Undergraduate Texts in Mathematics Editorial Board S. Axler K.A. Ribet For other titles published in this series, go to http://www.springer.com/series/666 J. David Logan A First Course in Differential Equations Second Edition J. David Logan Department of Mathematics University of Nebraska—Lincoln Lincoln, NE 68588-0130 USA [email protected] Editorial Board S.Axler K.A.Ribet Mathematics Department Mathematics Department San Francisco State University University of California at Berkeley Berkeley, CA 94720-3840 San Francisco, CA 94132 USA USA [email protected] [email protected] ISSN 0172-6056 ISBN 978-1-4419-7591-1 e-ISBN 978-1-4419-7592-8 DOI 10.1007/978-1-4419-7592-8 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938913 Mathematics Subject Classification (2010): 34-01 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper. Springer is part of Springer Science+Business Media (www.springer.com) To my son David Contents Preface to the Second Edition .................................. xi To the Student ................................................. xv 1. Differential Equations and Models .......................... 1 1.1 Introduction ............................................. 1 1.2 General Terminology...................................... 10 1.2.1 Geometrical Interpretation .......................... 20 1.3 Pure Time Equations ..................................... 23 1.4 Mathematical Models ..................................... 29 1.4.1 Particle Dynamics .................................. 31 1.5 Separation of Variables.................................... 38 1.6 Autonomous Differential Equations ......................... 47 1.7 Stability and Bifurcation .................................. 59 1.8 Reactors and Circuits ..................................... 65 1.8.1 Chemical Reactors.................................. 66 1.8.2 Electrical Circuits .................................. 69 2. Linear Equations: Solutions and Approximations ........... 73 2.1 First-Order Linear Equations .............................. 73 2.2 Approximation of Solutions................................ 86 2.2.1 Picard Iteration* ................................... 86 2.2.2 Numerical Methods................................. 89 2.2.3 Error Analysis ..................................... 95 viii A First Course in Differential Equations Second Edition 3. Second-Order Differential Equations ........................103 3.1 Particle Mechanics........................................104 3.2 Linear Equations with Constant Coefficients .................111 3.3 The Nonhomogeneous Equation ............................121 3.3.1 Undetermined Coefficients...........................122 3.3.2 Resonance.........................................130 3.4 Variable Coefficients ......................................133 3.4.1 Cauchy–Euler Equation .............................135 3.4.2 Power Series Solutions* .............................137 3.4.3 Reduction of Order*................................141 3.4.4 Variation of Parameters .............................142 3.5 Steady–State Heat Conduction*............................146 3.6 Higher-Order Equations ...................................153 3.7 Summary and Review.....................................157 4. Laplace Transforms.........................................161 4.1 Definition and Basic Properties ............................161 4.2 Initial Value Problems ....................................171 4.3 The Convolution Property.................................177 4.4 Piecewise Continuous Sources ..............................181 4.5 Impulsive Sources ........................................184 4.6 Table of Laplace Transforms ...............................191 5. Systems of Differential Equations ...........................193 5.1 Linear Systems...........................................194 5.2 General Solution and Geometric Behavior ...................210 5.3 Linear Orbits ............................................217 5.4 Nonlinear Models.........................................223 5.5 Applications .............................................231 5.5.1 The Lotka–Volterra Model...........................232 5.5.2 Models in Ecology..................................236 5.5.3 An Epidemic Model ................................239 5.6 Numerical Methods.......................................245 6. Linear Systems and Matrices ...............................251 6.1 Linearization and Stability.................................251 6.2 Matrices* ...............................................254 6.3 Two-Dimensional Linear Systems...........................268 6.3.1 Matrix Formulation.................................268 6.3.2 The Eigenvalue Problem ............................274 6.3.3 Real Unequal Eigenvalues ...........................276 6.3.4 Complex Eigenvalues ...............................279 Contents ix 6.3.5 Real Repeated Eigenvalues ..........................280 6.4 Stability.................................................284 6.5 Nonhomogeneous Systems* ................................287 6.6 Three-Dimensional Systems*...............................293 7. Nonlinear Systems..........................................299 7.1 Linearization Revisited....................................299 7.1.1 Malaria* ..........................................307 7.2 Periodic Orbits...........................................316 7.3 The Poincar´e–BendixsonTheorem..........................320 Appendix A. References ........................................331 Appendix B. Computer Algebra Systems .......................333 B.1 Maple...................................................334 B.2 MATLABR ..............................................336 (cid:13) Appendix C. Practice Test Questions ...........................341 Appendix D. Solutions and Hints to Selected Exercises .........351 E. Index.......................................................383