ebook img

A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids PDF

0.23 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids

A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids Se´bastienBoyaval 7 1 0 2 n a J Abstract Saint-Venant equations can be generalized to account for a viscoelastic 7 rheologyinshallowflows.AFinite-Volumediscretizationforthe1DSaint-Venant 1 system generalized to Upper-Convected Maxwell (UCM) fluids was proposed in ] [Bouchut & Boyaval, 2013], which preserved a physically-natural stability prop- A erty(i.e.free-energydissipation)ofthefullsystem.Itinvokedarelaxationscheme N ofSuliciutypeforthenumericalcomputationofapproximatesolutiontoRiemann . problems.Here,theapproachisextendedtothe1DSaint-Venantsystemgeneralized h t tothefinitely-extensiblenonlinearelasticfluidsofPeterlin(FENE-P).Wearecur- a rentlynotabletoensureallstabilityconditionsapriori,butnumericalsimulations m wentsmoothlyinapracticallyusefulrangeofparameters. [ 1 Key words: Saint-Venant equations, FENE-P viscoelastic fluids, Finite-Volume, v simpleRiemannsolver,Suliciurelaxationscheme 9 3 MSC(2010):65M08,65N08,35Q30 6 4 0 . 1 Introduction 1 0 7 Saint-Venantequationsstandardlymodelshallowfree-surfacegravityflowsandcan 1 be generalized to account for the viscoelastic rheology of non-Newtonian fluids : v [6], Upper-Convected Maxwell (UCM) fluids in particular [5]. Here, we consider i X a generalized Saint-Venant (gSV) system for finitely-extensible nonlinear elastic fluidswithPeterlinclosure(FENE-Pfluids)inCartesiancoordinates r a Se´bastienBoyaval Laboratoired’hydrauliqueSaint-Venant(EcoledesPontsParisTech–EDFR&D–CEREMA) Universite´Paris-Est,EDF’lab6quaiWatier78401ChatouCedexFrance,&INRIAParisMATH- ERIALSe-mail:[email protected] 1 2 Se´bastienBoyaval ∂h+∂ (hu)=0 (1) t x ∂(hu)+∂ (cid:0)hu2+gh2/2+hN(cid:1)=0 (2) t x λ(∂σ +u∂ σ +2(ζ−1)σ ∂ u)=1−σ /(1−(σ +σ )/(cid:96)) (3) t xx x xx xx x xx zz xx λ(∂σ +u∂ σ +2(1−ζ)σ ∂ u)=1−σ /(1−(σ +σ )/(cid:96)) (4) t zz x zz zz x zz zz xx for1De -translationinvariantflowalonge underauniformgravityfield−ge with y x z • meanflowdepthh(t,x)>0(incaseofanon-rugousflatbottom), • meanflowvelocityu(t,x)(foruniformcrosssections),and • a normal-stress difference N =G(σ −σ )/(1−(σ +σ )/(cid:96)) given by con- zz xx zz xx formation variables σ ,σ >0 constrained by 0<σ +σ <(cid:96), a relaxation zz xx zz xx timeλ ≥0andanelasticitymodulusG>0. Note that (1-2-3-4) formally reduces to the standard viscous Saint-Venant system withviscosityν ≡2λG≥0when(cid:96)→∞,λ →0andGλ <∞.Moreoverwehave usedthequitegeneralGordon-Schowalterderivativeswithslipparameterζ ∈[0,1] 2 constrainedbythehyperbolicityofthesystem(1-2-3-4).