DRAFTVERSIONJANUARY5,2016 PreprinttypesetusingLATEXstyleemulateapjv.05/12/14 ADYNAMICALSTUDYOFTHEBLACKHOLEX-RAYBINARYNOVAMUSCAE19911 JianfengWu2,JeromeA.Orosz3,JeffreyE.McClintock2,DannySteeghs4,2,Pene´lopeLonga-Pen˜a4,PaulJ.Callanan5,LijunGou6, LuisC.Ho7,8,PeterG.Jonker9,10,2,MarkT.Reynolds11,ManuelA.P.Torres9,10 ApJinpress ABSTRACT 5 We present a dynamical study of the Galactic black hole binary system Nova Muscae 1991 (GS/GRS 1 1124−683). We utilize 72 high resolution Magellan Echellette (MagE) spectra and 72 strictly simultane- 0 ousV-bandphotometricobservations;thesimultaneityisauniqueandcrucialfeatureofthisdynamicalstudy. 2 The data were takenon two consecutivenightsand coverthe full10.4-hourorbitalcycle. The radialveloci- c tiesofthesecondarystararedeterminedbycross-correlatingtheobjectspectrawiththebest-matchtemplate e spectrum obtained using the same instrument configuration. Based on our independent analysis of five or- D dersof the echellette spectrum, the semi-amplitudeof the radialvelocityof the secondaryis measuredto be 1 K2=406.8±2.7kms−1,whichisconsistentwithpreviouswork,whiletheuncertaintyisreducedbyafactor 3 of3.Thecorrespondingmassfunctionis f(M)=3.02±0.06M⊙.Wehavealsoobtainedanaccuratemeasure- mentoftherotationalbroadeningofthestellarabsorptionlines(vsini=85.0±2.6kms−1)andhencethemass ] ratioofthesystemq=0.079±0.007.Finally,wehavemeasuredthespectrumofthenon-stellarcomponentof E emissionthatveilsthespectrumofthesecondary.Inafuturepaper,wewilluseourveiling-correctedspectrum H ofthesecondaryandaccuratevaluesofK andqtomodelmulti-colorlightcurvesanddeterminethesystemic 2 . inclinationandthemassoftheblackhole. h Subjectheadings: blackholephysics—stars: blackholes—binaries:general—X-rays:binaries p - o 1. INTRODUCTION sientsystemsthataredistinguishedbytheirshortorbitalperi- r t ods,P<12hr.(Forasketchtoscaleofnineofthesesystems, s Mass is the fundamental parameter for a black hole. Ac- a cordingtotheNo-HairTheorem(e.g.,Israel1967;Hawking includingtheprototypeA0620−00,see Figure1inMcClin- [ 1971),massandspintogetherprovideacompletedescription tock et al. 2014.) NovaMus was discoveredduring its 1991 ofan astrophysicalblack hole. An accuratemeasurementof outburst independently by the Ginga (Makino et al. 1991) 3 andGRANAT(Lund&Brandt1991)missions. Eightdaysaf- v mass is a prerequisite for measuring black hole spin via the ter discovery, it reached a peak X-ray intensity of 8 Crab in 2 continuum-fittingmethod (see McClintock et al. 2014 for a the1–6keVband(Ebisawaetal. 1994). Overthecourseof 8 review).Stellar-massblackholesintheMilkyWayandneigh- eightmonths,thesourcepassedthroughallthecanonicalX- 9 boringgalaxiesarediscoveredinX-raybinarysystems,some raystatesbeforereturningtoitsquiescentstate(Ebisawaetal. 0 ofwhicharepersistentX-raysources,whileothersareX-ray 1994;Remillard&McClintock2006).Esinetal.(1997)used 0 transients which have gone through one or more X-ray out- the1991outburstdataforNovaMustodevelopamodelofthe . bursts(Remillard&McClintock2006). Abouttwodozenof 1 states that combines the standard model of a thin accretion these black holes have been dynamically confirmed to have 0 disk(Shakura&Sunyaev1973)andtheadvection-dominated massesintherangeM=5–30M . 5 ⊙ accretionflow(ADAF)model(Narayan&Yi1994). X-rayNovaMuscae1991(hereafterNovaMus),withanor- 1 Interestingly, hard X-ray observations of NovaMus made : bitalperiodof10.4hr,isoneofaboutadozenblack-holetran- v at the peak of the outburst revealed evidence for positron- i electron annihilation in the form of a relatively narrow and X [email protected] variable emission line near 500 keV (Sunyaev et al. 1992; r 1Thispaperincludesdatagatheredwiththe6.5meterMagellanTele- Goldwurmetal. 1992).Kaiser&Hannikainen(2002)argued a scopeslocatedatLasCampanasObservatory,Chile. that the line could be generated by annihilation in the bipo- 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, laroutflowof the system. Mart´ın etal. (1996)suggestedan Cambridge,MA02138,USA 3Department of Astronomy, San Diego State University, 5500 Cam- alternativemechanism,namely,Liproductionneartheblack panileDrive,SanDiego,CA92182,USA hole that givesrise to a 476 keV nuclear line; their support- 4DepartmentofPhysics,UniversityofWarwick,Coventry,CV47AL, ing evidence is their detection of a relatively strong lithium UK absorptionlinel 6708intheopticalspectrum. 