ebook img

A First Course in the Sporadic SICs PDF

119 Pages·2021·2.319 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A First Course in the Sporadic SICs

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 41 Blake C. Stacey A First Course in the Sporadic SICs 123 SpringerBriefs in Mathematical Physics Volume 41 SeriesEditors NathanaëlBerestycki,UniversityofVienna,Vienna,Austria MihalisDafermos,MathematicsDepartment,PrincetonUniversity,Princeton,NJ, USA AtsuoKuniba,InstituteofPhysics,TheUniversityofTokyo,Tokyo,Japan MatildeMarcolli,DepartmentofMathematics,UniversityofToronto,Toronto, Canada BrunoNachtergaele,DepartmentofMathematics,Davis,CA,USA HalTasaki,DepartmentofPhysics,GakushuinUniversity,Tokyo,Japan SpringerBriefs are characterized in general by their size (50–125 pages) and fast productiontime(2–3monthscomparedto6monthsforamonograph). Briefsareavailableinprintbutareintendedasaprimarilyelectronicpublicationto beincludedinSpringer’se-bookpackage. Typicalworksmightinclude: (cid:129) Anextendedsurveyofafield (cid:129) Alinkbetweennewresearchpaperspublishedinjournalarticles (cid:129) Apresentationofcoreconceptsthatdoctoralstudentsmustunderstandinorder tomakeindependentcontributions (cid:129) Lecturenotesmakingaspecialisttopicaccessiblefornon-specialistreaders. SpringerBriefsinMathematicalPhysicsshowcase,inacompactformat,topicsof current relevance in the field of mathematical physics. Published titles will encompassallareasoftheoreticalandmathematicalphysics.Thisseriesisintended formathematicians,physicists,andotherscientists,aswellasdoctoralstudentsin relatedareas. EditorialBoard (cid:129) NathanaëlBerestycki(UniversityofCambridge,UK) (cid:129) MihalisDafermos(UniversityofCambridge,UK/PrincetonUniversity,US) (cid:129) AtsuoKuniba(UniversityofTokyo,Japan) (cid:129) MatildeMarcolli(CALTECH,US) (cid:129) BrunoNachtergaele(UCDavis,US) (cid:129) HalTasaki(GakushuinUniversity,Japan) (cid:129) 50–125publishedpages,includingalltables,figures,andreferences (cid:129) Softcoverbinding (cid:129) Copyrighttoremaininauthor’sname (cid:129) Versionsinprint,eBook,andMyCopy Moreinformationaboutthisseriesathttp://www.springer.com/series/11953 Blake C. Stacey A First Course in the Sporadic SICs BlakeC.Stacey UniversityofMassachusettsBoston Boston,MA,USA ISSN2197-1757 ISSN2197-1765 (electronic) SpringerBriefsinMathematicalPhysics ISBN978-3-030-76103-5 ISBN978-3-030-76104-2 (eBook) https://doi.org/10.1007/978-3-030-76104-2 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Physicshassocialandaestheticaspectsthatmanyofitsmostvocalboostersareloath toadmit.Evenwhenwephysicistsletdownourhairinmemoirsandinterviewsand othersemi-informalvenuesandadmitthatthebeautyofoursubjectmovesus,we arereluctanttoconfessthatthe“beauty”weinvokeisanintenselypersonalquality. A matter of taste, to be frank about it. To me, SICs offer the enigmatic appeal of patternshalfwayseen,likeaforestinapredawnfog. Thisbookisnotaboutcompletedpatterns.WedonotknowhowmanySICsthere are,andevenifwenarrowourattentiontothesporadicSICs,theprimaryfocusof thesechapters,thereareplentyofunresolvedquestionsontheedgesofwhatwewill coverhere.ItisevenpossiblethattheclassificationofsporadicSICsisincomplete, andastructurefoundtomorrowwillhavetobeaddedtothelist.Ihavetriedtopoint outthesequestionswhereIcould.Manyoftheexercisesarenotmorethanastepor twofromtheresearchfrontier. It is my hope that you have at least one reaction to this book that I did not intend.Acertainamountofvaguenessisnecessary,Ithinksometimes,forfruitful scientific communication. For if my statement creates precisely the consequences Iplanned,matchingmyintentionineverydetail,thentherewouldbenoroomfor spontaneity,forthegenerationofleapsImyselfwasunabletomake.Thereisnopoint