ff A Dual Method For Backward Stochastic Di erential Equations with Application to Risk Valuation AndrzejRuszczyn´ski JianingYao ∗ † 7 1 January 24,2017 0 2 n a J Abstract 2 2 Weproposeanumericalrecipeforriskevaluationdefinedbyabackwardstochasticdiffer- entialequation. Usingdualrepresentationoftheriskmeasure,weconverttheriskvaluationto ] C astochasticcontrolproblemwherethecontrolisacertainRadon-Nikodymderivativeprocess. Byexploringthemaximumprinciple,weshowthatapiecewise-constantdualcontrolprovides O agoodapproximationonashortinterval. Adynamicprogrammingalgorithmextendstheap- . h proximationto a finite time horizon. Finally, we illustrate theapplicationofthe procedureto t a riskmanagementinconjunctionwithnestedsimulation. m Keywords:DynamicRiskMeasures,Forward–BackwardStochasticDifferentialEquations,Stochas- [ ticMaximumPrinciple,RiskManagement 1 v 1 Introduction 4 3 2 The main objective of this paper is to present a simple and efficient numerical method for solving 6 0 backward stochastic differential equations with convex and homogeneous drivers. Such equations . are fundamental modeling tools for continuous-time dynamic risk measures with Brownian filtra- 1 0 tion,butmayalsoariseinotherapplications. 7 Thekeyproperty ofdynamic riskmeasuresistime-consistency, whichallowsfordynamic pro- 1 grammingformulations. ThediscretetimecasewasextensivelyexploredbyDetlfsenandScandolo : v [11], Bion-Nadal [5], Cheridito et al. [7, 8], Föllmer and Penner [12], Fritelli and Rosazza Gianin i X [15],FrittelliandScandolo [16],Riedel[32],andRuszczyn´ski andShapiro[35]. r Forthecontinuous-time case,Coquet,Hu,MéminandPeng[9]discovered thattime-consistent a dynamic risk measures, with Brownian filtration, can be represented as solutions of Backward Stochastic Differential Equations (BSDE)[30];undermildgrowthconditions, thisistheonlyform Rutgers University, Department of Management Science and Information Systems, Piscataway, NJ 08854, USA, ∗ Email:[email protected] Rutgers University, Department of Management Science and Information Systems, Piscataway, NJ 08854, USA, † Email:[email protected] 1 possible. Specifically, the y-part solution of one-dimensional BSDE, defined below, measures the riskofavariableξ atthecurrent timet: T T T Y = ξ + g(s,Z ) ds Z dW , 0 t T, (1) t T s s s Z −Z ≤ ≤ t t withthedrivergbeinginterpretedasa“riskrate.” The -measurablerandomvariableξ isusually T T F afunction oftheterminalstateofacertainstochastic dynamical system. Inspired by that, Barrieu and ElKaroui provided a comprehensive study in [3, 4]; further con- tributionsbeingmadebyDelbean,Peng,andRosazzaGianin[10],andQuenezandSulem[31](for amoregeneral modelwithLevyprocesses). Inaddition, application tofinancewasconsidered, for example,in[19]. Usingtheconvergence resultsofBriand,DelyonandMémin[6],Stadje[39]finds thedriversofBSDEcorresponding todiscrete-time riskmeasures. Motivated by an earlier work on risk-averse control of discrete-time stochastic