JournalofLowTemperaturePhysicsmanuscriptNo. (willbeinsertedbytheeditor) D. M.Glowacka1 M.Crane1 D. J. Goldie1 S.Within·gton1 · · A Fabrication Route for Arrays of Ultra-Low-Noise MoAu Transition Edge Sensors on thin Silicon Nitride for Space 4 1 Applications. 0 2 n 18.07.2011 a J 0 Keywords TransitionEdgeSensor,bolometer,far-infraredimagingarray,space 1 telescope Abstract We describe a process route to fabricate arrays of Ultra-Low-Noise ] t MoAu Transition Edge Sensors (TESs). The low thermal conductance required e forspaceapplicationsisachievedusing200nm-thickSiliconNitride(SiN )pat- d x - terned to form long-thin legs with widths of 2.1m m. Using bilayers formed on s SiN islands from films with 40 nm-thick Mo and Au thicknesses in the range n x 30to280nmdepositedbydc-sputteringinultra-highvacuumwecanobtaintun- i . able transition temperatures in the range 700 to 70 mK. The sensors use large- s c area absorbers fabricated from high resistivity, thin-film b -phase Ta to provide i impedance-matchingtoincidentradiation.Theabsorbers arepatternedtoreduce s y theheatcapacityassociatedwiththenitridesupportstructureandincludeAuther- h malisingfeaturestoassisttheheatflowintotheTES.Arraysof400detectorsatthe p pixelspacingrequiredforthelong-wavelengthbandofthefar-infraredinstrument [ SAFARIarenowbeingfabricated.Deviceyieldsapproaching99%areachieved. 1 PACSnumbers:85.25Oj,95.55Fw v 1 8 1 Introduction 2 2 . The far-infrared (FIR) band from 300m m to 20m m is of crucial importance for 1 astrophysics,particularlywith regardto studying the formation and evolution of 0 galaxies,starsandplanetarysystems.Itencompassesthewavelengthrangeofthe 4 1 plannedspacemissionsSPICA1,FIRI2 SAFIR, SPECS, andSPRIT; anditcov- : ersthewavelengthrangeoftheballooninterferometersBETTII3andFITE.4The v new generation of space missions covering this range will require large-format i X 1:DetectorandOpticalPhysicsGroup,CavendishLaboratory, r a UniversityofCambridge,J.J.ThomsonAvenue,Cambridge,CB30HE,UK Tel.:+1223337366 E-mail:[email protected] 2 arrays of extremely low noise detectors with Noise Equivalent Powers (NEPs) of order 10 19W/√Hz or better. This requirement has driven the development − of sensitivesuperconducting detectors,such as TransitionEdge Sensors (TESs). WhileitistechnicallyfeasibletomanufacturesingleTESshavingthissensitivity, it is challenging to create an ultra-low-noise TES technology that can be engi- neered into complete imaging arrays, with the required optical packing and uni- formity of performance. The NEPs required for these sensitive detectors can be (a) 20 18 (cid:17) z 16 H √ 14 / W 12 Gb=0.73 pW/K 19 10 0 1 8 × (cid:16) 6 Gb=0.17 pW/K P 4 E N 2 0 100 101 102 Frequency(Hz) (b) Fig.1 (Coloronline)(a)OpticalimageofanearlierMoCuTES.(b)DarkNEPforanearlier MoCuTESreportedinRef.[7]. achievedbythermallyisolatingtheTESusingfourlong( 500m m)andnarrow ( 4m m)support legsfabricatedusingthinSiN .Wehav≥epreviouslymadeand x ≤ characterizedsmallarraysofMoCuTESswithT 100mKbothwithandwith- c ∼ outIRabsorbersaspartofadevelopmentefforttomovefrommicrostrip-coupled polarization-sensitiveTESswithNEP 2 10 17W/√Hz tailoredforground- − ∼ × based astronomy5,6 to the ultra-low-noise performance required for space appli- cations.7,8 Figure 1(a) shows an imageof one of theseMoCu devices fabricated 3 withoutanadditionalabsorberstructure.ThecurvatureinthecentralSiN island x isoforder1m moutofthefigureandarisesfromresidualstressintheSiO layer 2 needed to passivate the Cu. The SiO also contributes heat capacity and hence 2 possibly additional noise features. MoAu TESs do not require passivation and our initial devices reported elsewhere in these proceedings9 have demonstrated excellentlong-term stability.Figure 1(b) shows the measured dark NEP for two of theseTESs. The lowfrequency NEP 4 10 19W/√Hz for a conductance − ∼ × to the bath G =0.17pW/K is within a factor of order √2 of the phonon limit b calculatedwithnoisemodifiergf =0.5.10 Inthispaperwedescribethefabricationrouteforultra-low-noiseMoAuTES detectorsoperatingcloseto100mKwithabriefreportonthestatusofthelatest measurements. 