(Thisfollowsafteraneasy computationsimilarto[8].) In this work, we discuss a Finite-Volume method to solve (numerically) the Cauchyproblemforthenonlinearhyperbolic1Dsystem(1-2-3-4).Standardly,we need to consider weak solutions (in fact, to (6-7-8-9), see below) plus admissibil- ityconstraintsthatarephysically-meaningfuldissipationrulesformalizingthether- modynamics second principle close to an equilibrium [9]. Here, we consider the inequalityassociatedwiththecompanionconservationlawforthefree-energy (cid:18)u2 gh G (cid:19) F =h + − ((cid:96)log(((cid:96)−(σ +σ ))/((cid:96)−2))+log(σ σ )) xx zz xx zz 2 2 2(1−ζ) thatis,ondenotingtheimpulsebyP=gh2/2+hN, Gh (cid:32) (cid:18) σ (cid:19)2 (cid:18) σ (cid:19)2(cid:33) − σ−1 1− xx +σ−1 1− zz 2(1−ζ)λ xx 1−(σ +σ )/(cid:96) zz 1−(σ +σ )/(cid:96) zz xx zz xx =:D≥∂F+∂ (u(F+P)) (5) t x wheretheleft-hand-sideisobviouslynon-positiveontheadmissibilitydomain U(cid:96):={0<h,0<σ ,0<σ ,σ +σ <(cid:96)}. xx zz xx zz Notethatwedonotconsiderthevacuumstateh=0asadmissiblehere,see[8]. Saint-Venant/FENE-Pshallowflows 3 2 Finite-VolumediscretizationofFENE-P/Saint-Venant Piecewise-constantapproximatesolutionstotheCauchyproblemon(t,x)∈[0,T)× R for the gSV system can be defined by a Finite-Volume (FV) method. With a viewtopreservingU(cid:96) andthedissipation(5)afterdiscretizationbyaFVmethod, wechooseq=(h,hu,hσ ,hσ )asdiscretizationvariable.Indeed,thefree-energy xx zz functionalFisconvexontheconvexdomainU(cid:96)(cid:51)q(thisfollowsafteraneasycom- putationfrom[4,Lemma1.3])whileitisnotconvexinthevariable(h,hu,hΠ,hΣ) whateversmoothinvertiblefunctionsϖ,ς areusedforthereformulationofgSV ∂h+∂ (hu)=0 (6) t x (cid:18) gh2 (cid:19) ∂(hu)+∂ hu2+ +hN =0 (7) t x 2 (cid:32) (cid:33) h3−2ζϖ(cid:48)(σ h2(1−ζ)) σ xx xx ∂(hΠ)+∂ (huΠ)= 1− (8) t x λ 1−σzz+σxx (cid:96) (cid:32) (cid:33) h2ζ−1ς(cid:48)(σ h2(ζ−1)) σ zz zz ∂(hΣ)+∂ (huΣ)= 1− (9) t x λ 1−σzz+σxx (cid:96) with Π =ϖ(σ h2(1−ζ)), Σ =ς(σ h2(ζ−1)) (computations are similar to [5, Ap- xx zz pendix]).Inthesequel,wethereforediscretizeaquasilinearsystemwithsource ∂q+A(q)∂ q=S(q), (10) t x whichwerecallisnotambiguoushere(forthosediscontinuoussolutionsbuiltusing aRiemannsolver,atleast)thankstothedissipationrule(5),see[11,2,8]. 2.1 Splitting-in-time In cell (x ,x ), i∈Z, with volume ∆x =x −x >0 and center i−1/2 i+1/2 i i+1/2 i−1/2 x =(x +x )/2,weapproximateqsolutionto(10)onR ×R(cid:51)(t,x)by i i−1/2 i+1/2 ≥0 qn+1≈ 1 (cid:90) xi+1/2q(t,x)dx, i∈Z,t∈(tn,tn+1] i ∆xi xi−1/2 onatimegrid0=t0<t1<...<tn<tn+1<...