ebook img

A Formula of Two-Partition Hodge Integrals PDF

0.41 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Formula of Two-Partition Hodge Integrals

A FORMULA OF TWO-PARTITION HODGE INTEGRALS 5 0 CHIU-CHUMELISSALIU,KEFENGLIU,ANDJIANZHOU 0 2 n a 1. Introduction J 7 Let denote the Deligne-Mumford moduli stack of stable curves of genus g g,n 1 M with n marked points. Let π : be the universal curve, and let ω Mg,n+1 →Mg,n π be the relative dualizing sheaf. The Hodge bundle ] G E=π ω π A ∗ is a rank g vector bundle over whose fiber over [(C,x ,...,x )] is h. H0(C,ω ). Let s : Mg,ndenote the section of π1which cnorre∈spMongd,ns to C i g,n g,n+1 t M →M a the i-th marked point, and let m L =s ω i ∗i π [ be the line bundle over whose fiber over [(C,x ,...,x )] is the g,n 1 n g,n M ∈ M 3 cotangentline Tx∗iC atthe i-thmarkedpointxi. AHodge integralis anintegralof v the form 2 ψj1 ψjnλk1 λkg 7 1 ··· n 1 ··· g 2 ZMg,n 0 where ψi = c1(Li) is the first Chern class of Li, and λj = cj(E) is the j-th Chern 1 class of the Hodge bundle. 3 The study of Hodge integrals is an important part of the intersection theory 0 on . Hodge integrals also naturally arise when one computes Gromov-Witten / Mg,n h invariants by localization techniques. For example, the following generating series at ofHodgeintegralsariseswhenonecomputeslocalinvariantsofatoricFanosurface m in a Calabi-Yau 3-fold by virtual localization [31]: iv: Gµ+,µ−(λ;τ)=−(√−1zλ)l(µz+)+l(µ−) [τ(τ +1)]l(µ+)+l(µ−)−1 X µ+ · µ− ar l(µ+) aµ=+i1−1 µ+i τ +a l(µ−) µa=−i1−1 µ−i τ1 +a (1) · i=1 Q µ(cid:0)+i ! (cid:1) · i=1 Q µ(cid:0)−i ! (cid:1) Y Y Λ (1)Λ (τ)Λ ( τ 1) λ2g 2 ∨g ∨g ∨g − − , − · Xg≥0 ZMg,l(µ+)+l(µ−) li(=µ1+) µ1+ µ1+ −ψi lj(=µ1−) µτ− µτ− −ψl(µ+)+j i (cid:16) i (cid:17) i (cid:18) j (cid:19) whereλ,τ arevariables,(µ+,µQ) 2, the setofpaQirsofpartitionswhicharenot − ∈P+ both empty, and Λ (u)=ug λ ug 1+ +( 1)gλ . ∨g − 1 − ··· − g We will call the Hodge integrals in G (λ;τ) the two-partition Hodge integrals. µ+,µ− The purpose of this paper is to prove the following formula conjectured in [32]: (2) G•(λ;p+,p−;τ)=R•(λ;p+,p−;τ) 1 2 CHIU-CHUMELISSALIU,KEFENGLIU,ANDJIANZHOU where G•(λ;p+,p−;τ)=exp Gµ+,µ−(λ;τ)p+µ+p−µ− (µ+,µX−)∈P+2   R•(λ;p+,p−;τ) χ (µ+)χ (µ ) = ν+z ν−z − e√−1(κν+τ+κν−τ−1)λ/2Wν+,ν−(e√−1λ)p+µ+p−µ−, µ+ µ− |µ±X|=|ν±| p± =(p±1,p±2,...) are formal variables, and p =p p ±µ ±µ1··· ±µh if µ = (µ µ > 0). See Section 2 for notation in the definition of 1 h ≥ ··· ≥ R (λ;p+,p ;τ). • − Formula (2) is motivated by a formula of one-partition Hodge integrals conjec- turedbyM.Marin˜oandC.Vafain[25]andprovedbyusin[23]. See[27]foranother approach to the Marin˜o-Vafa formula. The Marin˜o-Vafa formula can be obtained by setting p = 0 in (2). In a recent paper [4], D.E. Diaconescu