inyourthinkingonlywhatIhavealreadythought!Thechallengeliesinmakingthose moments of imprecise fantasy, of ideas-for-an-idea, fall in the appropriate places amid the direct and declarative surroundings. “To construct a pleasingly thrilling contrapuntalstructure,”tosoundlikeapersonwhothinkstheyknowmusictheory. TheconceptualbackgroundtomyworkwithSICsistheresearchprogramknown asQBism,anongoingprojectinquantumfoundationswhosegoalistoidentifythe characteristicsofnaturewhichmakequantumtheorysuchagoodtoolfornavigating initreferences[77–80].Forthemostpart,thisbookwillskimoverthesurfaceof thosephilosophicalwaters,astheyrunquitedeepandmypagecounthereisquite finite.Ihavealsomostlyelidedthetopicofhowtoimplementinthelaboratorythe measurementsdefinedbySICs.ThisisfortheverygoodreasonthatIamatheorist andshouldbekeptasfarawayfromlaboratoriesaspossible.Iamnotthebestone toexplainhowtobuildmachinesthatgoclick,butIknowthatexperimentalistsare v vi Preface cleverfolk.Tosuggestthathavingfourdifferentkindsofclickinsteadoftwoisan impossibleextravagancewouldinsulttheircapabilities. Iwouldliketothankmyfamilyforkeepingintouchatasafedistance,andmy housemates for putting up with me in close proximity. My collaborators deserve more gratitude than a preface can contain. I hesitate to list names in the certainty thatIwillomitanimportantone,butIknowIcannotletthismomentpasswithout expressingmyappreciationforMarcusAppleby,GabrielaBarretoLemos,JohnB. DeBrota,ChristopherA.Fuchs,JacquesL.Pienaar,andHuangjunZhu.Backinthe days when we had conferences, I had wonderful learning experiences about SICs atWorcesterPolytechnicInstitute,theOhioStateUniversity,twoMarchMeetings of the American Physical Society, and at MIT. More recently, we have had video chats, upon occasion managing to bridge four continents. As these meetings have been a highlight of the past year, I owe a kind word to the participants, including IngemarBengtsson,IrinaDumitru,MaryFries,AmandaGefter,SachinGupta,Bob Henderson, Kim Reece, Kathryn Schaffer, Juan Varela, and Matthew Weiss. John BaezandKarolZ˙yczkowskigavemeopportunitiestoexpoundontheseideasinblog postsandvideoconference,respectively.Someearlydraftsofwhatwouldbecome thisbookwerewrittenwhileIhadthesupportoftheJohnTempletonFoundation;all oftheopinionsexpressedherearemyownandnotthoseoftheJTF.DavidHarden andEricDownessawthisbookinmanuscriptandprovidedcorrections.Ifanyerrors remain, Eric knows that I will transfer all the responsibilities to him; we met in college,andheiswellawarethatIhavenoshame. I found my way to SICs many years ago, during a time when life had left me emotionally adrift. They turned out to be the research problem I needed. I do not knowwhethertheycanprovideanyoneelseamomentofrespite,butthisbookisa goodopportunitytofindout. NearBoston,MA,USA BlakeC.Stacey Contents 1 EquiangularLines .............................................. 1 1.1 Introduction ............................................... 1 1.2 RealLines ................................................. 2 1.3 ComplexLines ............................................. 6 References ..................................................... 10 2 OptimalQuantumMeasurements ................................ 13 2.1 Introduction ............................................... 13 2.2 SICRepresentationsofQuantumStates ........................ 15 2.3 ConstructingSICsUsingGroups ............................. 22 References ..................................................... 24 3 GeometryandInformationTheoryforQubitsandQutrits ......... 27 3.1 Qubits .................................................... 27 3.2 Qutrits .................................................... 28 3.3 Coherence ................................................. 