ρ = d(z,w) and γν,n is as in (3.9). On the other hand, from (2.14) combined with m (2.15),weobtain +∞ f( ∆Bn n2)[ϕ](z) = Ψ(z,w;λ)f(λ)dλ ϕ(w)(1 w 2)−n−1dµ(w), (5.3) − − ZBn(cid:18)Z0 (cid:19) −| | Ψ(z,w;λ) being the spectral function given in (2.16). Now, by equating (5.1) and (5.3) we get +∞ Ψ(z,w;λ)f(λ)dλ = B (z,w) (5.4) m Z0 byuniquenessofthekernels. Explicitly, +∞ Γ n+iλ 4 n+iλ, n iλ 2 ̥ 2 −2 sinh2(ρ) f(λ)dλ = h(ρ), (5.5) Z0 (cid:12) Γ(cid:0)(iλ)(cid:1)2(cid:12) 2 1(cid:20) n (cid:12)− (cid:21) (cid:12) | | (cid:12) (cid:12) (cid:12) (cid:12) 10 ALLALGHANMIANDZOUHAIRMOUAYN wherehisusedtorepresentsthefunction4πn+1m!Γ(n)B (z,w),i.e., m 4πn+1m!Γ2(n) 2 h(ρ) := Γ(n+m) γmν,n(cosh(ρ))−4(ν−m) Pm(n−1,2(ν−m)−n)(1−2tanh2(ρ)) . (5.6) (cid:16) (cid:17) Todeterminethefunction f weneedtoinverttheintegralequation(5.5). Forthis,wemake appealtotheFourier-Jacobitransform h L2 R+,∆α,β(t)dt g L2 R+,(2π)−1 cα,β(λ) −2dλ (5.7) ∈ 7−→ ∈ (cid:0) (cid:1) (cid:16) (cid:12) (cid:12) (cid:17) asdefinedin(2.22)by (cid:12) (cid:12) +∞ g(λ) = h(t)φ(α,β)(t)∆ (t)dt. (5.8) λ α.β Z0 Itsinverseisgivenby 1 +∞ (α,β) 2 h(t) = 2π g(λ)φλ (t) cα,β(λ) − dλ. (5.9) Z0 (cid:12) (cid:12) For α = n 1, β = 0 and t = ρ, the involved quantit(cid:12)ies φ(α,β(cid:12))(t), ∆ (t) and c (λ) given − λ α,β α,β respectivelyby(2.17),(2.20)and(2.24)read φλ(n−1,0)(ρ) = 2̥1 n+2iλ, 12(nn−iλ) −sinh2(ρ) (5.10) (cid:20) (cid:12) (cid:21) (cid:12) ∆n 1,0(ρ) = 2cosh(ρ)(sinh(ρ))2n−1 (cid:12)(cid:12) (5.11) − 2n iλΓ(n)Γ(iλ) − c (λ) = . (5.12) n−1,0 Γ2 n+iλ 2 (cid:0) (cid:1)(n 1,0) Therefore,(5.5)canberewrittenintermsofφλ − (ρ)andcn 1,0(λ)as − 1 +∞ 1 2π Z0 f(λ)φλ(n−1,0)(ρ)|cn−1,0(λ)|−2dλ = 2π22nΓ2(n)h(ρ). (5.13) Inviewofthetransform(5.8),thefunction f takestheform 1 +∞ f(λ) = 2π22nΓ2(n) Z0 h(ρ)φλ(n−1,0)(ρ)∆n−1,0(ρ)dρ. (5.14) Substitutionofh(ρ),φλ(n−1,0)(ρ)and∆n 1,0(ρ)bytheirexplicitexpressions,asgivenby(5.6), − (5.10)ad(5.11)respectively,yields 2πnm! +∞ n+iλ, n iλ f(λ) = γν,n ̥ 2 −2 sinh2(ρ) (5.15) Γ(n+m) m 2 1 n − Z0 (cid:20) (cid:12) (cid:21) (cid:12) (sinh(ρ))2n−1(cosh(ρ))−4(ν−m)+1 (cid:12)(cid:12)Pm(n−1,2(ν−m)−n)(1 2tanh2(ρ)) 2dρ. × − (cid:16) (cid:17) Bythechangeofvariable x = sinh2(ρ),Equation(5.15)becomes πnm! +∞ n+iλ, n iλ f(λ) = γν,n ̥ 2 −2 x (5.16) Γ(n+m) m 2 1 n − Z0 (cid:20) (cid:12) (cid:21) (cid:12) (cid:12) 1 x 2 ×xn−1(1+x)−2(ν−m) (cid:12)Pm(n−1,2(ν−m)−n) 1−+x dx. (cid:18) (cid:18) (cid:19)(cid:19)