and B. Florea − conjectured a relation between three-partition Hodge integrals and the topological vertex [1]. A mathematical theory of the topological vertex will be developed in [22]. The generatingfunction R (λ;p+,p ;τ) is a combinatorialexpressioninvolving • − the representation theory of Kac-Moody Lie algebras. It is also related to the HOMFLY polynomial of the Hopf link and the Chern-Simon theory [28, 26]. In [33], the third author used (2) and a combinatorial trick called the chemistry of Z -coloredlabelledgraphstoproveaformulaconjecturedbyA.Iqbalin[12]which k expressesthegeneratingfunctionofGromov-Witteninvariantsinallgeneraoflocal toric Calabi-Yauthreefolds in terms of . See [12, 1, 4] for surveys of works on µ,ν W this subject. Our strategy to prove (2) is based on the following cut-and-join equation of R • observed in [32]: ∂ √ 1λ √ 1λ (3) R• = − (C++J+)R• − (C−+J−)R• ∂τ 2 − 2τ2 where ∂ ∂2 C± = i,j (i+j)p±i p±j ∂p±i+j, J± = i,j ijp±i+j∂p±i ∂p±j . X X Equation (3) can be derived by the method in [30, 23]. In [32], the third author proved that Theorem 1 (initial values). (4) G (λ;p+,p ; 1)=R (λ;p+,p ; 1). • − • − − − So (2) follows from the main theorem in this paper: Theorem 2 (cut-and-join equation of G ). • ∂ √ 1λ √ 1λ (5) G• = − (C++J+)G• − (C−+J−)G• ∂τ 2 − 2τ2 A FORMULA OF TWO-PARTITION HODGE INTEGRALS 3 Both [23, Theorem 2] (cut-and-join equation of one-partition Hodge integrals) and Theorem 2 are proved by localization method. We compute certain relative Gromov-Witten invariants by virtual localization, and get an expression in terms of one-partition or two-partition Hodge integrals and certain integrals of target ψ classes. In [23], we used functorial localization to push forward calculations to projectivespaces,wheretheequivariantcohomologyiscompletelyunderstood,and derived [23, Theorem 2] without using much information about integrals of target ψ classes. In this paper, we relate integrals of target ψ classes to double Hurwitz numbers,andusepropertiesofdoubleHurwitznumberstoproveTheorem2. More precisely, for each (µ+,µ ) 2, we will define a generating function − ∈P+ K (λ) µ•+,µ− ofcertainrelativeGromov-WitteninvariantsofP1 P1 blowupata point, anduse × localization method to derive the following expression: (6) √ 1 Kµ•+,µ−(λ)= Φ•µ+,ν+(−√−1τλ)zν+G•ν+,ν−(λ;τ)zν−Φ•ν−,µ−(− τ− λ) |ν±X|=|µ±| In(6),Φ (λ)isageneratingfunctionofdoubleHurwitznumbers,andz isdefined •µ,ν µ in Section 2.1. It turns out that (6) is equivalent to the following equation: √ 1 (7) G•µ+,µ−(λ;τ)= Φ•µ+,ν+(√−1τλ)zν+Kν•+,ν−(λ)zν−Φ•ν−,µ−( τ− λ) |ν±X|=|µ±| SoTheorem2(cut-and-joinequationofG )followsfromthecut-and-joinequations • of double Hurwitz numbers. As a consequence, one can compute K (λ) in µ+,µ− terms of (Corollary3.5). We willgive three derivationsof the cut-and-join Wν+,ν− equations of double Hurwitz numbers: by combinatorics (Section 3.3), by gluing formula (Section 5.4), and by localization (Section 5.8). The rest of the paper is arranged as follows. In Section 2, we give the precise statement of (2), and recall the proof of Theorem 1 (initial values). In Section 3 we give a combinatorial study of double Hurwitz numbers, and derive Theorem 2 (the cut-and-join equation of G ) from (6) and some identities of double Hurwitz • numbers. InSection4,we reviewJ.Li’sworks[19,20]onmoduli spacesofrelative stablemorphisms,andvirtuallocalizationonsuchmodulispaces[9,11]. InSection 5,wegiveageometricstudyofdoubleHurwitznumbers. InSection6,weintroduce the geometric objects involved in the proof of (6). In Section 7, we prove (6) by arranging the localization contribution in a neat way. Acknowledgments. We wish to thank Jun Li for explaining his works [19, 20] andRaviVakilfor explaining relativevirtuallocalization[11]. The researchinthis work was started during the visit of the first and the third authors to the Center of Mathematical Sciences, Zhejiang University in July and August of 2003. The hospitality of the Center is greatly appreciated. The second author is supported by an NSF grant. The third author is partially supported by researchgrants from NSFC and Tsinghua University. 4 CHIU-CHUMELISSALIU,KEFENGLIU,ANDJIANZHOU 2. The Conjecture 2.1. Partitions. We recall some notation of partitions. Given a partition µ=(µ µ µ >0), 1 2 h ≥ ≥···≥ write l(µ)=h, and µ =µ + +µ . Define 1 h | | ··· l(µ) κ = µ (µ 2i+1). µ i i − i=1 X For each positive integer j, define m (µ)= i:µ =j . j i |{ }| Then Aut(µ) = (m (µ))!. j | | j Y Define z =µ µ Aut(µ) = m (µ)!jmj(µ) . µ 1 l(µ) j ··· | | Yj (cid:16) (cid:17) Let denote the set of partitions. We allow the empty partition and take P l( )= =κ =0. ∅ |∅| ∅ Let 2 = 2 ( , ) . P+ P −{ ∅ ∅ } 2.2. Generatingfunctions oftwo-partitionHodgeintegrals. For(µ+,µ ) − ∈ 2, define P+ G (α,β) g,µ+,µ− = −√−1l(µ+)+l(µ−) l(µ+) aµ=+i1−1(µ+i β+aα)l(µ−) µa=−j1−1(µ−j α+aβ) |Aut(µ+)||Aut(µ−)| iY=1 Q(µ+i −1)!αµ+i −1 jY=1 Q(µ−j −1)!βµ−j −1 Λ (α)Λ (β)Λ ( α β)(αβ(α+β))l(µ+)+l(µ−) 1 ∨ ∨ ∨ − − − . ·ZMg,l(µ+)+l(µ−) il(=µ1+)(α(α−µ+i ψi)) lj(=µ1−)(β(β−µ−j ψl(µ+)+j) We have the following specQial cases which have bQeen studied in [23]: √ 1l(µ+) l(µ+) µ+i−1(µ+β+aα) G (α,β) = − − a=1 i g,µ+,∅ |Aut(µ+)| iY=1 Q(µ+i −1)!αµ+i −1 Λ (α)Λ (β)Λ ( α β)(αβ(α+β))l(µ+) 1 ∨ ∨ ∨ − − − · l(µ+)(α(α µ+ψ )) ZMg,l(µ+) i=1 − i i √ 1l(µ−) l(µ−) µa=−j1−Q1(µ−j α+aβ) G (α,β) = − − g,∅,µ− |Aut(µ−)| jY=1 Q(µ−j −1)!