ebook img

A Double Hall Algebra Approach to Affine Quantum Schur-Weyl Theory PDF

218 Pages·2013·1.302 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Double Hall Algebra Approach to Affine Quantum Schur-Weyl Theory

LONDONMATHEMATICALSOCIETYLECTURENOTESERIES ManagingEditor:ProfessorM.Reid,MathematicsInstitute,UniversityofWarwick,CoventryCV47AL, UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressat http://www.cambridge.org/mathematics 287 TopicsonRiemannsurfacesandFuchsiangroups,E.BUJALANCE,A.F.COSTA&E.MARTÍNEZ(eds) 288 Surveysincombinatorics,2001,J.W.P.HIRSCHFELD(ed) 289 AspectsofSobolev-typeinequalities,L.SALOFF-COSTE 290 QuantumgroupsandLietheory,A.PRESSLEY(ed) 291 Titsbuildingsandthemodeltheoryofgroups,K.TENT(ed) 292 Aquantumgroupsprimer,S.MAJID 293 SecondorderpartialdifferentialequationsinHilbertspaces,G.DAPRATO&J.ZABCZYK 294 Introductiontooperatorspacetheory,G.PISIER 295 Geometryandintegrability,L.MASON&Y.NUTKU(eds) 296 Lecturesoninvarianttheory,I.DOLGACHEV 297 Thehomotopycategoryofsimplyconnected4-manifolds,H.-J.BAUES 298 Higheroperads,highercategories,T.LEINSTER(ed) 299 Kleiniangroupsandhyperbolic3-manifolds,Y.KOMORI,V.MARKOVIC&C.SERIES(eds) 300 IntroductiontoMöbiusdifferentialgeometry,U.HERTRICH-JEROMIN 301 StablemodulesandtheD(2)-problem,F.E.A.JOHNSON 302 DiscreteandcontinuousnonlinearSchrödingersystems,M.J.ABLOWITZ,B.PRINARI&A.D.TRUBATCH 303 Numbertheoryandalgebraicgeometry,M.REID&A.SKOROBOGATOV(eds) 304 GroupsStAndrews2001inOxfordI,C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 305 GroupsStAndrews2001inOxfordII,C.M.CAMPBELL,E.F.ROBERTSON&G.C.SMITH(eds) 306 Geometricmechanicsandsymmetry,J.MONTALDI&T.RATIU(eds) 307 Surveysincombinatorics2003,C.D.WENSLEY(ed.) 308 Topology,geometryandquantumfieldtheory,U.L.TILLMANN(ed) 309 Coringsandcomodules,T.BRZEZINSKI&R.WISBAUER 310 Topicsindynamicsandergodictheory,S.BEZUGLYI&S.KOLYADA(eds) 311 Groups:topological,combinatorialandarithmeticaspects,T.W.MÜLLER(ed) 312 Foundationsofcomputationalmathematics,Minneapolis2002,F.CUCKERetal(eds) 313 Transcendentalaspectsofalgebraiccycles,S.MÜLLER-STACH&C.PETERS(eds) 314 Spectralgeneralizationsoflinegraphs,D.CVETKOVIC´,P.ROWLINSON&S.SIMIC´ 315 Structuredringspectra,A.BAKER&B.RICHTER(eds) 316 Linearlogicincomputerscience,T.EHRHARD,P.RUET,J.-Y.GIRARD&P.SCOTT(eds) 317 Advancesinellipticcurvecryptography,I.F.BLAKE,G.SEROUSSI&N.P.SMART(eds) 318 Perturbationoftheboundaryinboundary-valueproblemsofpartialdifferentialequations,D.HENRY 319 DoubleaffineHeckealgebras,I.CHEREDNIK 320 L-functionsandGaloisrepresentations,D.BURNS,K.BUZZARD&J.NEKOVÁRˇ(eds) 321 Surveysinmodernmathematics,V.PRASOLOV&Y.ILYASHENKO(eds) 322 Recentperspectivesinrandommatrixtheoryandnumbertheory,F.MEZZADRI&N.C.SNAITH(eds) 323 Poissongeometry,deformationquantisationandgrouprepresentations,S.GUTTetal(eds) 324 Singularitiesandcomputeralgebra,C.LOSSEN&G.PFISTER(eds) 325 LecturesontheRicciflow,P.TOPPING 326 ModularrepresentationsoffinitegroupsofLietype,J.E.HUMPHREYS 327 Surveysincombinatorics2005,B.S.WEBB(ed) 328 Fundamentalsofhyperbolicmanifolds,R.CANARY,D.EPSTEIN&A.MARDEN(eds) 329 SpacesofKleiniangroups,Y.MINSKY,M.SAKUMA&C.SERIES(eds) 330 