process [37], Ruszczyn´skiandYao[38]formulatearisk-aversestochasticcontrolproblemfordiffusionprocesses. Thecorresponding dynamicprogrammingequationleadstoadecoupledforward–backwardsystem ofstochastic differentialequations. While forward stochastic differential equations can be solved by several efficient methods, the main challenge is the numerical solution of (1), where ξ represents the future value function. In T particular, Zhang [41] and Touzi et al. [40] use backward Euler’s approximation and regression. Such an approach, however, is not well-suited for risk measurement, because it does not preserve the monotonicity of the risk measure. Alternatively, Øksendal [28] directly attacks continuous- timerisk-aversecontrolproblemwithjumpsbyderivingsufficientconditions. Algorithmsbasedon maximumprinciple wereinvestigated byLudwigetal. [23]. Ourideaistoderivearecursivemethodbasedonrisk-aversedynamicprogramming,sothatthe approximation becomesatime-consistent coherent riskmeasureindiscrete time. Thepaperisorganized asfollows. Insection 2,wequickly introduce theconcept ofadynamic risk measure and review its properties. In section 3 werecall the dual representation of a dynamic risk measure and formulate an equivalent stochastic control problem. The optimality condition for thedualcontrolproblem, aspecialformofamaximumprinciple, arederivedinsection4. Sections 5 and 6 estimate the errors introduced by using constant processes as dual controls. In section 7 we present the whole numerical method with piecewise constant dual controls and analyze its rate of convergence. Finally, in section 8, weillustrate the efficacy ofour approach on atwo-stage risk managementmodel. 2 The Risk Evaluation Problem Givenacompletefilteredprobabilityspace(Ω, ,P)withfiltration generatedbyd-dimen- t t [0,T] sionalBrownianmotion W ,weconsideFr thefollowingstoch{Fast}ic∈ differentialequation: t t [0,T] { }∈ dX = b(t,X) dt+σ(t,X) dW, X = x, t [0,T], (2) t t t t 0 ∈ withmeasurable b : [0,T] Rn Rn,andσ : [0,T] Rn Rn Rd. Weintroduce thefollowing × → × → × notation. 2 E[ ]:= E[ ]; t t • · ·|F 2(Ω, ,P;Rn): the set of Rn-valued -measurable random variables ξ such that ξ 2 := t t • L F F k k E[ ξ2] < ;forn = 1,wewriteit 2(Ω, ,P); | | ∞ L F 2,n[t,T]: thesetofRn-valuedadaptedprocessesYon[t,T],suchthat Y 2 := E T Y 2ds < • H k k 2,n[t,T] t t | s| ;forn= 1wewriteit 2[t,T];1 H hR i ∞ H k([t,T] Rn)thespaceoffunctions f : [t,T] Rn Rwhosehasderivativeuptok-th,in • Cb × × → themeanwhile, allthosederivatives arecontinuous andbounded; for f : Rn R,wedenote 7→ byCk(RN); b (B): thespaceofLipschitzcontinuous functions f : B R. L • C → Wemakefollowingassumptions aboutthedriftandvolatility terms. Assumption2.1. (i) b(,0) + σ(,0) 2[0,T]; | · | | · | ∈ H (ii) Thefunctions b,σ 1([0,T] Rn),theconstantC > 0denotes theLipschitzconstants ∈ Cb × b(t,x ) b(t,x ) + σ(t,x ) σ(t,x ) C x x a.s. 1 2 1 2 1 2 | − | | − |≤ | − | b(t,x ) + σ(t,x ) C x , a.s.. 1 1 1 | | | | ≤ | | (iii) The