5DepartmentofPhysics,UniversityCollegeCork,Cork,Ireland Soonafter its discovery,NovaMuswas consideredto be a 6NationalAstronomicalObservatories,ChineseAcademyofSciences, Beijing100012,China strong candidate for a black hole binary based on its X-ray 7Kavli Institute for Astronomy and Astrophysics, Peking University, spectralpropertiesand lightcurve, and its similarities to the Beijing100871,China prototypeblack-holeX-raytransientA0620−00(McClintock 8DepartmentofAstronomy,SchoolofPhysics,PekingUniversity,Bei- & Remillard 1986). Following the discovery of the optical jing100871,China counterpart(DellaValleetal. 1991),theblackholenatureof 9SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, theprimarywasestablishedinthecustomarywaybymeasur- 3584CA,Utrecht,TheNetherlands 10DepartmentofAstrophysics/IMAPP,RadboudUniversityNijmegen, ingthemassfunction: Heyendaalseweg135,6525AJ,Nijmegen,TheNetherlands 11DepartmentofAstronomy,UniversityofMichigan,1085S.Univer- PK3 Msin3i sityAvenue,AnnArbor,MI48109,USA f(M)≡ 2 = , (1) 2p G (1+q)2 2 WUETAL. where K is the semi-amplitude of the velocity curve of the mountedonthe6.5-meterMagellan/ClayTelescopeattheLas 2 secondary,iistheorbitalinclinationangleofthebinaryand Campanas Observatory (LCO) in Chile. All the data were q is the ratio of the companion star mass M to that of the taken on the nights of 2009 April 25–26 UT. A total of 72 2 compact primary M. Three dynamical studies performed in spectrawereobtained,eachwithanintegrationtimeof600s. quiescencefoundavalueforthemassfunction(theminimum Duringthesametwonights,andwiththesamesetup,weob- mass of the compact primary) of ≈ 3M (Remillard et al. tained spectra of 38 stars, principally K dwarfs, that serve ⊙ 1992;Oroszetal. 1996;Casaresetal.1997),whichiswidely asradialvelocitytemplates. The seeingwas similar onboth consideredto be the maximumstable mass ofa neutronstar nights,withatypicalvalueof≈0.7′′andarangeof0.5′′–1.3′′. (Kalogera&Baym1996). EachMagEspectrumconsistsof15orders(correspondingto Orosz et al. (1994)obtained a quite uncertain estimate of sequencenumbers#6–20). The full wavelengthcoverageof themassratioq≡M2/M bymeasuringtheradialvelocityof the instrument is 3100–11000A˚, with order #20 at the blue theHa emissionline. Casaresetal. (1997)madea conven- end(centralwavelength3125A˚)andorder#6attheredend tionalanddirectmeasurementofthemassratiobymeasuring (centralwavelength9700A˚).Thespatialscaleis≈0.3′′/pixel. therotationalbroadeningofthephotosphericabsorptionlines Thespectraldispersionincreasesfrom0.2A˚ perpixelforor- ofthesecondary;theyobtainedaresultthatisconsistentwith der#20to0.7A˚ perpixelfororder#6,whilethevelocitydis- thatofOroszetal. (1994). persionis22kms−1 perpixelforallorders. Forourchosen The inclination angle i is usually estimated by modeling theellipsoidalmodulationofthelightcurvesofthesecondary 0.85′′ slit, the spectral resolutionis ≈1 A˚ at 5000 A˚, corre- star after a system has returned to its quiescent state. This spondingto≈60kms−1. modelingis complicatedin the case of the short-periodsys- TheMagEdatawerereducedusingthepipelinedeveloped tems because the stellar component of light is significantly by Carnegie Observatories12, which performs bias correc- contaminated by the emission from the accretion disk; this tion, flat-fielding, and wavelength calibration. The bias was so-called “disk veiling,” can be quite significant (&50% in corrected using the overscan region of the detectors. Three theV-band)andvariablein“active”quiescentstates(Cantrell sets of flats were utilized in the calibration: 1) order defini- etal. 2010).Oroszetal. (1996)estimatedadiskcontribution tion flats taken with the Xe-Flash lamps; 2) blue flats to de- at∼5000A˚ thatcouldbeashighas50%. Meantime,using fine the flat field at the blue end of a spectrum (also taken differentdata, Casares et al. (1997)estimated a disk contri- with the Xe-Flash lamps); and 3) red flats to define the flat butionatHal 6563of15%,suggestingthatdiskveilingmay fieldattheredendofaspectrumandtocorrectthefringing, be less significant at longer wavelengths. Based on this no- whichweretakenwiththeQflamps. Thewavelengthcalibra- tion, Gelino et al. (2001) modeled near-infrared (J and K) tionwasperformedusingarcspectraobtainedwithThorium- lightcurvesofNovaMusassumingthatthediskcontribution Argonlamps. The RMS residualof the wavelengthsolution could be ignoredin these bands, and they thereby estimated is<0.05A˚ fororders#8–18and<0.1A˚ fortheremaining thesystemicinclinationtobei=54◦±1.5◦;theirestimateof orders.Theperformanceofwavelengthcalibrationwasexam- blackhole mass (whichalso dependson the mass ratio q) is ined using sky emission lines; the relative wavelengthoffset M=6.95±0.6M⊙. isnegligible. TheseestimatesofiandMarequiteuncertainbecausethey The mean MagE spectrum of NovaMus in the observer’s restontheassumptionthattheeffectsofveilingarenegligible rest-frameisshowninFig.1,whichcoversspectrathatspan inthenear-infrared,whilethereisconsiderableevidencethat orders#9–14(∼4300–7000A˚).Thespectrumineach order itmaynotbe(e.g.,Reynoldsetal. 