ebook img

A First Course in Random Matrix Theory PDF

371 Pages·2020·3.901 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A First Course in Random Matrix Theory

A FIRST COURSE IN RANDOM MATRIX THEORY The real world is perceived and broken down as data, models and algorithms in the eyes of physicists and engineers. Data is noisy by nature and classical statistical tools have so far been successful in dealing with relatively smaller levels of randomness. The recent emergenceofBigDataandtherequiredcomputingpowertoanalyzethemhaverendered classicaltoolsoutdatedandinsufficient.Toolssuchasrandommatrixtheoryandthestudy oflargesamplecovariancematricescanefficientlyprocessthesebigdatasetsandhelpmake senseofmodern,deeplearningalgorithms.Presentinganintroductorycalculuscoursefor random matrices, the book focuses on modern concepts in matrix theory, generalizing the standard concept of probabilistic independence to non-commuting random variables. Concretely worked out examples and applications to financial engineering and portfolio constructionmakethisuniquebookanessentialtoolforphysicists,engineers,dataanalysts andeconomists. marc potters isChiefInvestmentOfficerofCFM,aninvestmentfirmbasedinParis. Marcmaintainsstronglinkswithacademiaand,asanexpertinrandommatrixtheory,he hastaughtatUCLAandSorbonneUniversity. jean-philippe bouchaud isapioneerineconophysics.Hisresearchincludesran- dommatrixtheory,statisticsofpriceformation,stockmarketfluctuations,andagent-based modelsforfinancialmarketsandmacroeconomics.HispreviousbooksincludeTheoryof Financial Risk and Derivative Pricing (Cambridge University Press, 2003) and Trades, Quotes and Prices (Cambridge University Press, 2018), and he has been the recipient of severalprestigious,internationalawards. A FIRST COURSE IN RANDOM MATRIX THEORY for Physicists, Engineers and Data Scientists MARC POTTERS CapitalFundManagement,Paris JEAN-PHILIPPE BOUCHAUD CapitalFundManagement,Paris UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108488082 DOI:10.1017/9781108768900 ©CambridgeUniversityPress2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 PrintedintheUnitedKingdombyTJBooksLimited AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Potters,Marc,1969–author.|Bouchaud,Jean-Philippe,1962–author. Title:Afirstcourseinrandommatrixtheory:forphysicists,engineers anddatascientists/MarcPotters,Jean-PhilippeBouchaud. Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2021.| Includesbibliographicalreferencesandindex. Identifiers:LCCN2020022793(print)|LCCN2020022794(ebook)| ISBN9781108488082(hardback)|ISBN9781108768900(epub) Subjects:LCSH:Randommatrices. Classification:LCCQA196.5.P682021(print)|LCCQA196.5(ebook)| DDC512.9/434–dc23 LCrecordavailableathttps://lccn.loc.gov/2020022793 LCebookrecordavailableathttps://lccn.loc.gov/2020022794 ISBN978-1-108-48808-2Hardback Additionalresourcesforthistitleatwww.cambridge.org/potters CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix ListofSymbols xiv PartI ClassicalRandomMatrixTheory 1 1 DeterministicMatrices 3 1.1 Matrices,EigenvaluesandSingularValues 3 1.2 SomeUsefulTheoremsandIdentities 9 2 WignerEnsembleandSemi-CircleLaw 15 2.1 NormalizedTraceandSampleAverages 16 2.2 TheWignerEnsemble 17 2.3 ResolventandStieltjesTransform 19 3 MoreonGaussianMatrices* 30 3.1 OtherGaussianEnsembles 30 3.2 MomentsandNon-CrossingPairPartitions 36 4 WishartEnsembleandMarcˇenko–PasturDistribution 43 4.1 WishartMatrices 43 4.2 Marcˇenko–PasturUsingtheCavityMethod 48 5 JointDistributionofEigenvalues 58 5.1 FromMatrixElementstoEigenvalues 58 5.2 CoulombGasandMaximumLikelihoodConfigurations 64 5.3 Applications:Wigner,WishartandtheOne-CutAssumption 69 5.4 FluctuationsAroundtheMostLikelyConfiguration 73 5.5 AnEigenvalueDensitySaddlePoint 78 6 EigenvaluesandOrthogonalPolynomials* 83 6.1 WignerMatricesandHermitePolynomials 83 6.2 LaguerrePolynomials 87 6.3 UnitaryEnsembles 91 v vi Contents 7 TheJacobiEnsemble* 97 7.1 PropertiesofJacobiMatrices 97 7.2 JacobiMatricesandJacobiPolynomials 102 PartII SumsandProductsofRandomMatrices 109 8 AdditionofRandomVariablesandBrownianMotion 111 8.1 SumsofRandomVariables 111 8.2 StochasticCalculus 112 9 DysonBrownianMotion 121 9.1 DysonBrownianMotionI:PerturbationTheory 121 9.2 DysonBrownianMotionII:Itoˆ Calculus 124 9.3 TheDysonBrownianMotionfortheResolvent 126 9.4 TheDysonBrownianMotionwithaPotential 129 9.5 Non-IntersectingBrownianMotionsandtheKarlin–McGregorFormula 133 10 AdditionofLargeRandomMatrices 136 10.1 AddingaLargeWignerMatrixtoanArbitraryMatrix 