dimension of Brownian motion and the state process coincide, i.e., n = d, and we also assume 1 σ(t,x)σ (t,x) , (t,x) [0,T] Rd. ⊤ ≥ CI ∀ ∈ × Ourintention istoevaluateriskofaterminalcostgenerated bytheforwardprocess(2): ρ Φ(X ) , (3) 0,T T (cid:2) (cid:3) where Φ (Rn) is bounded, and ρ is a dynamic risk measure consistent with the ∈ CL s,t 0 s t T filtration t t [0,T]. Wereferthereader(cid:8)to[(cid:9)29≤]≤fo≤racomprehensivediscussiononriskmeasurement {F}∈ andfiltration-consistent evaluations. Special role in the dynamic risk theory is played by g-evaluations which defined by one- dimensional backwardstochastic differentialequations ofthefollowingform: dY = g(t,Y,Z)dt Z dW, Y = Φ(X ), t [0,T], (4) t t t t t T T − − ∈ g withρ Φ(X )]definedtobeequaltoY. ThedrivergisjointlyLipschitzin(y,z),andtheprocess t,T T t g(,0,0)(cid:2) 2[0,T]. · ∈ H As proved in [9] every F-consistent nonlinear evaluation that is dominated by a g-evaluation with g = µy + νz with some ν,µ > 0 is in fact a g-evaluation for some g; the dominance is | | | | understood asfollows: ρ [ξ+η] ρ [ξ] ρν,µ[η] 0,T − 0,T ≤ 0,T forallξ,η 2(Ω, ,P). T ∈ L F 1Whenthenormisclearfromthecontext,thesubscriptsareskipped. 3 Proposition 2.2. Forall0 t T andallξ,ξ (Ω, ,P),thefollowingproperties hold: ′ 2 T (i) Generalized constan≤tpr≤eservation: Ifξ ∈ L(Ω, F,P),thenρg [ξ] = ξ; (ii) Timeconsistency: ρg [ξ] = ρg [ρg [ξ]∈],Lfo2ralFl0t s t; t,t s,T s,t t,T ≤ ≤ (iii) Localproperty: ρg [ξ +ξ ]= ρg [ξ]+ ρg [ξ ],forallA . t,T 1A ′1Ac 1A t,T 1Ac t,T ′ ∈ Ft From now on, shall focus exclusively ong-evaluations asdynamic risk measures, and weshall skipthesuperscript ginρg. Theevaluation ofriskisequivalent tothesolution ofadecoupled forward–backward systemof stochastic differential equations (2)–(4). Animportant virtueofthissystemisitsMarkovproperty: ρ Φ(X ) = v(t,X), (5) t,T T t (cid:2) (cid:3) wherev: [0,T] Rn R. Wehave × → v(t,x) = ρx Φ(Xt,x) , (t,x) [0,T] Rn, (6) t,T T ∈ × (cid:2) (cid:3) where Xt,x isthesolutionofthesystem(2)restartedattimetfromstate x: s { } dXt,x = b(s,Xt,x) ds+σ(s,Xt,x)dW , s [t,T], Xt,x = x, (7) s s s s ∈ t and ρx Φ(Xt,x) is the (deterministic) value of Yt,x in the backward equation (4) with terminal t,T T t condition(cid:2) Φ(Xt,x(cid:3)). T Numericalmethodsforsolvingforwardequationsareverywellunderstood(see,e.g.,[18]). We focus, therefore, onthebackward equation (4). Sofar, alimitednumber ofresults areavailable for thispurpose. ThemostprominentistheEulermethodwithfunctional regression (see,e.g.,[24,25, 40, 41, 42]). Our intention is to show that for drivers satisfying additional coherence conditions, a muchmore effective method canbe developed, which exploits time-consistency, duality theory for riskmeasures, andthemaximumprinciple instochastic control. 