2007,2008;Kreidberget was normalized by a fifth-order polynomial. In the analysis al. 2012).Inthispaper,weobtainthefirstdetailedandsecure thatfollows,wemainlyusethedataintheseordersbecauseof measurementofthespectrumofthenon-stellarcomponentof theirgoodsignal-to-noise(S/N)ratioandgenerallackofsky lightthatveilsthestellarspectrum.Whilethisachievementis emissionlinesandtelluricabsorptionfeatures(relativetored- inpartduetothequalityandquantityofourdata,itisbased derorders). Themostprominentfeaturesinthespectrumare primarily on the strict simultaneity of our spectroscopic and thebroad,double-peakedBalmerlinesHal 6563,Hbl 4861 photometricobservations.Thesimultaneityiscrucialbecause andHgl 4341,whicharethecanonicalsignaturesofablack- oftheaperiodicvariabilityofthenon-stellarcomponent.Our holeaccretiondisk. Also presentarebroaddisklinesofHe, twootherprincipalresultsareagreatlyrefinedmeasurement notablyHe I l 5875. Other featuressuch as Na D ll 5890– oftheK-velocityandthefirstrobustmeasurementofthemass 5896,diffuseinterstellar bands(DIB) at l 5780,l 6280, and ratio q, which differssignificantly fromthe earlier estimates telluricfeaturesredwardofl 6850arealsoevident. mentionedabove. Thispaperisstructuredasfollows. Observationsanddata 2.2. OpticalPhotometry reductionaredescribedin§2. Wederivethemassfunctionvia Photometricdatawereobtainedduringthesameobserving aradialvelocityanalysisin§3. Themassratioisdetermined runusingtheduPont2.5mtelescope,whichisalsolocatedat viarotationalbroadeningin§4. Thediskveilingisalsomea- LCO.Seventy-twoV-bandimageswereacquired;bydesign, suredinthissection.ThelightcurveofNovaMusispresented each10-minexposurewasstrictlysimultaneous(timediffer- in §5. Finally, we discuss our results in §6. The light curve ence<1s)withitscorrespondingMagEspectroscopicobser- modelingand the determinationof the inclination and black vation13. Thetypicalseeingwas≈0.7′′(witharangeof0.6– holemasswillbepresentedinasubsequentpaper. 1.1′′). Weusedthe2048×2048Tek#5CCD,whichprovided afieldofviewof8.85′×8.85′ at0.259′′ perpixel. Biascor- 2. OBSERVATIONANDDATAREDUCTION rection and flat-fielding were performed with standard IRAF 2.1. MagellanEchelletteSpectroscopy 12Seehttp://code.obs.carnegiescience.edu/mage-pipeline. The spectroscopic data were obtained using the Magel- 13Theonlyexceptionisthefirstimagewhoseexposuretimewasonly60 lan Echellette spectrograph (MagE; Marshall et al. 2008) seconds. ADynamicalStudyofNovaMuscae1991 3 FIG.1.—ThemeanMagellan/MagEspectrumofNovaMusintheobserver’srestframe,coveringMagEorders#9–14(4000–7000A˚).Broadanddouble-peaked Balmerlines(Ha ,Hb ,Hg,andHd )areprominentinthespectrum.HeIl 5875emissionisalsoevident.Theweak,broademissionfeaturesredwardofHg and Ha arelikelytobeHeIl 4471andl 6678,respectively. TheNaDll 5890–5896doublet,DIBfeaturesatl 5780andl 6280(whichalsohasastrongtelluric component),aswellasthetelluricfeatureatl 6860arealsolabeled. TheNovaMusspectrumcoveringthefullMagEwavelengthrange(∼3000–10000A˚)is availableintheonlinejournalinelectronicform. tasks (zerocombine, flatcombine, and ccdproc). The estimateoftheuncertaintyinthezero-pointis0.05mag. centroidof the opticalcounterpartwas determinedusing the CIAO routine wavdetect (Freeman et al. 2002), and the quality of the centroiding was confirmed visually. Aperture photometry was performed using the IDL procedure aper. 3. RADIALVELOCITYANALYSIS The radius of the aperture was fixed to eight pixels (2.1′′), TheradialvelocityK ofthesecondarystarwasdetermined 2 whichisthelargestaperturethatsecurelyexcludessignificant by sequentially cross-correlating the 72 object spectra with contaminationof NovaMusby a faint field star. Choosing a thespectrumofatemplatestar. Thiswasdoneinturnforin- smalleraperture(e.g.,∼5pixels)wouldprovideverysimilar dividualechellette orders, rather than using a single merged results. We first produceda lightcurveofNovaMusrelative spectrum. The best quality results were obtained for order to nearbyfield starsandthenderivedan absolutecalibration #12(covering∼4700–5500A˚),asexpectedsincestrongstel- relativetoapairofnearby(24′′ and41′′)standardstars. Our larabsorptionfeaturesarepresentinthisorder(e.g.,the