βµ−j−1 Λ (α)Λ (β)Λ ( α β)(αβ(α+β))l(µ−) 1 ∨ ∨ ∨ − − − ·ZMg,l(µ−) lj(=µ1−)(β(β−µ−j ψj)) Q A FORMULA OF TWO-PARTITION HODGE INTEGRALS 5 By a standard degree argument, one sees that G (α,β) is homogeneous of g,µ+,µ− degree 0, so β G (α,β)=G (1, ). g,µ+,µ− g,µ+,µ− α Let G (τ)=G (1,τ). g,µ+,µ− g,µ+,µ− Introduce variables λ, p+ = (p+1,p+2,...), p− = (p−1,p−2,...). Given a partition µ, define p±µ =p±1 ···p±l(µ). In particular, p± =1. Define ∅ G (λ;τ) = ∞ λ2g 2+l(µ+)+l(µ−)G (τ) µ+,µ− − g,µ+,µ− g=0 X G(λ;p+,p−;τ) = Gµ+,µ−(λ;τ)p+µ+p−µ− (µ+,µX−)∈P+2 G (λ;p+,p ;τ) = exp(G(λ;p+,p ;τ)) • − − = G•µ+,µ−(λ;τ)p+µ+p−µ− (µ+,Xµ−)∈P2 G (λ;τ) = λ χ+l(µ+)+l(µ−)G (τ) •µ+,µ− − •χ,µ+,µ− χ∈2Z,χ≤2(Xl(µ+)+l(µ−)) 2.3. Generating functions of representations of symmetric groups. Let q =e√ 1λ, [m]=qm/2 q m/2. − − − Define (8) (q)=qν/2 (q) s ( (t)), µ,ν | | µ ν µ W W · E where [µ µ +j i]l(µ) µi 1 (9) (q)=qκµ/4 i− j − , µ W [j i] [v i+l(µ)] 1≤i<Yj≤l(µ) − Yi=1vY=1 − l(µ) 1+qµj−jt ∞ tn (10) (t)= 1+ . Eµ j=1 1+q−jt · n=1 ni=1(qi−1)! Y X In the special case of (µ+,µ )=( , ), we haQve − ∅ ∅ =1. , W∅∅ Define χ (C(µ+))χ (C(µ )) R (λ;p+,p ;τ) = ν+ ν− − • − z z µ+ µ− |ν±|=X|µ±|≥0 ·e√−1(κν+τ+κν−τ−1)λ/2Wν+,ν−(e√−1λ)p+µ+p−µ−. 6 CHIU-CHUMELISSALIU,KEFENGLIU,ANDJIANZHOU 2.4. The conjecture and the strategy. The main purpose of this paper is to prove the following formula conjectured by the third author in [32]: Theorem 3. We have the following formula of two-partition Hodge integrals: (2) G (λ;p+,p ;τ)=R (λ;p+,p ;τ). • − • − The method in [30, 23] shows that R satisfies the cut-and-join equation (3). • In [32], the third author proved Theorem 1 (initial values). So (2) follows from Theorem2 (cut-and-joinequationof G ). We will recallthe proof ofTheorem1 in • Section 2.5. 2.5. Initialvalues. Forcompleteness,wenowrecalltheproofofTheorem1,which says (4) G (λ;p+,p ; 1)=R (λ;p+,p ; 1). • − • − − − We need the skew Schur functions [24]. Recall the Schur functions are related to the Newton functions by: χ (ν) µ s (x)= p (x), µ ν z ν |νX|=|µ| where x=(x ,x ,...) are formal variables such that 1 2 p (x)=xi +xi + . i 1 2 ··· There are integers cη such that µν s s = cη s . µ ν µν η η X The skew Schur functions are defined by: s = cη s . η/µ µν ν ν X Note that p =p(x ). ± ± 2.5.1. The left-hand-side. When l(µ+)+l(µ )>2, − G (λ; 1)=0; µ+,µ− − when l(µ+)=1 and l(µ )=0, − G (λ; 1) µ+,µ− − = √ 1λ 1 λ2g λg µa=+11−1 −µ+1 +a − − − Xg≥0 ZMg,1 µ1+1 µ1+1 −ψ1 Q µ+1(cid:0)·µ+1! (cid:1) = ( 1)µ+1√ 1 1 (cid:16) = (−(cid:17)1)µ+1−1 pµ+1 ; − − · 2µ+1 sin(µ+1λ/2) qµ+1/2 q−µ+1/2 · µ+1 − A FORMULA OF TWO-PARTITION HODGE INTEGRALS 7 the case of l(µ+)=0 and l(µ )=1 is similar; when l(µ+)=l(µ )=1, − − Λ (1)Λ (τ)Λ ( 1 τ) G (λ; 1) = lim λ2g ∨g ∨g ∨g − − µ+,µ− − τ→−1Xg≥0 ZMg,2 µ1+1 µ1+1 −ψ1 · µτ−1 µτ−1 −ψ2 τ(1+τ) aµ=+11−1 µ+1τ(cid:16)+a (cid:17)µa=−11−1 (cid:16)µτ−1 +a .