3 The Dual Control Problem Wefurther restrict the risk measures under consideration tocoherent measures, bymaking the fol- lowingadditional assumption aboutthedriverg. Assumption3.1. Thedrivergsatisfiesforalmostallt [0,T]thefollowingconditions: ∈ (i) gisdeterministic andindependent ofy,thatis,g :[0,T] Rd R,andg(,0) 0; × → · ≡ (ii) g(t, )isconvex forallt [0,T]; · ∈ (iii) g(t, )ispositively homogeneous forallt [0,T]. · ∈ g Undertheseconditions, onecanderivefurtherpropertiesoftheevaluationsρ []fort [0,T], t,T · ∈ inadditiontothegeneralpropertiesofF-consistentnonlinearexpectationsstatedinProposition2.2. Theorem3.2. Supposegsatisfies Assumption3.1. Thenthedynamicriskmeasure ρ has t,r 0 t r T { } ≤≤ ≤ thefollowingproperties: 4 (i) TranslationProperty: forallξ (Ω, ,P)andη (Ω, ,P), 2 r 2 t ∈ L F ∈ L F ρ [ξ+η] = ρ [ξ]+η, a.s.; t,r t,r (ii) Convexity: forallξ,ξ (Ω, ,P)andallλ L (Ω, ,P)suchthat0 λ 1, ′ 2 r ∞ t ∈ L F ∈ F ≤ ≤ ρ [λξ+(1 λ)ξ ] λρ [ξ]+(1 λ)ρ [ξ ], a.s.. t,r ′ t,r t,r ′ − ≤ − (iii) PositiveHomogeneity: forall ξ (Ω, ,P)and allβ L (Ω, ,P)such thatβ 0, we 2 r ∞ t ∈ L F ∈ F ≥ have ρ [βξ] = βρ [ξ], a.s.. t,r t,r Itfollowsthat under Assumption 3.1,the operators ρ constitute afamilyofcoherent t,r 0 t r T { } ≤≤ ≤ conditional measuresofrisks. Particularly important forusisthedualrepresentation oftheriskmeasure ρ ,whichis t,T t [0,T] basedonthedualrepresentation ofthedriverg: (cid:8) (cid:9)∈ g(t,z) = maxνz, ν At ∈ whereA = ∂ g(t,0)isabounded,convex,andclosedsetinRn. Thefollowingstatementspecializes t z theresultsofBarrieuandElKaroui[3]toourcase. Theorem3.3. Suppose Assumption3.1issatisfied. Then ρg Φ(Xt,x) = sup E Γ Φ(Xt,x) , (8) t,T T t,T T (cid:2) (cid:3) µ∈At,T (cid:2) (cid:3) where isthespaceofA -valuedadaptedprocesseson[t,T],andtheprocess Γ satisfies At,T s t,s s [t,T] thestochastic differential equation: (cid:8) (cid:9) ∈ dΓ = µ Γ dW , s [t,T], Γ = 1. (9) t,s s t,s s t,t ∈ Moreover, asolutionµˆ oftheoptimalcontrolproblem (8)–(9)exists. Thefollowinglemmaprovides ausefulestimate. Lemma 3.4. A constant C exists, such that for all 0 t < s T and all Γ that satisfy (9), we t,s ≤ ≤ { } have Γ 1 2 C(s t). (10) t,s k − k ≤ − Proof. UsingItôisometry, weobtainthechainofrelations s s s Γ 1 2 = µ Γ 2dr µ 2 Γ 2dr µ 2 1+ Γ 1 2 dr. (11) t,s r t,r r t,r r t,r k − k Z k k ≤ Z k k k k ≤ Z k k k − k t t t (cid:0) (cid:1) IfK isauniformupperboundonthenormofthesubgradientsofg(r,0)wededucethat Γ 1 2 t,r ψ ,r [t,T],whereψsatisfiestheODE: dψr = K2(1+ψ ),withψ = 0. Consequently,k − k ≤ r ∈ dr r t Γ 1 2 ψ = eK2(r t) 1. (12) t,r r − k − k ≤ − Theconvexity oftheexponential function yieldsthepostulated bound. (cid:3) 5 Thedualrepresentationtheoremallowsustotransformtheriskevaluationproblemtoastochas- ticcontrolproblem. Ourobjectivenowistoapproximatetheevaluationofriskonashortinterval∆ sothat it reduces the functional optimization problem tovector optimization. Toproceed, wehave tofirstinvestigate thecorresponding maximumprinciple ofthecontrolproblem (8). 