Mg 4 WUETAL. TABLE1 RADIALVELOCITYANALYSISRESULTS Order# K2 g T0−2454900 No.of c 2/n l Coverage MaskedFeatures (kms−1) (kms−1) (d) ObjectSpectra (A˚) 9a 413.6±4.3 17.4±3.1 46.90550±0.00072 39 1.55 6300–7300 Hal 6563,6820–7020A˚,7150–7200A˚ 10 409.5±2.7 19.4±2.0 46.90351±0.00044 72 0.92 5680–6630 NaDll 5890,5896,DIBl 6280 OIl 6300,Hal 6563 11 413.0±3.1 15.2±2.3 46.90258±0.00051 67 0.74 5170–6000 OIl 5577,NaDll 5890,5896 12 401.2±2.6 9.7±1.9 46.90327±0.00044 72 0.87 4700–5500 Hbl 4861 13 407.0±4.2 17.0±3.1 46.90211±0.00069 57 0.92 4370–5100 Hbl 4861 14 403.9±3.9 9.2±2.9 46.90086±0.00068 63 1.02 4060–4730 Hgl 4341 Average 406.8±2.2 14.2±2.1 46.90278±0.00042 NOTE.—Thequoteduncertaintiesareatthe1s levelofconfidence. aThebest-fitparametersfororder#9werenotincludedincalculatingtheaverageparametervalues;forthisorder,thewavelengthranges6820– 7020A˚ and7150–7200A˚ weremaskedtoavoidstrongtelluricabsorptionfeaturesandskyemissionlines. (that is given in the same database)14. The star at the peak ofthisordereddistributionandhavingthemaximumTDRis HD 170493 with B−V =1.11, corresponds to an effective temperatureT ≈4400K(Allen’sAstrophysicalQuantities, eff 4thedn.).WethereforechooseHD170493asthemastertem- plate for our cross-correlationanalysis. Potentialsystematic effectsrelatedtothischoiceoftemplatearediscussedin§6.1. 3.2. FittingtheRadialVelocityCurve WithHD170493asthetemplate,wefirstcross-correlated eachofthe72spectrafororder#12. Forboththeobjectand template spectra, we masked out the region around the Hb emission line, and also ∼100 A˚ at both ends of each order becausetheS/N intheseregionsispoor. Wefurthermorere- quiredthattheTDRvalueforacorrelationexceed2.5(similar to the criterion in Orosz et al. 1996). All 72 spectra for or- FIG.2.—TheaverageTDRvalueofthecross-correlationbetweenthespec- der#12deliveredreliablemeasurementsofradialvelocity,as trumofeachtemplatestarandNovaMusfororder#12,plottedagainstthe illustrated in the middle-rightpanel of Fig. 3. We fitted the B−Vcolorofthestar.ThetemplatestarwiththehighestaverageTDRvalue radialvelocitycurvewiththefollowingmodel, isHD170493,withB−V=1.11,whichcorrespondstoaspectraltypeof ∼K5withTeff≈4400K,basedonthescaleofB−Vcolorvs.Teffvs.Spec- t−T traltype,whichisshownatthetopofthefigure. V(t)=g +K cos(2p 0), (2) 2 P featuresat∼5200A˚ region),and it is relatively freeof con- whereg isthesystemicvelocityofintheheliocentricframe,t taminatingtelluricandinterstellarfeatures. is the observation time in Heliocentric Julian Days (HJDs), and T is the time of maximum radial velocity; the ra- 3.1. ChoosingtheBestTemplateSpectrum 0 dial velocity we used for the template star HD 170493 is The cross-correlation analysis was performed using the g =−55.07±0.07kms−1. Weinitiallyfixedtheorbitalpe- 0 software package fxcor as implemented in the IRAF pack- riodto thespectroscopicvaluegivenbyOroszetal. (1996), age.ThetaskfxcorreturnstheparameterRdefinedbyTonry P=0.4326058(31)d. Then, using our value of T and the 0 &Davis(1979;TDRhereafter)providesanestimateofS/N: oneinOroszetal. weobtainedarefinedvalueoftheorbital thehighertheTDRvalue,thebetterthequalityofthecross- period: P=0.43260249(9)d. Thisperiodandotherbest-fit correlation. Fromamongourdozensoftemplatespectra,we parametersarelistedinTable1. chosetheonethatgivesthehighestTDRvalue,whilefocus- AsacheckonourvaluefortheK-velocity,weperformedan ingontheNovaMusdatafororder#12. Specifically,we: (1) independentanalysisusingthexcorprocedureintheMOLLY selectedaK-typetemplatespectrumthatgivesrelativelyhigh packagedevelopedbyT.Marsh15 inplaceoffxcorinIRAF. valuesofTDRandcross-correlateditagainstthe72spectraof We again analyzed only the data for order #12 and used the NovaMus;(2)wevelocity-shiftedalltheNovaMusspectrato same template spectrum (HD 170493) as before. Both the therestframeofthetemplatestarandsummedthem;(3)we objectandtemplatespectrawererebinnedtothesameveloc- thencross-correlatedthissummedspectrumagainstallofour ity dispersion using the vbin procedure, and were normal- template spectra in turn and selected the template spectrum ized using a fifth-orderpolynomial, as requiredby the xcor thatyieldedthemaximumTDRvalue. procedure. Fitting a Gaussian to the profile of the cross- TheresultsofthisanalysisaresummarizedinFig.2,which correlation function using the MOLLY procedure mgfit, we shows how TDR varies among the template stars, which we have ordered by their B−V color given in the SIMBAD 14Weassumethatthereddeningofthesetemplatestarcanbeignoreddue database;weregardthephotometriccolorasamoreaccurate totheirproximitytotheSun(.100pc). measure of the effective temperature than the spectral type 15Seehttp://deneb.astro.warwick.ac.uk/phsaap/software/molly/html/INDEX.html. ADynamicalStudyofNovaMuscae1991 5 FIG.3.