(cid:17) · · Q µ+1(cid:0)·µ+1! (cid:1) · Q µ−1(cid:16)·µ−1! (cid:17) Oneneedstoconsidertheg =0termandtheg >0termsseparately. Inthesecond case, the limit is zero while in first case, by our convention: Λ (1)Λ (τ)Λ ( 1 τ) (µ+)2(µ−1 )2 ∨0 ∨0 ∨0 − − = 1 τ , ZM0,2 µ1+ µ1+ −ψ1 · µτ− µτ− −ψ2 µ+1 + µτ−1 1 1 1 1 (cid:16) (cid:17) (cid:16) (cid:17) hence when µ+1 6=µ−1, the limit is zero, when µ+1 =µ−1, the limit is: lim (µ+1)2(µτ−1 )2 τ(1+τ) aµ=+1−11 µ+1τ +a µa=−11−1 µτ−1 +a = 1 . τ→−1 µ+1 + µτ−1 · · Q µ+1(cid:0)·µ+1! (cid:1) · Q µ−1(cid:16)·µ−1! (cid:17) µ+1 Recall that p =p(x ). With this notation, the initial value is: ± ± G (λ;p(x+),p(x ); 1) • − − ( 1)n 1 p (x+) ( 1)n 1 p (x ) p (x+)p (x ) − n − n − n n − = exp − + − +  qn/2 q n/2 n qn/2 q n/2 n n  n 1 − − n 1 − − n 1 X≥ X≥ X≥   ∞ 1 1 = i,Yj=1(1+qi−1/2x+j )(1+qi−1/2x−j )Yj,k 1−x+j x−k = s ( q1/2, q3/2,...)s (x+) s (x+)s (x ) ρ+ − − ρ+ · ρ ρ − Xρ+ Xρ sρ−( q1/2, q3/2,...)sρ−(x−) · − − Xν− = s ( q1/2, q3/2,...)cν+ s (x+) cν− s (x )s ( q1/2, q3/2,...) ρ+ − − ρ+ρ ν+ · ρ−ρ ν− − ρ− − − ν±X,ρ,ρ± = s ( q1/2, q3/2,...)s ( q1/2, q3/2,...) s (x+)s (x ). ν+/ρ − − ν−/ρ − − · ν+ ν− − ρX,ν± 2.5.2. The right-hand side. The following identity is proved in [32]: (11) µ,ν(q)=( 1)|µ|+|ν|qκµ+κν+2|µ|+|ν| q−|ρ|sµ/ρ(1,q,...)sν/ρ(1,q,...). W − ρ X 8 CHIU-CHUMELISSALIU,KEFENGLIU,ANDJIANZHOU From this one gets: R (λ;p(x+),p(x ); 1) • − − χ (µ+)χ (µ ) = ν+z ν−z − e−√−1(κν++κν−)λ/2Wν+,ν−(q)p+µ+p−µ− µ+ µ− |µ±X|=|ν±| = sν+(x+)q−κν+/2Wν+,ν−(q)q−κν−/2sν−(x−) Xν± = s (x+)s (x )( 1)ν++ν− q(ν++ν−)/2 ν+ ν− − − | | | | | | | | Xν± q ρs (1,q,...)s (1,q,...) · −| | ν+/ρ ν−/ρ ρ X = s (x+)s (x ) s ( q1/2, q3/2,...)s ( q1/2, q3/2,...). ν+ ν− − ν+/ρ − − ν−/ρ − − Xν± Xρ The proof of Theorem 1 is complete. 3. Double Hurwitz numbers and the cut-and-join equation of G • In this section, we first derive some identities of double Hurwitz numbers, such as sum formula and cut-and-join equations, which, together with initial values, characterize the double Hurwitz numbers. Then we combine these identities with (6) to obtain Theorem 2 (cut-and-join equation of G ). • 3.1. Double Hurwitz numbers. Let X be a Riemann surface ofgenus h. Given n partitions η1,...,ηn of d, denote by HX(η1,...,ηn) and HX(η1,...,ηn) the d • d ◦ weighted counts of possibly disconnected and connected Hurwitz covers of type (η1,...,ηn) respectively. We will use the following formula for Hurwitz numbers (see e.g. [5]): (12) HX(η1,...,ηn) = dimRρ 2−2h n C χρ(Cηi). d • d! | ηi|dimR |Xρ|=d(cid:18) (cid:19) iY=1 ρ It is sometimes referred to as the Burnside formula. Suppose C P1 is a genus g cover which has ramification type µ+,µ at two − → points p and p respectively, and ramification type (2) at r other points. By 0 1 Riemann-Hurwitz formula, (13) r=2g 2+l(µ+)+l(µ ). − − Denote H (µ+,µ )=HP1(µ+,µ ,η1,...,ηr) , g◦ − d − ◦ H (µ+,µ )=HP1(µ+,µ ,η1,...,ηr) , g• − d − • for η1 = =ηr =(2). We have by (12): ··· χ (C )χ (C ) (14) Hg•(µ+,µ−) = fν(2)r νz µ+ νz µ− , µ+ µ+ |νX|=d where r is given by (13), and χ (C ) ν (2) f (2)= C . ν | (2)| dimR ν A FORMULA OF TWO-PARTITION HODGE INTEGRALS 9 Define λ2g 2+l(µ+)+l(µ−) Φ (λ)= H (µ+,µ ) − , ◦µ+,µ− g◦ − (2g 2+l(µ+)+l(µ ))! g 0 − − X≥ λ2g 2+l(µ+)+l(µ−) Φ (λ)= H (µ+,µ ) − , •µ+,µ− g• − (2g 2+l(µ+)+l(µ ))! g 0 − − X≥ Φ◦(λ;p+,p−)= Φ◦µ+,µ−(λ)p+µ+p−µ−, µX+,µ− Φ•(λ;p+,p−)=1+ Φ•µ+,µ−(λ)p+µ+p−µ−. µX+,µ− The usual relationship between connected and disconnected Hurwitz numbers is: (15) Φ (λ;p+,p )=logΦ (λ;p+,p ). ◦ − • − By (14) one easily gets: χ (C )χ (C ) (16) Φ•(λ;p+,p−)=1+ νz µ+ νz µ− efν(2)λp+µ+p−µ−. µ+ µ− Xd≥1|µX±|=d|νX|=d Equivalently, χ (C )χ (C ) (17) Φ•µ+,µ−(λ)= νz µ+ νz µ− efν(2)λ. µ+ µ− |νX|=d We also have χ (C )χ (C ) (18) Φ•µ+,µ−(λ)= (−1)l(µ+)+l(µ−) νz µ+ νz µ− e−fν(2)λ. µ+ µ− |νX|=d 3.2. Sum formula and initial values. Proposition 3.1. We have (19) Φ (λ +λ )= Φ (λ ) z Φ (λ ), •µ1,µ3 1 2 •µ1,µ2 1 · µ2 · •µ2,µ3 2 Xµ2 1 (20) Φ (0)= δ . •µ1,µ3 z µ1,µ3 µ1 Proof. By the orthogonality relation for characters of S : d χ (C )χ (C ) (21) ν1 µ ν2 µ =δ z ν1,ν2 µ µ X 10 CHIU-CHUMELISSALIU,KEFENGLIU,ANDJIANZHOU we have Φ (λ ) z Φ (λ ) •µ1,µ2 1 · µ2 · •µ2,µ3 2 Xµ2 χ (C )χ (C ) χ (C )χ (C ) = ν1z µ1 ν1z µ2 efν1(2)λ1 ·zµ2 · ν2z µ2 ν2z µ3 efν2(2)λ2 µ1 µ2 µ2 µ3 Xµ2 Xν1 Xν2 χ (C )χ (C ) χ (C )χ (C ) = ν1 µ1 ν2 µ3 efν1(2)λ1+fν2(2)λ2 ν1 µ2 ν2 µ2 z z · z µ1 µ3 µ2 Xν1 Xν2 Xµ2 χ (C )χ (C ) = ν1z µ1 ν2z µ3 efν1(2)λ1+fν2(2)λ2δν1,ν2 µ1 µ3 Xν1 Xν2 χ (C )χ (C ) = ν µ1 ν µ3 efν(2)(λ1+λ2) z z ν µ1 µ3 X = Φ (λ +λ ). •µ1,µ3 1 2 Similarly, by the orthogonality relation: (22) χ (C ) χ (C )=z δ . ν µ1 ν µ2 µ1 µ1,µ2 · |νX|=d we have χ (C ) χ (C ) 1 Φ (0) = ν µ1 ν µ2 = δ . •µ1,µ2 z · z z µ1,µ2 µ1 µ2 µ1 |νX|=d (cid:3) Equation(19) is a sum formula for double Hurwitz numbers, and Equation(20) gives the initial values for double Hurwitz numbers. Corollary 3.2. Denote by Φ (λ) the matrix (Φ (λ)) . Then Φ (λ) is • d •µ,ν µ=ν=d • d invertible, and | | | | (23) Zd−1Φ•(−λ)−d1 =Φ•(λ)dZd. where Z =(z δ ) . d µ µ,ν µ=ν=d | | | | Proof. In (19) we take λ =λ and λ = λ, then by (20) we have 1 2 − Zd−1 =Φ•(0)d =Φ•(λ)dZdΦ•(−λ)d. Taking determinant on both sides one sees that Φ (λ) is invertible, and (23) is a • d straightforwardconsequence. (cid:3) 3.3. Cut-and-join equation for double Hurwitz numbers. Recall for any partition ν of d, one has χ (C ) 1 ∂ ∂ ∂ χ (C ) ν µ ν η f (2) p = (i+j)p p +ijp p . ν µ i j i+j η · z 2 ∂p ∂p ∂p z µ µ i,j (cid:18) i+j i j(cid:19) η η X X X See e.g. [30, 23]. From this one easily proves the following results.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.