<tN =T where∆tn=|tn+1−tn| willbechosensmallenoughcomparedwith∆x=supi∈Z∆xi<∞toensurestability. More precisly, having in mind the numerical approximation of a (well-posed) Cauchyproblemfor(10)onR ×Rwithinitialconditionq(t→0+)=q0∈L∞(R), ≥0 andthereforestartingfromapproximationsq0≈ 1 (cid:82)xi+1/2q0(x)dx,i∈Z,weshall definethecellvaluesqnintwostepsforeachin=∆1x,i..x.i−,1N/2: i (i)anapproximatesolutiontothehomogeneousgSVsystem(i.e.withoutthesource 4 Se´bastienBoyaval termS)on[tn,tn+1)isfirstcomputedbyanexplicitthree-pointscheme qn+1/2=qn−∆tn(cid:0)F(qn,qn )−F(qn ,qn)(cid:1), (11) i i ∆x l i i+1 r i−1 i i (ii)anapproximatesolutiontothefullgSVsystemon(tn,tn+1]isnextcomputedas qn+1=qn+1/2+∆tnS(qn+1). (12) i i i Then,theschemeisconsistentwithweaksolutionsof(1–2)equiv.(6–7) qn+1=qn−∆tn(cid:0)F(qn,qn )−F(qn ,qn)(cid:1)+∆tnS(qn+1) (13) i i ∆x l i i+1 r i−1 i i i providedthetwofirstfluxcomponentsfortheconservativepart(h,hu)ofthevari- able q (actually solutions to conservation laws) are conservative F =F :=F , l,h r,h h F =F :=F andconsistentF (q,q)=hu| ,F (q,q)=(hu2+gh2/2+hN)| l,hu r,hu hu h q hu q asusual,andwiththeconservativeinterpretation(8–9)of(3–4)insofaraswenext defineF andF usingasimpleapproximateRiemannsolver[10]for(6–7–8–9). l r Moreover,withaviewtopreservingU(cid:96)andadiscreteversionof(5) F(qn+1/2)−F(qn)+∆tn(cid:0)G(qn,qn )−G(qn ,qn))(cid:1)≤0 (14) i i ∆x i i+1 i−1 i i for a numerical free-energy flux function consistent with G(q,q)=u(F+P)| in q (5), in the sequel, we shall discuss the relaxation technique introduced by Suliciu as simple Riemann solver in step (i), because it proved satisfying for other close systems [3, 4, 5] equipped with an “entropy” convex in the discretization variable likeF here.Intheend,forthefullscheme(13),aconsistentfree-energydissipation F(qn+1)−F(qn)+∆tn(cid:0)G(qn,qn )−G(qn ,qn))(cid:1)≤∆tnD(qn+1) (15) i i ∆x i i+1 i−1 i i i thenholdsinsofarhn+1/2=hn+1,un+1/2=un+1andtheconvexityofF imply i i i i F(qn+1)−F(qn+1/2)≤∆tnD(qn+1)≤0. (16) i i i Proof. Onnotinghn+1/2=hn+1,un+1/2=un+1itsufficestoshowthat i i i i (cid:16) (cid:17) λ σn+1−σn /∆tn =1−σn+1/(1−(σn+1+σn+1)/(cid:96)) xx,i xx,i xx,i zz,i xx,i (cid:16) (cid:17) λ σn+1−σn /∆tn =1−σn+1/(1−(σn+1+σn+1)/(cid:96)) zz,i zz,i zz,i zz,i xx,i imply(16).Now,thisisobvious,onnotingtheconvexityofF| in(σ ,σ )and h,u xx zz ∇ F| ·S=D (σxx,σzz) h,u Saint-Venant/FENE-Pshallowflows 5 since∇ F·(h2(ζ−1)S ,h2(1−ζ)S )=Dbydesign. (σxxh2(1−ζ),σzzh2(ζ−1)) hσxx hσzz 2.2 SuliciurelaxationoftheRiemannproblemwithoutsource Foralltimerangest∈[tn,tn+1),n=0...N−1,letusnowdefineateachinterface x ,i∈Z,betweencellsiandi+1thenumericalfluxfunctionsF andF i+1 l r 2 (cid:16) (cid:17) F(q,q )=F (q)−(cid:82)0 R(ξ,q,q )−q dξ, l l r 0 l −∞ l r l (cid:16) (cid:17) (17) F(q,q )=F (q )+(cid:82)∞ R(ξ,q,q )−q dξ. r l r 0 r 0 l r r invokinganapproximatesolutionR(cid:0)(x−x )/(t−tn),qn,qn (cid:1)totheRiemann i+1/2 i i+1 problemfor(10)withinitialconditionqn1 +1 qn att=tn,andanyF . i x<0 x>0 i+1 0 Inthiswork,weproposeasapproximatesolutionthatgivenbySuliciurelaxation R(ξ,q,q )=LR(ξ,Q,Q ) (18) l r l r i.e. the projection (operator L) onto q ≡ (h,hu,hσ ,hσ ) of the exact solution xx zz R(ξ,Q,Q )oftheRiemannproblemforthesystemwithrelaxedpressure l r  ∂h+∂ (hu)=0  ∂t(σxxh2(1−ζ∂)t)(+huu)∂+x(∂σtxx(xhhu22(x1+−ζπ)))==00 ∂(σ h2(ζ−1))+u∂ (σ h2(ζ−1))=0 (19) t zz x zz ∂t(cid:0)h(u2/2+eˆ)(cid:1)+∂∂tx((cid:0)hhπu)(+u2∂/x2(h+ueπˆ)++uucπ2(cid:1))==00 ∂c+u∂ c=0 t x andinitialconditiongivenby(o=l,r) (cid:16) (cid:17) Q = h ,(hu) ,h1−2ζ(hσ ) ,h2ζ−3(hσ ) ,h P(q ),(hu)2/2h +e(q ),c o o o o xx o o zz o o o o o o o (20) wherec (q,q )arechosensoastoensurestability,thatisthedissipationrule(14) o l r here(seebelow).Notethat(19)isahyperbolicsystemwhichfullydecomposesinto linearly degenerate eigenfields, so R has an analytic expression (see formulas in [4,5]).Notealso:theRiemannsolverRisconsistentundertheCFLcondition ∆tn≤ 1inf 1 max(cid:0)un−c(qn,qn )/hn,un+c (qn,qn )/hn (cid:1). (21) 2i∈Z∆xi i l i i+1 i i r i i+1 i+1 Itremainstospecifyachoiceoffunctionsc,c preservingU(cid:96)andensuring(14). l r 6 Se´bastienBoyaval Althoughitisnotclearwhetherourconstructionallowsonetoapproximateso- lutionsonanytimerangest ∈[0,T),sincetheseries∑ ∆tn maybeboundeduni- n formlyforallspace-gridchoice(sup |un|maygrowunboundedlyasn→∞),speci- i i fyingsuchc,c fullydefinesacomputablescheme.Inparticular,(15)thenimplies l r that(12)atstep(ii)alwayshasatleastonesolutionqn+1∈U(cid:96) forany∆tn fixedat i step(i).(ThiscanbeshownusingBrouwerfixed-pointtheoremlikein[1].) Note however a difficulty here for FENE-P fluids with c,c . Suliciu relaxation l r approach(19)wasretainedatstep(i)becausethesolveroftenallowsonetopreserve invariantdomainslikeU(cid:96)andadissipationrule(14)throughwell-chosenc,c ,see l r e.g. [3, 4, 5]. Indeed, on noting the exact Riemann solution to (19), to get (14) on choosingG(ql,qr)=u(cid:16)h(cid:0)u22 +eˆ(cid:1)+π(cid:17)|R(0,ql,qr),itisenoughthat∀ql,qr∈U(cid:96) q :=LR(ξ,Q,Q )∈U(cid:96)andh2∂ | P(q )≤c2, ∀ξ ∈R (22) ξ l r ξ h h2−2ζσxx,h2ζ−2σzz ξ ξ usingc =c(q,q )ifξ<=u∗andc =c (q,q )ifξ>u∗withu∗:=clul+πl+crur−πr. ξ l l r ξ r l r cl+cr Onecaneasilyproposec,c satisfyingthefirstconditionin(22),i.e. l r (cid:18) (cid:19) 