—TheradialvelocitiesofNovaMusrelativetothespectraltemplateHD170493,inMagEorders#9–14.Thebest-fitradialvelocitycurvesandresiduals foreachorderareshown. 6 WUETAL. 4. ROTATIONALVELOCITYANDDISKVEILING TABLE2 MEASUREMENTS ORBITALPARAMETERSFORNOVAMUS 4.1. RotationalBroadeningandMassRatio Parameter Value As the next step toward measuring the mass of the black OrbitalperiodP(days) 0.43260249±0.00000009 hole, we obtain a precise estimate of the mass ratio q. For K2velocity(kms−1) 406.8±2.7 ashort-period,mass-exchangebinarylikeNovaMus,onecan g velocity(kms−1) 14.2±6.3 quiteconfidentlyassumethatthesystemistidally-lockedand T0,spectroscopic(HJD−2454900) 46.90278±0.00062 thatthesecondaryfillsitsRochelobe(Wade&Horne1998). Massfunction f(M)(M⊙) 3.02±0.06 vsini(kms−1) 85.0±2.6 Inthiscase,qcanbesimplydeterminedbymeasuringthero- Massratioq 0.079±0.007 tationalbroadeningof the stellar photosphericlines. Specif- NOTE. —Thequoteduncertainties areatthe1s levelofconfi- ically, one measures the radial component of the rotational denceandincludeanallowanceforsystematicerror;see§6.1. velocity of the secondary star, vsini and uses the following equation(Wade&Horne1998), obtained values for both the K-velocity and its uncertainty (K2=402.9±1.3kms−1)thatareconsistentwiththoseob- vsini =0.462q1/3(1+q)2/3. (3) tainedusingtheIRAFroutines. K2 InordertoobtainamoreprecisevalueofK ,weanalyzed 2 Inmeasuringvsini weusethemethodofoptimalsubtrac- datafororders#10and#11(whichlietotheredoforder#12) andorders#13and#14,againmaskingout∼100A˚ atboth tion. Fig. 4 illustrates the principle of the method using the data for orders #10 and #12. Before doing the optimal sub- ends of each order; the wavelength ranges of the orders are traction, we first normalized both the object and template given in Table 1. As before, we masked out disk emission spectra using a 5th-order polynomial. The spectra of Nova- lines(mainlyBalmerlines), andwe alsomaskedouta num- Muscontainscontributionsfromboththesecondary(numer- berofstrongtelluricandinterstellarfeatures,whicharelisted ousrotationally-broadenedabsorptionfeatures)andtheaccre- in Table 1). As was the case for order #12discussed above, tiondisk(broaddiskemissionlineslikeHa ).Thebest-match all 72 objectspectra for order #10 yieldedreliable measure- templatespectrumwillhavevirtuallythesamesetofabsorp- mentsofradialvelocity(i.e.,TDR>2.5);theradialvelocity tionfeaturesasNovaMus;however,thefeaturesintheobject curve for this order is shown in Fig. 3. For the other three spectrum will be shallower because they are diluted by the orders, some object spectra were rejected because: (1) the disk continuum emission. In obtaining the best match of a TDR value for the correlation was ≤ 2.5; (2) the fit to the given template spectrum to the object spectrum, one repeti- cross-correlationpeak didnotconverge;or (3)the valueob- tainedforthe radialvelocityliesmorethan >3s awayfrom tively performsa pair of operations. First, one broadensthe ∼ narrow-linetemplatespectrum,andthenmultipliesthespec- thefittedcurve.16 Thevelocitydataforeachorderindividu- trum by the factor f (06 f 61), which represents the allywerefittedtothesamemodelusedfororder#12(Eqn.2). star star fractionofthelightcontributedbythesecondary.Finally,one For each of the five orders, Table 1 lists the best-fit parame- subtractsthetrialtemplatespectrumfromthespectrumofNo- ters, valuesof reduced c 2 and the numberof usefulspectra. vaMusanddeterminesquantitatively(seebelow)thetemplate Usingpreciselythevelocityuncertaintiesreturnedbyfxcor, spectrum that is freest of photospheric absorption features. weobtaingoodfitsforallfiveorders,with c 2/n valuesthat The results of such an analysis for two orders are shown in are close to unity. We note that there are small differences Fig.4.Theresidualspectrumfororder#10(upperpanel)only amongthebest-fitparametersatthelevelof∼3–4s level. showsthebroadHa disklineandtheDIBatl 6280.Theonly Table 2 provides a summary of the orbital parameters. clear spectral feature in the residual spectrum of order #12 The error-weighted mean of K2 among the five orders is (Fig.4;lowerpanel)istheFeIImultiplet42atl 4924,l 5018, 406.8±2.2kms−1. Afterincludingourestimateofthesys- andl 5169(Moore1972),afeaturethatisalsopresentinthe tematicerror(see§6.1),weobtainfortheradialvelocitysemi- spectraofA0620−00(Marshetal.1994)andtheneutron-star amplitudeK2 =406.8±2.7kms−1. UsingthisvalueofK2, transientEXO0748−676(Rattietal. 