4 Stochastic Maximum Principle In this section, we decipher the optimality conditions of the stochastic control problem (8)–(9). Since only the process Γ is controlled, the analysis is rather standard. For completeness, t,s s [t,T] { } ∈ werepeatsomeimportantstepshere. Suppose µˆ isthe optimal control; then, forany µ and 0 α 1, wecanform aperturbed ∈ A ≤ ≤ controlfunction µα = µˆ +α(µ µˆ). − It is still an element of , due to the convexity of the sets A . The processes Γˆ, Γ and Γα are the s A stateprocesses underthecontrols µˆ,µ,andµ ,respectively. α Welinearize thestateequation(9)aboutΓˆ toget,for s [t,T], ∈ dηµ = µˆ ηµ+Γˆ (µ µˆ ) dW , ηµ = 0. (13) s s s t,s s− s s t (cid:2) (cid:3) Itisevidentthatthisequation hasauniquestrongsolution. Denote 1 hα = Γα Γˆ ηµ, s [0,T]. s α t,s− t,s − s ∈ (cid:2) (cid:3) Thefollowingresultjustifiestheusefulness ofthelinearized equation (13). Lemma4.1. lim sup hα 2 = 0. (14) α 00 s Tk sk → ≤ ≤ Proof. Wefirstprovethat lim sup Γα Γˆ 2 = 0. (15) α 0t s T k t,s− t,sk → ≤ ≤ Wehave d Γα Γˆ = µαΓα µˆ Γˆ dW = (µα µˆ )Γˆ +µα(Γα Γˆ ) dW . (16) t,s − t,s s t,s− s t,s s s − s t,s s t,s − t,s s (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) ByItôisometry, r Γα Γˆ 2 = (µα µˆ )Γˆ +µα(Γα Γˆ ) 2 ds k t,r − t,rk Z k s − s t,s s t,s − t,s k t r r 2 (µα µˆ )Γˆ 2 ds+2 µα(Γα Γˆ ) 2 ds ≤ Z k s − s t,sk Z k s t,s− t,s k t t r r 2 (µα µˆ )Γˆ 2 ds+K Γα Γˆ 2 ds, ≤ Z k s − s t,sk Z k t,s− t,sk t t 6 where K is a constant. Since the first integral on the right hand side converges to 0, as α 0, the → Gronwallinequality yields(15). Wecannowprove(14). Combining(16)and(13),weobtainthestochasticdifferentialequation forhα: 1 dhα = (µˆ +α(µ µˆ ))Γα µˆ Γˆ µˆ ηµ Γˆ (µ µˆ ) dW s (cid:26)α s s− s t,s − s t,s − s s − t,s s − s (cid:27) s (cid:2) (cid:3) 1 = µˆ Γα Γˆ +(µ µˆ ) Γα Γˆ µˆ ηµ dW (cid:26)α s t,s− t,s s− s t,s− t,s − s s(cid:27) s (cid:2) (cid:3) (cid:2) (cid:3) = µˆ hα+(µ µˆ ) Γα Γˆ dW . (cid:26) s s s − s t,s− t,s (cid:27) s (cid:2) (cid:3) Sincetheprocesses µˆ and µ arebounded, Itôisometryyieldsagain s s { } { } r r hα 2 K hα 2 ds+K Γα Γˆ 2 ds, k rk ≤ Z k sk Z k t,s − t,sk t t where K isconstant. BytheGronwallinequality, using(15),wegetthedesiredresult. (cid:3) Theconvergence resultabovedirectly leadstothefollowingvariational inequality. Lemma4.2. Foranyµ wehave ∈ A E ξ ηµ 0. (17) T T ≤ (cid:2) (cid:3) Proof. Sinceµˆ istheoptimalcontrol, E ξ Γα Γˆ 0. T t,T − t,T ≤ (cid:2) (cid:0) (cid:1)(cid:3) Lemma4.1leadsto 1 limE ξ Γα Γˆ = E ξ ηµ 0, α 0 Tα t,T − t,T T T ≤ → h (cid:0) (cid:1)i (cid:2) (cid:3) asrequired. (cid:3) We now express the expected value in (17) as an integral, to obtain a pointwise variational inequality (the maximum principle). To this end, we introduce the following backward stochastic differential equation(theadjointequation): dp = k µˆ ds+k dW , p = ξ , s [t,T], (18) s s s s s T T − ∈ withξ = Φ Xt,x . Byconstruction, E ξ ηµ = E pˆ ηµ . ApplyingtheItôformulatotheproduct T T T T T T µ process psηs(cid:0),we(cid:1)obtain (cid:2) (cid:3) (cid:2) (cid:3) d(p ηµ) = k ηµ+ pˆ µˆ ηµ+Γˆ (µ µˆ ) dW +k Γˆ (µ µˆ ) ds. s s s s s s s t,s s s s s t,s s s − − (cid:16) (cid:2) (cid:3)(cid:17) Iffollowsthat