Noncommutativelocalizationinalgebraandtopology,A.RANICKI(ed) 331 Foundationsofcomputationalmathematics,Santander2005,L.MPARDO,A.PINKUS,E.SÜLI&M.J.TODD (eds) 332 Handbookoftiltingtheory,L.ANGELERIHÜGEL,D.HAPPEL&H.KRAUSE(eds) 333 Syntheticdifferentialgeometry(2ndEdition),A.KOCK 334 TheNavier–Stokesequations,N.RILEY&P.DRAZIN 335 Lecturesonthecombinatoricsoffreeprobability,A.NICA&R.SPEICHER 336 Integralclosureofideals,rings,andmodules,I.SWANSON&C.HUNEKE 337 MethodsinBanachspacetheory,J.M.F.CASTILLO&W.B.JOHNSON(eds) 338 Surveysingeometryandnumbertheory,N.YOUNG(ed) 339 GroupsStAndrews2005I,C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 340 GroupsStAndrews2005II,C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 341 Ranksofellipticcurvesandrandommatrixtheory,J.B.CONREY,D.W.FARMER,F.MEZZADRI& N.C.SNAITH(eds) 342 Ellipticcohomology,H.R.MILLER&D.C.RAVENEL(eds) 343 AlgebraiccyclesandmotivesI,J.NAGEL&C.PETERS(eds) 344 AlgebraiccyclesandmotivesII,J.NAGEL&C.PETERS(eds) 345 Algebraicandanalyticgeometry,A.NEEMAN 346 Surveysincombinatorics2007,A.HILTON&J.TALBOT(eds) 347 Surveysincontemporarymathematics,N.YOUNG&Y.CHOI(eds) 348 Transcendentaldynamicsandcomplexanalysis,P.J.RIPPON&G.M.STALLARD(eds) 349 ModeltheorywithapplicationstoalgebraandanalysisI,Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY& A.WILKIE(eds) 350 ModeltheorywithapplicationstoalgebraandanalysisII,Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY& A.WILKIE(eds) 351 FinitevonNeumannalgebrasandmasas,A.M.SINCLAIR&R.R.SMITH 352 Numbertheoryandpolynomials,J.MCKEE&C.SMYTH(eds) 353 Trendsinstochasticanalysis,J.BLATH,P.MÖRTERS&M.SCHEUTZOW(eds) 354 Groupsandanalysis,K.TENT(ed) 355 Non-equilibriumstatisticalmechanicsandturbulence,J.CARDY,G.FALKOVICH&K.GAWEDZKI 356 EllipticcurvesandbigGaloisrepresentations,D.DELBOURGO 357 Algebraictheoryofdifferentialequations,M.A.H.MACCALLUM&A.V.MIKHAILOV(eds) 358 Geometricandcohomologicalmethodsingrouptheory,M.R.BRIDSON,P.H.KROPHOLLER&I.J.LEARY (eds) 359 Modulispacesandvectorbundles,L.BRAMBILA-PAZ,S.B.BRADLOW,O.GARCÍA-PRADA& S.RAMANAN(eds) 360 Zariskigeometries,B.ZILBER 361 Words:Notesonverbalwidthingroups,D.SEGAL 362 Differentialtensoralgebrasandtheirmodulecategories,R.BAUTISTA,L.SALMERÓN&R.ZUAZUA 363 Foundationsofcomputationalmathematics,HongKong2008,F.CUCKER,A.PINKUS&M.J.TODD(eds) 364 Partialdifferentialequationsandfluidmechanics,J.C.ROBINSON&J.L.RODRIGO(eds) 365 Surveysincombinatorics2009,S.HUCZYNSKA,J.D.MITCHELL&C.M.RONEY-DOUGAL(eds) 366 Highlyoscillatoryproblems,B.ENGQUIST,A.FOKAS,E.HAIRER&A.ISERLES(eds) 367 Randommatrices:Highdimensionalphenomena,G.BLOWER 368 GeometryofRiemannsurfaces,F.P.GARDINER,G.GONZÁLEZ-DIEZ&C.KOUROUNIOTIS(eds) 369 Epidemicsandrumoursincomplexnetworks,M.DRAIEF&L.MASSOULIÉ 370 Theoryofp-adicdistributions,S.ALBEVERIO,A.YU.KHRENNIKOV&V.M.SHELKOVICH 371 Conformalfractals,F.PRZYTYCKI&M.URBAN´SKI 372 Moonshine:Thefirstquartercenturyandbeyond,J.LEPOWSKY,J.MCKAY&M.P.TUITE(eds) 373 Smoothness,regularityandcompleteintersection,J.MAJADAS&A.G.RODICIO 374 Geometricanalysisofhyperbolicdifferentialequations:Anintroduction,S.ALINHAC 375 Triangulatedcategories,T.HOLM,P.JØRGENSEN&R.ROUQUIER(eds) 376 