2012). the orbitalperiodP (Table 2) and Eqn.(1), we derivea pre- In practice, we use the spectrum of our velocity-template cise valueforthe mass functionof f(M)=3.02±0.06M⊙, starHD170493andthephase-averagedspectraofNovaMus therebyconfirmingthe blackholenatureof the compactob- foreachordertoincreasetheS/N.Beforeaveragingthespec- ject. tra fora givenorder,we shifted the individualspectrato the In addition to orders #10–14, and as discussed in the fol- restframeofHD 170493usingthe datain Table 1. We first lowing section, we also performeda radial velocity analysis broadenedthe template spectrum using a grid of trial values oforder#9forthepurposeofmeasuringthemassratioqand from 5 to 300 km s−1 in steps of 5 km s−1. We also arti- investigatingtheeffectsofdiskveiling. Thebest-fitparame- ficially smearedthe templatespectrumusingthe appropriate tersfororder#9areincludedinTable1. However,wedonot phase and integration time in order to simulate the velocity includetheresultsforthisorderinourfinaldeterminationof smearingduringan observationofNovaMus. A c 2 test was the radialvelocity parametersbecause relativelyfew spectra performedontheresidualspectrumtodetermineaminimum generatedusefulvelocitydata(39outof72)andbecausethe andthecorrespondingapproximatevalueofvsini.Now,start- qualityofthefitisrelativelypoor(c 2/n =1.55). ing with this approximate value, we repeated the procedure withatrialgridextendingfrom60to120kms−1 instepsof 1kms−1. Makinguseoftherbroadandoptsubtasksinthe 16Onlyfivedatapointsinallfiveorderslie >3–4s awayfromthefitted MOLLY, curves of vsini vs. c 2 were generated (see Fig. 5) ∼ curve;removingtheseradialvelocitypointsdoesnotsignificantlychangethe andfitted witha 3rd-orderpolynomial;ouradoptedvalueof fittedvaluesoftheparameters. vsinicorrespondstotheminimumofthefittedcurve. Allthe ADynamicalStudyofNovaMuscae1991 7 FIG.4.—Theresultsofapplyingtheoptimalsubtractionprocedurefororder#10(upperpanel)andorder#12(lowerpanel). Eachpanelcontainstheaverage normalized spectrum ofNovaMus, thenormalized spectrum ofthetemplate starHD170493, andtheresidual spectrum after optimal subtraction. TheHa emissionlineandstrongDIBfeaturearelabeledfororder#10. TheupperpanelalsocontainstheaveragedHa emissionlineintheobserver’sframe,which showsthecharacteristicdouble-peakedprofile.TheFeIImultiplet42featuresintheresidualspectrumoforder#12arelabeledinthelowerpanel.Allthespectra aresmoothedwitha5-pixelboxcarforthepurposeofpresentation. 8 WUETAL. FIG.5.—MeasurementoftherotationalvelocityvsiniinMagEorders#9–14. Foreachorder,theupperpanelshowsthecurveofvsinivs. c 2,whichwe fittedwithacubicpolynomial. Ouradoptedvalueofvsiniisthevaluecorrespondingtotheminimuminc 2.Thelowerpanelillustratesthemethodweusedto estimatetheuncertaintyinvsiniviathebootstrapmethoddescribedinthetext.ThehistogramofvsiniisfittedwithaGaussianindeterminingtheuncertainty. emission lines, interstellar features, and telluric features are maskedoutduringtheoptimalsubtraction. TABLE3 The effectof limb darkeningneedsto be properlyconsid- LIMBDARKENINGCOEFFICIENTANDROTATIONALVELOCITY ered in the optimalsubtraction. Since this effectvarieswith Order# Centrall (A˚) u(limbdarkening) vsini(kms−1) DiskVeiling(%) wavelength,wecalculatedalinearlimbdarkeningcoefficient for each order of the MagE spectra based on the data given 9 6800 0.706 83.8±7.5 40.3±3.4 10 6130 0.762 87.2±3.5 51.4±1.3 byClaretetal. (2012).Weretrievedfromtheirtablethelimb 11 5590 0.808 88.6±4.5 56.7±1.4 darkening coefficients for theUBVRI bands. For the effec- 12 5140 0.845 82.8±3.5 59.3±1.0 tivetemperatureofthecompanionstar,weadoptedthevalue 13 4750 0.878 79.4±5.9 55.8±2.1 T =4400K.Thestar’ssurfacegravitylogg(incm−2 s−1) 14 4400 0.908 85.5±7.1 69.1±1.5 eff Average 85.0±1.3 issecurelyintherange4.0–4.5,andforeachbandweadopted theaverageofthetabulatedvaluesofthelimbdarkeningcoef- NOTE.