T E ξ ηµ = E k Γˆ (µ µˆ )ds . (19) T T (cid:20) Zt s t,s s− s (cid:21) (cid:2) (cid:3) 7 We can summarize our derivations in the following version of the maximum principle. We define theHamiltonian H : R Rn Rn R: × × → H(γ,ν,κ) = kγν. Theorem4.3. Foralmostall s [t,T],withprobability 1, ∈ H(Γˆ ,µˆ ,k )= maxH(Γˆ ,ν,k ). t,s s s t,s s ν A ∈ Proof. Foranyµ ,wedefinetheset ∈ A = (ω,s) Ω [t,T] : k Γˆ (µ µˆ )> 0 . s t,s s s G { ∈ × − } Weconstruct anewcontrolµ : ∗ ∈ A µ , (ω,s) , µ = s ∈ G ∗s µˆ , otherwise. s Themeasurability andadaptedness ofµ canbeeasilyverified. Itfollowsfrom(17)and(19)that ∗ T E k Γˆ (µ µˆ )ds 0. (cid:20) Zt s t,s ∗s − s (cid:21) ≤ Bytheconstruction ofµ , ∗ k Γˆ (µ µˆ )ds P(dω) 0. " s t,s ∗s − s ≤ G Sincetheintegrandispositiveon ,theproductmeasureof mustbezero. (cid:3) G G 5 Regularity of the Integrand in the Adjoint Equation Wealsomakeastronger assumption aboutthedrift anddiffusion termsoftheforwardsystem, and abouttheterminalcostfunction. Assumption5.1. Thefunctions b,σ,Φ 2([0,T] Rn),and ∈ Cb × 1 σ(s,x) σ(t,x) C s t 2 | − | ≤ | − | forall s,t [0,T]andall x Rn. ∈ ∈ Consider the forward–backward system (7) and (18). The key to our further estimates is the followingregularity resultabouttheintegrand k intheadjointequation (18). t { } Lemma5.2. AconstantC exists, suchthatforall0 t < s T,andall x Rn, ≤ ≤ ∈ 1 ks kt C s t 2. (20) k − k ≤ | − | 8 Proof. Thequasilinearparabolicpartialdifferentialequationcorrespondingtotheforward–backward system(7)–(18)hasthefollowingform(see,e.g. [26,sec. 8.2]), 1 u(t,x)+u (t,x)b(t,x)+ tr u (t,x)σ(t,x)σT(t,x) +u (t,x)σ(t,x)µˆ = 0, (21) t x xx x t 2 (cid:0) (cid:1) with the boundary condition u(T,x) Φ(x). Due to the linearity of the driver of (18), the terms ≡ withu canbecollapsed. Thentheequation (21)istheFeynman-Kacequation for x u(s,X˜t,x) = E Φ X˜t,x , s [t,T], (22) s T Fs ∈ (cid:2) (cid:0) (cid:1)(cid:12)(cid:12) (cid:3) where (cid:12) dX˜t,x = b(s,X˜t,x)+σ(s,X˜t,x)µˆ ds+σ(s,X˜t,x)dW , s [t,T], X˜t,x = x. s s s s s s ∈ s (cid:2) (cid:3) Ma and Yong [26] consider it on page 195 in formula (1.12). Under Assumption 5.1, the equation (21)hasaclassical solution u(, ),andthentheprocess · · k = u (s,X˜t,x)σ(s,X˜t,x), s [t,T], (23) s x s s ∈ isthesolution oftheadjoint equation (18). By[26,Prop. 8.1.1], aprocess H 2,n n[t,T]exists, × suchthattheprocessG = u (s,X˜t,x)satisfiesthefollowingn-dimensional BS∈DEH: s x s T T G = Φ (X˜t,x)+ b (s,X˜t,x)+σ (s,X˜t,x)µˆ G +σ (s,X˜t,x)H ds H dW . (24) t x T Z x s x s s s x s s −Z s s t (cid:16)(cid:2) (cid:3) (cid:17) t Weobtainthefollowingestimate: k k = u (s,X˜t,x)σ(s,X˜t,x) u (t,x)σ(t,x) k s − tk k x s s − x k u (s,X˜t,x)σ(s,X˜t,x) u (s,X˜t,x)σ(t,x)+u (s,X˜t,x)σ(t,x) u (t,x)σ(t,x) (25) ≤ k x s s − x s x s − x k u (s,X˜t,x) σ(s,X˜t,x) σ(t,x) + σ(t,x) G G . ≤ k x s kk s − k k kk s − tk Thefirsttermontherighthandsideof (25)canbebounded withthehelpofAssumption5.1: σ(s,X˜t,x) σ(t,x) σ(s,X˜t,x) σ(s,x) + σ(s,x) σ(t,x) k s − k ≤ k s − k k − k C1 s t 21 +C2 X˜s x C3 s t 21, ≤ | − | k − k≤ | − | whereC ,C ,andC aresomeuniversalconstants. Itfollowsfrom(24)that 1 2 3 r r G G = b (s,X˜ )+σ (s,X˜ )µˆ G +σ (s,X˜ )H ds+ H dW . r t x s x s s s x s s s s − −Z Z t (cid:16)(cid:2) (cid:3) (cid:17) t Therefore, thesecondtermontherighthandsideof (25)canbeboundedas G G 2 C s t. s t 4 k − k ≤ | − | Integrating theseestimatesinto(25),weobtain(20)withauniversal constantC. (cid:3) 9 6 Error Estimates for Constant Controls on Small Intervals To reduce an infinite dimensional control problem to a finite dimensional vector optimization, we partition the interval [0,T] into N short pieces of length ∆ = T/N, and develop a scheme for evaluating the risk measure (3) by using constant dual controls on each piece. We denote t = i∆, i fori= 0,1,...,N. For simplicity, in addition to Assumption 3.1, we assume that the driver g does not depend on time,andthusallsets A = ∂g(0)arethesame. Wedenotethemwiththesymbol A;asweshallsee t lateronthisisnotamajorrestriction. If the system’s state at time t is x, then the value of the risk measure (6) is then the optimal i valueofproblem (8). Bydynamicprogramming, v(ti,x) = ρtxi,ti+1 v ti+1,Xttii+,x1 . (cid:2) (cid:0) (cid:1)(cid:3) The risk measure ρtxi,ti+1[·] is defined by problem (8), with terminal time ti+1 and the function Φ(·) replaced by v(ti+1, ·). Equivalently, it is equal to Yttii,x, in the corresponding forward–backward systemontheinterval[ti,ti+1]: dXti,x = b(s,Xti,x) ds+σ(s,Xti,x)dW , Xti,x = x, (26) s s s s ti −dYsti,x = g(Zsti,x)ds−Zsti,x dWs, Yttii+,x1 = v ti+1,Xttii+,x1 . (27) (cid:0) (cid:1) Under Assumption 5.1, the function v(, ) is the classical solution of the associated Hamilton– · · Jacobi–Bellman equation: 1 v(t,x)+v (t,x)b(t,x)+ tr v (t,x)σ(t,x)σT(t,x) +g v (t,x)σ(t,x) = 0, (28) t x xx x 2 (cid:0) (cid:1) (cid:0) (cid:1) withtheterminalcondition v(T,x) = Φ(x). Supposeweuseaconstantcontrol intheinterval[ti,ti+1]: µs := µˆti = argmax ktiν, ∀s ∈ [ti,ti+1], (29) ν A ∈ where(p,k)solvetheadjoint equationcorresponding to(18): dps = −ksµˆsds+ksdWs, s∈ [ti,ti+1], pti+1 = v ti+1,Xttii+,x1 . (30) (cid:0) (cid:1) Westill use Γˆ to denote the state evolution under the optimal control, while Γ is the process under control µ defined in (29). It is well-known that the value function v(, ) of the system (26)–(27) is · · in 2([0,T] Rn); see, for example, [42, Thm. 2.4.1]. Therefore, the bounds developed insection Cb × 5remainvalidfortheprocesses (p,k)in(30). Our objective is to show that a constant C exists, independent of x, N, and i, such that the approximation errorontheithintervalcanbebounded asfollows: 0 ≤ E v ti+1,Xttii+,x1 Γˆti,ti+1 −Γti,ti+1 ≤C∆23. (31) (cid:2) (cid:0) (cid:1)(cid:0) (cid:1)(cid:3) The fact that wedo not know k will not be essential; later, we shall generate even better constant ti controls bydiscrete-time dynamicprogramming. Wecannowderivesomeusefulestimates fortheconstant controlfunction (29). 10