2 Experimentaldetails (a) (b) (c) Fig.2 (Coloronline)Opticalimagesof:(a)Asingle100 100m m2Mo/AuTESwithlongitu- dinalandpartiallateralAubarsacrossthebilayerandTaab×sorber.The200nmthickSiN island x undertheTEShasanarea110 110m m2.TheTaabsorberis320 320m m2.Thesupporting legsare2m mwideand540m m×long.(b)Astripedabsorberwithsev×en25m m-wideTabarsand (c)ameshedTaabsorberpatternedintoa25m m-widegridtoinvestigatetheeffectontheheat capacity. The array described here has 388 single devices each consisting of a MoAu bilayerTESwith Au banks and fingers partiallyacross the TES,11 a Ta FIR ab- sorber, Au thermalizing structures and Nb connections all formed on a SiN is- x land.TheislandisthermallyisolatedfromtheSiwaferbyfourSiN legsofwidth x 2.1m m andlength540m m,whichdeterminethethermalconductanceandhence theresponsivity,saturationpowerandreadoutnoisespectrumofthedevice.Pho- tographsofthedevicetypesareshowninFig.2. Thesensorsaremanufacturedon50mmdiameter,225m mthick 100 ,double- h i sidepolishedSiwafers.Thesewafershave,onbothsides,a50nmfilmofthermal SiO anda200nm filmspellofslightlyoff-stochiometricSiN ,formedbylow- 2 x pressure chemicalvapour deposition.Ultimately,the SiN becomes a suspended x membrane,producedbyback-sideetchingofthesupportingsiliconsubstrateun- dertheTESandabsorber,togivetherequiredthermalisolation. 4 Fig.3 (Coloronline)Schematicdiagramshowingtheprocessflowforasinglearray.Thecross sectionisalongthelinemarkedA-AinFig.2(a). The first two steps of device fabrication are Reactive Ion Etching (RIE) of theSiN /SiO usingCHF gastooutlinethearrayanddefinethemembraneand x 2 3 legs (done in two separate steps, one on the front of the wafer and one on the back):Fig.3(a)and(b).ThentheTaabsorberlayerisdepositedbyDCmagnetron sputtering in a system with a base pressure of 10 10Torr as in Fig. 3(c). The − next step is deposition of superconducting bilayer by DC magnetron sputtering alsounderultra-highvacuumconditions.Thebilayerdescribedhereconsistsofa 40 nm Mo layer followed by a 195 nm Au layer, deposited in quick succession toavoidinterfacecontaminationandtherebyachievinga reproducibleproximity effect.The bilayeris patternedby wet etching: first the Au in a 50% solution of commerciallyprepared gold etchand water,and then the Mo in a commercially prepared aluminum etch: Fig. 3(d). The next processing step is the deposition of a 200 nm-thick Au thermalizing layer on the back of the wafer: Fig. 3(e). A second 200 nm Au deposition forms thermalizing bars on the Ta absorber, and Au banks and lateral bars on the bilayer to improve thermalization of the TES: Fig.3(f).AAuCu deposition,not shown,forms resistiveheatersontheSiframe and Johnson noise thermometers on selected SiN islands in place of the TES. x TheTESelectricalconnectionsandcontactpads areformedfrom 250 nmofNb (notshownontheprocessflow).Ateachstage,theAuandNblayersareremoved fromunwantedareasbylift-off.Thewaferisthenreadyforbondingfacedownto 5 acarrierwafer:Fig.3(g).Thelaststepisthefabricationofthemembrane,which requiresremovalofthesupporting Si from thewindowusing DeepReactiveIon Etching, thus leaving the TES and absorber membrane suspended on the nitride legs: Fig. 3(h). Finally the wafer is demounted, cleaned in an O plasma and is 2 readyfortesting. ThepixelspacingfortheprototypearraywasmatchedtotheSAFARIL-band requirementof1.6mm.ThearrayincludesfullTaabsorbersasinFig.2(a),striped (Fig.2(b))andmeshedabsorbers(Fig.2(c)).OnselectedcalibrationpixelstheTa was omitted completely and on others both the absorber