136 10.2 GeneralizationtoNon-WignerMatrices 140 10.3 TheRank-1HCIZIntegral 142 10.4 InvertibilityoftheStieltjesTransform 145 10.5 TheFull-RankHCIZIntegral 149 11 FreeProbabilities 155 11.1 AlgebraicProbabilities:SomeDefinitions 155 11.2 AdditionofCommutingVariables 156 11.3 Non-CommutingVariables 161 11.4 FreeProduct 170 12 FreeRandomMatrices 177 12.1 RandomRotationsandFreeness 177 12.2 R-TransformsandResummedPerturbationTheory 181 12.3 TheCentralLimitTheoremforMatrices 183 12.4 FiniteFreeConvolutions 186 12.5 Freenessfor2×2Matrices 193 13 TheReplicaMethod* 199 13.1 StieltjesTransform 200 13.2 ResolventMatrix 204 13.3 Rank-1HCIZandReplicas 209 13.4 Spin-Glasses,ReplicasandLow-RankHCIZ 215 Contents vii 14 EdgeEigenvaluesandOutliers 220 14.1 TheTracy–WidomRegime 221 14.2 AdditiveLow-RankPerturbations 223 14.3 FatTails 229 14.4 MultiplicativePerturbation 231 14.5 PhaseRetrievalandOutliers 234 PartIII Applications 241 15 AdditionandMultiplication:RecipesandExamples 243 15.1 Summary 243 15.2 R-andS-TransformsandMomentsofUsefulEnsembles 245 15.3 Worked-OutExamples:Addition 249 15.4 Worked-OutExamples:Multiplication 252 16 ProductsofManyRandomMatrices 257 16.1 ProductsofManyFreeMatrices 257 16.2 TheFreeLog-Normal 261 16.3 AMultiplicativeDysonBrownianMotion 262 16.4 TheMatrixKestenProblem 264 17 SampleCovarianceMatrices 267 17.1 SpatialCorrelations 267 17.2 TemporalCorrelations 271 17.3 TimeDependentVariance 276 17.4 EmpiricalCross-CovarianceMatrices 278 18 BayesianEstimation 281 18.1 BayesianEstimation 281 18.2 EstimatingaVector:RidgeandLASSO 288 18.3 BayesianEstimationoftheTrueCovarianceMatrix 295 19 EigenvectorOverlapsandRotationallyInvariantEstimators 297 19.1 EigenvectorOverlaps 297 19.2 RotationallyInvariantEstimators 301 19.3 PropertiesoftheOptimalRIEforCovarianceMatrices 309 19.4 ConditionalAverageinFreeProbability 310 19.5 RealData 311 19.6 ValidationandRIE 317 20 ApplicationstoFinance 321 20.1 PortfolioTheory 321 20.2 TheHigh-DimensionalLimit 325 20.3 TheStatisticsofPriceChanges:AShortOverview 330 20.4 EmpiricalCovarianceMatrices 334 viii Contents Appendix MathematicalTools 339 A.1 SaddlePointMethod 339 A.2 Tricomi’sFormula 341 A.3 ToeplitzandCirculantMatrices 343 Index 347 Preface Physicists have always approached the world through data and models inspired by this data. They build models from data and confront their models with the data generated by newexperimentsorobservations.Butrealdataisbynaturenoisy;untilrecently,classical statisticaltoolshavebeensuccessfulindealingwiththisrandomness.Therecentemergence of very large datasets, together with the computing power to analyze them, has created a situationwherenotonlythenumberofdatapointsislargebutalsothenumberofstudied variables.Classicalstatisticaltoolsareinadequatetotacklethissituation,calledthelarge dimension limit (or the Kolmogorov limit). Random matrix theory, and in particular the studyoflargesamplecovariancematrices,canhelpmakesenseofthesebigdatasets,and isinfactalsobecomingausefultooltounderstanddeeplearning.Randommatrixtheory isalsolinkedtomanymodernproblemsinstatisticalphysicssuchasthespectraltheoryof randomgraphs,interactionmatricesofspin-glasses,non-intersectingrandomwalks,many- bodylocalization,compressedsensingandmanymore. Thisbookcanbeconsidered asonemorebookonrandommatrixtheory.Butouraim was to keep it purposely introductory and informal. As an analogy, high school seniors andcollegefreshmenaretypicallytaughtbothcalculusandanalysis.Inanalysisonelearns howtomakerigorousproofs,definealimitandaderivative.Atthesametimeincalculus one can learn about computing complicated derivatives, multi-dimensional integrals and solving differential equations relying only on intuitive definitions (with precise rules) of these concepts. This book proposes a “calculus” course for random matrices, based in particularontherelativelynewconceptof“freeness”,thatgeneralizesthestandardconcept ofprobabilisticindependencetonon-commutingrandomvariables. Rather than make statements about the most general case, concepts are defined with somestronghypothesis(e.g.Gaussianentries,realsymmetricmatrices)inordertosimplify thecomputationsandfavorunderstanding.Precisenotionsofnorm,topology,convergence, exactdomainofapplicationareleftout,againtofavorintuitionoverrigor.Therearemany good,mathematicallyrigorousbooksonthesubject(seereferencesbelow)andthehopeis that our book will allow the interested reader to read them guided by his/her newly built intuition. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.