Permutationpatterns,S.LINTON,N.RUŠKUC&V.VATTER(eds) 377 AnintroductiontoGaloiscohomologyanditsapplications,G.BERHUY 378 Probabilityandmathematicalgenetics,N.H.BINGHAM&C.M.GOLDIE(eds) 379 Finiteandalgorithmicmodeltheory,J.ESPARZA,C.MICHAUX&C.STEINHORN(eds) 380 Realandcomplexsingularities,M.MANOEL,M.C.ROMEROFUSTER&C.T.CWALL(eds) 381 Symmetriesandintegrabilityofdifferenceequations,D.LEVI,P.OLVER,Z.THOMOVA&P.WINTERNITZ (eds) 382 Forcingwithrandomvariablesandproofcomplexity,J.KRAJÍCˇEK 383 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryI,R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 384 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryII,R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 385 EntropyofhiddenMarkovprocessesandconnectionstodynamicalsystems,B.MARCUS,K.PETERSEN& T.WEISSMAN(eds) 386 Independence-friendlylogic,A.L.MANN,G.SANDU&M.SEVENSTER 387 GroupsStAndrews2009inBathI,C.M.CAMPBELLetal(eds) 388 GroupsStAndrews2009inBathII,C.M.CAMPBELLetal(eds) 389 Randomfieldsonthesphere,D.MARINUCCI&G.PECCATI 390 Localizationinperiodicpotentials,D.E.PELINOVSKY 391 FusionsystemsinalgebraandtopologyM.ASCHBACHER,R.KESSAR&B.OLIVER 392 Surveysincombinatorics2011,R.CHAPMAN(ed) 393 Non-abelianfundamentalgroupsandIwasawatheory,J.COATESetal(eds) 394 VariationalProblemsinDifferentialGeometry,R.BIELAWSKI,K.HOUSTON&M.SPEIGHT(eds) 395 Howgroupsgrow,A.MANN 396 ArithmeticDifferentialOperatorsoverthep-adicIntegers,C.C.RALPH&S.R.SIMANCA 397 HyperbolicgeometryandapplicationsinquantumChaosandcosmology,J.BOLTE&F.STEINER(eds) 398 Mathematicalmodelsincontactmechanics,M.SOFONEA&A.MATEI 399 Circuitdoublecoverofgraphs,C.-Q.ZHANG 400 Densespherepackings:ablueprintforformalproofs,T.HALES 401 AdoubleHallalgebraapproachtoaffinequantumSchur–Weyltheory,B.DENG,J.DU&Q.FU LondonMathematicalSocietyLectureNoteseries:401 A Double Hall Algebra Approach to Affine Quantum Schur–Weyl Theory BANGMING DENG BeijingNormalUniversity JIE DU UniversityofNewSouthWales,Sydney QIANG FU TongjiUniversity,Shanghai CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107608603 (cid:2)c B.Deng,J.DuandQ.Fu2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedandiboundiintheUnitedKingdombyitheMPGiBooksiGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata ISBN978-1-107-60860-3Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Wededicatethebooktoourteachers: PeterGabriel ShaoxueLiu LeonardScott JianpanWang 2010MathematicsSubjectClassification.Primary17B37,20G43,20C08; Secondary16G20,20G42,16T20 Keywordsandphrases.affineHeckealgebra,affinequantumSchuralgebra, cyclicquiver,Drinfelddouble,loopalgebra,quantumgroup,Schur–Weyl duality,Ringel–Hallalgebra,simplerepresentation Abstract Overitsone-hundredyearhistory,thetheoryofSchur–Weylduality and its quantum analogue have had and continue to have profound influences in several areas of mathematics such as Lie theory, rep- resentationtheory,invarianttheory,combinatorialtheory,andsoon. Recent new developments include, e.g., walled Brauer algebras and rational Schur algebras, quantum Schur superalgebras, and the inte- gral Schur–Weyl duality for types other than A. This book takes an algebraicapproachtotheaffinequantumSchur–Weyltheory. The