31 References ..................................................... 36 4 SICsandBellInequalities ....................................... 39 4.1 Mermin’sThree-QubitBellInequality ......................... 40 4.2 TheHoggarSIC ............................................ 41 4.3 QubitPairsandTwinnedTetrahedralSICs ..................... 45 4.4 FailureofHiddenVariablesforQutrits ........................ 50 4.5 QuantumTheoryfromNonclassicalProbabilityMeshing ........ 52 References ..................................................... 53 5 TheHoggar-TypeSICs ......................................... 57 5.1 Introduction ............................................... 57 5.2 SimplifyingtheQBicEquation ............................... 59 5.3 TripleProductsandCombinatorialDesigns .................... 60 5.4 TheTwinoftheHoggarSIC ................................. 67 5.5 CombinatorialDesignsfromtheTwinHoggarSIC .............. 69 5.6 Quantum-StateCompatibility ................................ 72 5.7 FromPauliOperatorstoRealEquiangularLines ................ 78 vii viii Contents 5.8 ConcludingRemarks ........................................ 80 References ..................................................... 81 6 SporadicSICsandtheExceptionalLieAlgebras .................. 83 6.1 RootSystemsandLieAlgebras ............................... 83 6.2 E ........................................................ 86 6 6.3 E ........................................................ 88 8 6.4 E ........................................................ 90 7 6.5 TheRegularIcosahedronandReal-Vector-SpaceQuantum Theory .................................................... 92 6.6 OpenPuzzlesConcerningExceptionalObjects ................. 95 References ..................................................... 100 7 Exercises ...................................................... 103 References ..................................................... 111 Index ............................................................. 113 Chapter 1 Equiangular Lines Iintroducetheproblemoffindingmaximalsetsofequiangular lines,inbothitsrealandcomplexversions,attemptingtowrite thetreatmentthatIwouldhavewantedwhenIfirstencountered thesubject.Equiangularlinesintersectintheoverlapregionof quantuminformationtheory,theoctonionsandHilbert’stwelfth problem.Thequestionofhowmanyequiangularlinescanfit intoaspaceofagivendimensioniseasytopose—ahigh-school studentcangraspit—yetitishardtoanswer,beingasyet unresolved.Thiscontrastofeaseanddifficultygivestheproblem aclassiccharm. 1.1 Introduction Tomotivatethedefinition,wecanstartwiththemostelementaryexample:thediag- onalsofaregularhexagon.Anytwoofthemcrossandcreatewhattheschoolbooks callsupplementaryverticalangles.Withoutlossofinformation,wecantake“the” angle defined by the pair of lines tobe the smaller of these twovalues. Moreover, thisvalueisthesameforallthreepossiblepairsoflines:Foranytwodiagonals,their angle of intersection willbe π/3. We can statethis in a way amenable to general- izationifwelayaunitvectoralongeachofthethreediagonals.Whicheverwaywe choosetoorientthevectors,theirinnerproductswillsatisfy (cid:2) 1, j =k; |(cid:2)v ,v (cid:3)|= (1.1) j k α, j (cid:4)=k. When a set of vectors {v : j =1...,N} enjoys this property, it yields a set of j equiangular lines. An orthonormal basis is equiangular, with α =0. The question becomesmoreintriguingwhenwepushthesize N ofthesetbeyondthedimension d.Forexample,ifwestepfromR2 uptoR3,itisalreadyhardtoguesshowmany ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2021 1 B.C.Stacey,AFirstCourseintheSporadicSICs, SpringerBriefsinMathematicalPhysics41, https://doi.org/10.1007/978-3-030-76104-2_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.