and its support nitride was removed. Johnson noise thermometers were also included to assist with es- timates of stray-light. The target T was in the range 110 120mK. The array c − was cooled in a closed-cycle,sorption-pumped dilution refrigerator mounted on a pulse-tube cooler giving a base temperature of 68 mK.12 The array was en- closedinaAu-platedCuboxtheinsideofwhichwascoatedwithlight-absorbing SiCgranulesandcarbonblackmixedinStycast2850tominimizescatteredlight. A photograph of the experimental enclosure is shown in Fig. 4(b). The sample spacewassurroundedbymultiplelayersofNbfoilandMetglastoprovidemag- netic shielding. We used NIST SQUIDs with analogue electronics readout that keepsthemultiplexerinafixedstatebutnone-the-lesspermitsreadoutofmultiple channels.FortheseteststheSQUIDsandbiasresistorshaveaseparatelight-tight enclosurewithlight-tightelectricalfeedthroughtothearrayenclosure. 3 ResultsandDiscussion (a) (b) Fig.4 (Coloronline)(a)Completed arraychip.(b)Completearraymountedinalight-tight enclosureforlowtemperaturetesting. The first 388-element arrays have now been completed and low temperature measurementsareinprogress.Thermalcycletestsalreadyindicatethatthemount- ingschemeshowninFig.4(b)isrobustandnodeviceshavebeendamagedonre- peatedthermalcyclesdespitetheremovalofalargefractionofthesupportSi(of order36%).Overalldeviceyieldwas99%.AllTESsareclearlyvisibleinFig.4(a) includinginthelowerleftportionaverysmalltestpixelwheretheabsorbingTa 6 andsupportSiN wasremovedandthestripedabsorbersinthelowerrightsector. x OnasubsetofTESsnormalstateresistancesweremeasuredtobeR =31 1mW n andT =113 5mK.Conductancetotheheatbathwas0.19 0.2pW/K±giving c ± ± a predicted phonon-limited NEP of 2.4 10 19W/√Hz calculated with noise − modifiergf =0.5. × Further measurements are in progress to assess uniformity of the character- istics across the array, to measure in detail the dark NEP and response times as a function of absorber geometry, and to use the frame heaters to assess wafer heatsinkingandpixel-to-pixelthermalcross-talk.Wearealsodevelopingafully micro-machined wafer backing-plate incorporating metallized back shorts and wiringfanoutforintegrationintoafullfocal-plane.Resultswillbereportedsep- arately.Theresultsalreadyobtainedsuggestanimportantstep-forwardinthede- velopment of the next generationof space-basedTESs and from the perspective offabricationasignificantstep. 4 Acknowledgments ThisworkwassupportedinpartbyESATechnologyResearchProgrammeCon- tract No. 22359/09/NL/CP. We are also very grateful to colleagues working on that contract within the Astronomy Instrumentation Group, Cardiff University, theSpaceResearchOrganizationNetherlands,theNationalUniversityofIreland, MaynoothandtheSpaceScienceandTechnologyDepartmentofRutherfordAp- pletonLaboratoryfornumerousstimulatingdiscussions. References 1. B.Swinyard,etal.,Procs.SPIE,2650,L2650,(2006). 2. F.P.HelmichandR.J.Ivison,Exp.Astron.23,245(2009). 3. S.RinehartandtheBETTIITeam,Procs.SPIE7734,77340K(2010). 4. T.Kanoh,etal.,inExoplanetsand disks:theirformationanddiversity,AIP Conf.Procs.1158,389(2009). 5. M.D.Audley,etal.in,21stInternationalSymposiumonSpaceandTerahertz Technology,pp76-84(2010). 6. D. M. Glowacka, D. J. Goldie,S. Withington, M. Crane, V. Tsaneva,M. D. AudleyandA.Bunting,J.LowTemp.Phys. 151,249,(2008). 7. D.J.Goldie,A.Velichko,D.M.GlowackaandS.Withington,J.Appl.Phys. 109,083105,(2011). 8. D.M.Glowacka,D.J.GoldieandS.Withington,in:21stInternationalSym- posiumonSpaceandTerahertzTechnology,pp276-279(2010). 9. D. J. Goldie, A. Velichko, D. M. Glowacka and S. Withington, (These pro- ceedings),(2012)DOI:10.1007/s10909-012-0575-x. 10. J.C.Mather,Appl.Optics21,1125(1982). 11. J.N.Ullom,etal.,Appl.Phys.Lett.84,4206(2004). 12. G. Teleberg, S. T. Chase and L. Piccirillo, J. Low Temp. Phys. 151, 669, ((2008).