book begins with a study of extended Ringel–Hall algebras associated with the cyclic quiver of n vertices and the Green–Xiao Hopf structure on their Drinfeld double—the double Ringel–Hall algebra.ThisalgebraispresentedintermsofChevalleytypeandcen- tral generators and is proved to be isomorphic to the quantum loop algebraofthegenerallinearLiealgebra.Therestofthebookinves- tigates the affine quantum Schur–Weyl duality on three levels. This includes • theaffinequantumSchur–Weylreciprocity; • the bridging role played by the affine quantum Schur algebra between the quantum loop algebra and the corresponding affine Heckealgebra; • Moritaequivalenceofcertainrepresentationcategories; • thepresentationofaffinequantumSchuralgebras;and • therealizationconjectureforthedoubleRingel–Hallalgebrawhich isprovedtobetrueintheclassicalcase. Connections with various existing works by Lusztig, Varagnolo– Vasserot,Schiffmann,Hubery,Chari–Pressley,Frenkel–Mukhin,and othersarealsodiscussedthroughoutthebook. Contents Introduction page1 1 Preliminaries 9 (cid:2) 1.1 Theloopalgebragl andsomenotation 9 n 1.2 RepresentationsofcyclicquiversandRingel–Hallalgebras 12 1.3 ThequantumloopalgebraU((cid:2)sl ) 17 n 1.4 Threetypesofgeneratorsandassociatedmonomialbases 20 1.5 HopfstructureonextendedRingel–Hallalgebras 25 2 DoubleRingel–Hallalgebrasofcyclicquivers 31 2.1 DrinfelddoublesandtheHopfalgebraD(cid:2)(n) 31 2.2 Schiffmann–Huberygenerators 37 2.3 PresentationofD(cid:2)(n) 41 2.4 Someintegralforms 45 2.5 ThequantumloopalgebraU(g(cid:2)l ) 49 n 2.6 Semisimplegeneratorsandcommutatorformulas 55 3 Affine quantum Schur algebras and the Schur–Weyl reciprocity 62 3.1 Cyclicflags:thegeometricdefinition 63 3.2 AffineHeckealgebrasoftype A:thealgebraicdefinition 68 3.3 Thetensorspaceinterpretation 74 3.4 BLMbasesandmultiplicationformulas 77 3.5 TheD(cid:2)(n)-H(cid:2)(r)-bimodulestructureontensorspaces 79 3.6 AcomparisonwiththeVaragnolo–Vasserotaction 88 3.7 TriangulardecompositionsofaffinequantumSchuralgebras 95 3.8 AffinequantumSchur–Weylduality,I 102 3.9 Polynomialidentityarisingfromsemisimplegenerators 106 3.10 Appendix 115 vii viii Contents 4 RepresentationsofaffinequantumSchuralgebras 121 4.1 AffinequantumSchur–Weylduality,II 122 4.2 Chari–Pressleycategoryequivalenceandclassification 126 4.3 Classification of simple S(cid:2)(n,r)C-modules: theupwardapproach 132 4.4 IdentificationofsimpleS(cid:2)(n,r)C-modules:then >r case 136 4.5 Application:thesetS(n) 141 r 4.6 Classification of simple S(cid:2)(n,r)C-modules: thedownwardapproach 143 4.7 ClassificationofsimpleU(cid:2)(n,r)C-modules 150 5 Thepresentationandrealizationproblems 153 5.1 McGerty’spresentationforU(cid:2)(n,r) 154 5.2 StructureofaffinequantumSchuralgebras 157 5.3 PresentationofS(cid:2)(r,r) 162 5.4 Therealizationconjecture 169 5.5 Lusztig’stransfermapsonsemisimplegenerators 172 6 Theclassical(v =1)case 179 6.1 TheuniversalenvelopingalgebraU(g(cid:2)l ) 179 n 6.2 MoremultiplicationformulasinaffineSchuralgebras 185 6.3 ProofofConjecture5.4.2atv =1 190 6.4 Appendix:ProofofProposition6.2.3 194 Bibliography 201 Index 205

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.