—Thequoteduncertaintiesareatthe1s levelofconfidence. ficientforlogg=4.0andlogg=4.5. Finallywelinearlyin- terpolatedbetweentheUBVRI bandsusingthecentralwave- a Gaussian distribution(see Fig. 5). The mean of the Gaus- length of each order, thereby obtaining the values we adopt for the limb darkening coefficients (see the third column in sian distributionis veryclose (within 1 km s−1) to the fitted Table 3), which range from 0.71 (Order #9) to 0.91 (Order valuesofvsinidiscussedabove. Foreachorder,wetakethe #14). meanoftheGaussiandistributionasthefinalmeasurementof vsini andthestandarddeviationofthemeans astheuncer- tainty. The measured values of vsini for six orders (#9–14) arepresentedinFig.5andTable3). Theerror-weightedmeanvsiniofallsixordersishvsinii= We utilized the bootstrap method to determine the uncer- tainty in vsini following Steeghs & Jonker (2007)and Ratti 85.0±1.3 km s−1. After including an allowance for sys- etal. (2013). We generated500simulatedNovaMusspectra tematic uncertainty, related to the choice of template spec- usingtheMOLLYtaskboot.Thebootstrapmethodrandomly trum and the limb darkening coefficient (see §6.1), our fi- selectsdata pointsfromtheoriginalspectrumwhile keeping nal adopted value is vsini= 85.0±2.6 km s−1. Using this thesametotalnumberofdatapointsinthespectrum.Foreach value and our K-velocity for the secondary (K2 = 406.8± simulatedspectrum,vsiniwasmeasuredfollowingthesame 2.7 km s−1; §3.2), and Eqn. (3), we obtain for the mass procedure as described above. The 500 vsini values follow ratio the value q = 0.079±0.007. Using this mass ra- ADynamicalStudyofNovaMuscae1991 9 FIG.7.—ThesimplisticspectralenergydistributionofNovaMus,decom- posed into the secondary star component (red line) and the accretion disk component(blueline). Thepinklineshowsthesumofthetwocomponents. ThesolidblueandpinklinescovertheobservedwavelengthrangeforMagE orders#9–14.Thedashedlinesareextrapolationstolongerwavelengths.The starcomponentisrepresentedbya4400Kblackbodyspectrum.Theblueline representsapower-lawmodelobtainedbyfittingtheobservedrelativefluxof diskemission(filledbluesquares)inthesixorders,excludingthedatapoint fororder#13(thesecondbluesquarefromtheleft),,whichisaclearoutlier. Theblackdottedlinesshowtheeffective wavelengths oftheR,I,J,H,K bands.Ourestimateofthediskveilingfactorineachbandisalsolabeled. disk veiling factor. These alternative measurementsof f , disk areconsistentwithin∼1s (forallorders)withthevaluesde- termined as described aboveusing the phase-averagedspec- tra. Wenotethatforfiveofthesixorders f isgreaterthan disk 0.5,i.e.,thediskisbrighterthanthesecondarystar. FIG.6.—Measurementofthediskveilingfractioninorder#9–14.Ineach Fig. 6 indicates that the disk veiling factor generally de- panel,thedottedlineindicatesthediskveilingfraction(labeledbythe“mean creases with increasing wavelength, i.e., the disk veiling is veiling1”value)oftheaveragedspectrum. Thehistogramshowsourdisk lesssignificantforredderwavebands. However,thisdoesnot veilingmeasurementsforindividualspectra; thedashedlineindicates their necessarilymeanthatdiskveilingcanbeignored,eveninthe meanvalueasobtainedfromthehistogram(labeledbythe“meanveiling2” value). J and K bands, as claimed by Gelino et al. (2001)and oth- ers. Weutilizeasimplisticspectralenergydistribution(SED) tio and the value of the mass function given in §3.2, the modelandanextrapolationtoillustratethispoint(seeFig.7). massesofthe blackholeandsecondarystar areM=3.52± Our crude SED by no means represents an accurate model 0.07(sin−3i)M⊙ andM2=0.28±0.03(sin−3i)M⊙, respec- ofthediskemission. Forthestellarcomponent,weassumed tively. blackbodyemissionat4400K(redlineinFig.7;see§3and Fig. 2), and we then computedthe relative disk flux in each 4.2. DiskVeiling order(filledbluesquares)basedonourmeasurementsof f . disk The disk veiling factor f , i.e., the fraction of the total Wefittedtheseestimatesofdiskfluxusingapower-lawmodel disk lightthatisnon-stellar,isalsodeterminedbytheoptimalsub- torepresenttheSEDofthediskcomponentandthenextrapo- traction method. For each order, we first broaden the HD latedthepowerlawintothenear-infrared(dashedblueline). 170493 template spectrum using the values of vsini deter- At shorter wavelengths, the disk component does indeed mined in §4.1, and then optimally subtract it from the spec- decreaserapidlywith increasingwavelengthso thatthe stel- trum of NovaMus. The proceduregives the fractionof light lar component becomes dominant as one approaches the R- duetothesecondarystar, f ,forthetemplatespectrumthat band. However, at longer wavelengths the blackbody com- star corresponds to the minimum value of c 2. The disk veiling ponentbeginstofallrapidly,anddiskveilingreachesamin- factoristhensimply f =1−f . Asindeterminingvsini imum(≈40%) at around1 m m and then beginsto increase. disk star we computed fdisk using for each order the averaged, rest- Forourdata and thiscrudemodel, we estimate that fdisk for frame spectrum of NovaMus. The values we adopt for the theI,J,H,K bandsisintherangeof40–60%(seetheblack diskveilingfactorforthesixordersareindicatedinFig.6by dottedlinesinFig.7),whichisconsistentwiththeestimates dottedlinesandarelistedinthelastcolumnofTable3. ofReynoldsetal.