1 1 c (u −u)+π −π r r l l r = 1+ >0 (23) h∗ h (c/h)(c +c ) l l l l l r (cid:18) (cid:19) 1 1 c(u −u)+π −π l r l r l = 1+ >0 (24) h∗ h (c /h )(c +c ) r r r r l r asusualforSaint-Venantsystems,plustheadmissibilityconditions(o=l/r) (h∗)2(1−ζ)(h )2(ζ−1)σ +(h∗)2(ζ−1)(h )2(1−ζ)σ <(cid:96) (25) o o zz,o o o xx,o foranyσ ,σ >0satisfyingσ +σ <(cid:96)(FENE-Pfluids,seebelow).But zz,o xx,o zz,o xx,o (cid:113) thesecondconditionisusuallytreatedforφ :h→h ∂ | Pmono- o h ho2−2ζσxx,o,h2oζ−2σzz,o tone. Unfortunately, a lengthy (but easy) computation shows that the latter is not monotonehere,sothestandardmethodtochoosec,c aprioridoesnotapply. l r 2.3 Choiceofrelaxationparameter (cid:112) Let us treat the first part of (22) as usual and define c = max(h ∂ P(q ) := o o h o h a ,c˜ ),o=l/rsuchthatthefunctionsc˜ (q,q )ensure(23–24)and(25). o o o o l r First,letusinspect(23–24)classicallyfollowing[7,section3.3].DenotingaY = l l (u −u ) + (πr−πl)+ ≥0, a Y =(u −u ) + (πl−πr)+ ≥0 so 1 ≥ 1−hoaoYo/co, l r + hlal+hrar r r l r + hlal+hrar h∗o ho it then holds (h∗)−1 ≥(h )−1y >0 with y :=1− Yo ∈(αo−1,1] provided o o o o 1+αoYo αo one chooses c˜ >0 such that c ≥h a (1+α Y ) for α >1, which yields h∗ ∈ o o o o o o o o (0,h /y ]thus(23–24)inparticular. o o Ontheotherhand,letusnowinspect(25),whichrewriteswithh∗>0 o Saint-Venant/FENE-Pshallowflows 7 (cid:16) (cid:112) (cid:112) (cid:17) w A +w−1B <1⇔2A w ∈ 1− 1−4A B ,1+ 1−4A B ⊂R (26) o o o o o o o o o o >0 withw =(h∗/h )2(1−ζ),A =σ /(cid:96),B =σ /(cid:96)positivesuchthatA +B <1 o o o o zz,o o xx,o o o (hence A B ≤A (1−A )≤ 1) and 2(1−ζ)∈[1,2]. The upper-bound in (26) is o o o o 4 1 1 satisfiedwithαo=(w+o)2(1−ζ)/((w+o)2(1−ζ) −1)>1,onnoting (w+o)2(11−ζ) :=(cid:16)(1+(cid:112)1−4AoBo)/(2Ao)(cid:17)2(11−ζ) ≥ αoα−o1 ≥1/yo≥h∗o/ho. (27) √ Itremainstoensurethelowerboundin(26).Obviously,w−:= 1− 1−4AoBo <1so o 2Ao oneonlyneedstoinspectthecaseh∗≤h .Now,withaW =(u −u) +(πl−πr)+ ≥ o o l l r l + hlal+hrar 0,arWr=(ur−ul)++h(πlarl−+πhlr)a+r ≥0,ifco≥hoaoWo((w−o)−2(11−ζ)−1)−1thenholds (w−o)2(11−ζ) ≤(1+aohoWo/co)−1≤h∗o/ho. Intheend,weclaimthefollowingchoices (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (π −π) (π −π ) r l + l r + c =h max a +α (u −u ) + ,β (u −u) + (28) l l l l l r + l r l + ha +h a ha +h a l l r r l l r r (cid:18) (cid:18) (cid:19) (cid:18) (cid:19)(cid:19) (π −π ) (π −π) l r + r l + c =h max a +α (u −u ) + ,β (u −u) + (29) r r r r l r + r r l + ha +h a ha +h a l l r r l l r r (cid:112) satisfysimultaneously(23–24)and(25)inacompatiblewaywitha = ∂ P(q ), o h o 1 1 1 1 αo√=max(2,(w+o)2(1−ζ)/((√w+o)2(1−ζ)−1)),βo=(w−o)2(1−ζ)/(1−(w−o)2(1−ζ))),w−o = (cid:96)− (cid:96)−4σzz,oσxx,o, w+ = (cid:96)+ (cid:96)−4σzz,oσxx,o, for o=l/r. Moreover, note that we have 2σzz,o o 2σzz,o chosenα suchthatallsubcharacteristicconditions(22)aresatisfiedinthe(cid:96)→∞ o limit, hence also the free-energy dissipation (15). Indeed, φ is monotone in the o (cid:96)→∞limitandonecanthenapplythestandardmethodtochoosec,c [5]. l r 3 Numericalillustrations Wenumericallyapproximateont∈[0,.1]thesolutiontoaRiemannproblemwith (cid:40) (h,u,σ ,σ )=(1,0,1,1) x<.5 l l xx,l zz,l (h ,u ,σ ,σ )=(.1,0,1,1) x>.5 r r xx,r zz,r as initial condition when g=10, ζ =0, G=.1, λ =.1. In Fig. 1, we show the initialconditionandtheresultatt=.1when∆x=2−8 for(cid:96)=10,100,1000.Note theinfluenceoftheparameter(cid:96)onthestretchσ +σ .Oncomputingnumerically xx zz 8 Se´bastienBoyaval Fig.1 Top:h(left)andu(right),bottom:σxxandσzz. thefree-energydissipationwiththechoiceofrelaxationparameterabove,wehave neverobservedthewrongsign,whilethetime-stepdidnotgotozero. References 1. Barrett,J.W.,Boyaval,S.:Existenceandapproximationofa(regularized)Oldroyd-Bmodel. M3AS21(9),1783–1837(2011). 2. Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kineticrelationsfornon-conservativesystems.ProceedingsoftheRoyalSocietyofEdinburgh: SectionAMathematics142,1–37(2012) 3. Bouchut,F.:EntropysatisfyingfluxvectorsplittingsandkineticBGKmodels. Numerische Mathematik94,623–672(2003). 4. Bouchut,F.:Nonlinearstabilityoffinitevolumemethodsforhyperbolicconservationlaws andwell-balancedschemesforsources. FrontiersinMathematics.Birkha¨userVerlag,Basel (2004) 5. Bouchut,F.,Boyaval,S.:Anewmodelforshallowviscoelasticfluids. M3AS23(08),1479– 1526(2013). 6. Bouchut,F.,Boyaval,S.:Unifiedderivationofthin-layerreducedmodelsforshallowfree- surfacegravityflowsofviscousfluids. EuropeanJournalofMechanics-B/Fluids55,Part1, 116–131(2016). 7. Bouchut,F.,Klingenberg,C.,Waagan,K.:AmultiwaveapproximateRiemannsolverforideal MHDbasedonrelaxationII:numericalimplementationwith3and5waves. Numer.Math. 115(4),647–679(2010). 8. Boyaval,S.:Johnson-Segalman–Saint-Venantequationsforviscoelasticshallowflowsinthe elasticlimit. ArXive-prints(2016) 9. Dafermos,C.M.:Hyperbolicconservationlawsincontinuumphysics,vol.GM325.Springer- Verlag,Berlin(2000) 10. Harten,A.,Lax,P.D.,vanLeer,B.:OnupstreamdifferencingandGodunov-typeschemesfor hyperbolicconservationlaws. SIAMRev.25(1),35–61(1983). 11. LeFloch, P.G.: Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zu¨rich.Birkha¨userVerlag,Basel(2002).Thetheoryofclassicalandnonclassicalshockwaves

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.