(2008)forNovaMusof40–50%inthenear- As a check on the robustness of our measured values of infrared.Wenotethat fdiskinthenear-infraredcouldbelower f ,werepeatedtheoptimalsubtractionprocedureforeach than our estimate if the disk component of emission has a disk spectrumindividually,usingonlythosespectrathatproduced thermalspectrumthatfallsbelowtheextrapolatedpower-law a reliable measurement of radial velocity (see §3). A his- spectrum,whichweassume. However,weconcludethatitis togramof f foreachorderisshowninFig. 6; the dashed notwarrantedto assume thattheeffectsofveilingarenegli- disk lineineachpanelrepresentstheweightedmeanvalueofthe gibleinthenear-infrared. 10 WUETAL. FIG.8.—Theoriginal(leftpanel)andphase-binned(rightpanel)V-bandlightcurvesofNovaMus,acquiredwiththeduPont2.5-mTelescope.Intheleftpanel, theopen(filled)circlesarethephotometrydatapointsobtainedduringthefirst(second)nightofobservation.Theerrorbarinthelowerleftcornerrepresentsthe typicaluncertainty.Intherightpanel,thelightcurveisbinnedinto20phasebins,eachofwhichhasthreeorfourindividualdatapoints. 5. LIGHTCURVE HD107493becauseitgavethemaximumTDRvalue(§3.1), obviouslythisspectrumisnotidenticaltothatoftheRoche- Ourcalibratedandphase-foldedV-bandlightcurve,which lobe-fillingcompanionstar. Focusingonthehigh-qualitydata wasobtainedinexposuresthatobtainedsimultaneouslywith fororder#12,werepeatedouranalysisforsixothertemplate the spectroscopic exposures (see §2.2), is shown in Fig. 8. spectra with TDR values > 60 (see Fig. 2); the results are Zerophotometricphase,whichisequivalentto0.75spectro- summarized in Table 4. The spread in the values of K is scopic phase, corresponds to the inferior conjunction of the 2 secondary. Two versions of the light curve are shown, un- <0.8kms−1,whichissignificantlysmallerthanthestatisti- binned and binned into 20 phase bins, each with 3–4 data caluncertainty. AsourestimateofthesystematicerrorinK2 pointsperbin. associatedwith the choiceof thetemplate, we take thestan- During our observations, NovaMus was ∼0.5 magnitude darddeviationofthesevenvaluesofK2,whichis0.3kms−1. brighteronaveragein theV-bandthanit wasin earlierpho- In like manner, we obtain estimates of systematic error of tometric monitoring campaigns (e.g., during 1992–1995, as 4.2kms−1 forg ,andof0.00013dayforT . 0 reportedbyOroszetal. 1996).OurV-bandlightcurveshows A second source of systematic uncertainty is the effect of substantial aperiodic flickering (see §6.2). Nevertheless, the the different widths of the photospheric lines for NovaMus phase-binnedlightcurveexhibitsthecharacteristicsignatures whicharerotationallybroadened,andfortheslowly-rotating of ellipsoidal modulation, with two minima at phases ∼0.0 template star, which are narrow. To assess this effect, we and∼0.5andtwomaximaatphases∼0.25and∼0.75.The broadenedthe lines of our chosen template (HD 107493)to twomaximadonothaveequalamplitudeasonewouldexpect 85 km s−1 (§4.1) and repeated the radial velocity analysis. foranidealellipsoidalmodulation,whichcouldbecausedby ThechangeinK is0.5kms−1 (Table4),whichweadoptas 2 a hotspotin the accretiondisk. Such unequalmaximahave ourestimate ofsystematicerror;we obtainsimilar estimates frequently been observed in the light curves of other black of systematic error for g and T of 0.8 km s−1 and 0.00020 0 holebinariesin quiescence,e.g.,A0620−00(McClintock& day,respectively. Remillard1986;Cantrelletal. 2010). Foreachofthethreeparametersinquestion,weobtainour finalestimate oferror,whichis givenin Table 2, bylinearly 6. DISCUSSION addingthelargerofthetwosystematicerrorsdiscussedabove 6.1. AssessmentofSystematicUncertainties ontothestatisticalerrorobtainedin§3.2(giveninTable1). We identify sources of systematic error, and obtain esti- mates of their magnitude, first for the orbital parameters K 2 andT andthesystemicvelocityg ,andthenfortherotational 0 6.1.2. RotationalVelocity velocityvsini. Weidentifytwosourcesofsystematicuncertaintyforvsini, namely,the valueadoptedforthe limb darkeningcoefficient and the choice of template spectrum. Again, using the data 6.1.1. OrbitalParametersandSystemicVelocity for order #12, we considered an uncertainty of ±0.1 in our Wefirstconsidertheuncertaintyassociatedwiththechoice adoptedvalueof0.845(Table3)andfindthatthiscorresponds of template spectrum. While we chose the spectrum of to an uncertainty of ≤ 1.5 km s−1 (see Table 5). We then