A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES OVER THE TENSOR PRODUCTS OF ALGEBRAS DAWEISHEN Abstract. LetAbeacoherentalgebraandBbeafinite-dimensionalGoren- 6 steinalgebraover afieldk. WedescribefinitelypresentedGorensteinprojec- 1 tiveA⊗kB-modulesintermsoftheirunderlyingonesidedmodules. Moreover, 0 if the global dimension of B is finite, we give a more precise description of 2 finitelypresentedGorensteinprojectiveA⊗kB-modules. n a J 0 3 1. Introduction The study of Gorenstein projective modules is originated by M. Auslander and ] T M. Bridger in [2] under the name “modules of G-dimension zero”. The notion of R Gorenstein projective modules is introduced by E. E. Enochs and O. M. G. Jenda . in [11,12] andis extensively studied by their coauthors. By the pioneeringworkof h t R.-O. Buchweitz in [7], the stable categories of Gorenstein projective modules are a closely related to singularity categories. m OneofthemostimportanttasksinGorensteinhomologicalalgebraistodescribe [ Gorensteinprojectivemodules. Inthispaper,westudyGorensteinprojectivemod- 1 ules over the tensor product of two algebras in terms of their underlying onesided v modules. 6 Another motivation of this work is from monomorphism categories. G. Birkhoff 1 initiatesthestudyofmonomorphismsbetweenabeliangroups[6]. C.M.Ringeland 1 M.Schmidmeier[20]investigatesubmodulecategories. X.-H.LuoandP.Zhang[14] 0 0 generalize their work and introduce monomorphism categories over finite acyclic . quivers. 2 0 Let A be a coherent algebra over a field k, and let Q be a finite acyclic quiver. 6 The monomorphism category Mon(Q,A) defined by X.-H. Luo and P. Zhang is in 1 factafullsubcategoryofthemodulecategoryoverA⊗ kQ. Theyusethiscategory k v: to describe Gorenstein projective modules over A⊗kkQ. Our work is inspired by i the main result of [14]. X LetAbe acoherentalgebraandB beafinite-dimensionalalgebraoverafieldk. r IfB isaGorensteinalgebra,thefollowingresultdescribesfinitelypresentedGoren- a steinprojectiveA⊗ B-modulesintermsoftheirunderlyingonesidedmodules. For k each left A⊗ B-module X, we denote by X the underlying left A-module of X k A and by X the underlying left B-module of X. Denote by D the k-dual functor B Hom (−,k). k Theorem 1.1. Let A be a coherent algebra and B be a finite-dimensional Goren- stein algebra over a field k. Let X be a finitely presented left A⊗ B-module. Then k X is Gorenstein projective if and only if (DB ⊗ X) is a Gorenstein projective A B left A-module and X is a Gorenstein projective left B-module. B Date:February2,2016. 2010 Mathematics Subject Classification. Primary16G10; Secondary16D40. Keywords and phrases. Gorensteinalgebra,Gorensteinprojectivemodule. 1 2 DAWEISHEN IfB hasfiniteglobaldimension,wehavethefollowingmoreprecisedescriptionof finitelypresentedGorensteinprojectiveA⊗ B-modules. ForeachleftB-moduleM, k recall that the radical rad M of M is the intersection of all maximal submodules B of M; see, for example, [1, Chapter 3, §9]. Proposition 1.2. Let A be a coherent algebra and B be a finite-dimensional al- gebra of finite global dimension over a field k. Let X be a finitely presented left A⊗ B-module. Then X is Gorenstein projective if and only if (X/rad X) is a k A B Gorenstein projective left A-module and X is a projective left B-module. B The paper is organized as follows. In Section 2, we recall some facts about the Gorenstein projective modules and the tensor products of algebras. The proofs of Theorem1.1andProposition1.2aregiveninSection3andSection4, respectively. In Section 5, we give some applications of our results. 2. Preliminaries 2.1. Notation. Throughoutthis paper, k is a fixed field. Let ⊗ denote the tensor productoverk,andletDdenotethek-dualfunctorHom (−,k). Foreachk-algebra k A, we denote by Aop the opposite algebra of A. All modules are left modules; all categories,morphisms and functors are k-linear. 2.2. Tensor products of algebras. Let A be a k-algebra and B be a finite- dimensional k-algebra. Recall from [8, Chapter IX, Theorem 2.8a] the following. Lemma 2.1. Let M be an A-module, P be a finite-dimensional projective Bop- module and X be an A⊗B-module. Then for each n≥0, there is an isomorphism Extn (X,M ⊗DP)≃Extn(X ⊗ P,M). A⊗B A B 2.3. Gorenstein projective modules. Let A be a k-algebra. Following [7, 12], a complex of projective A-modules P• :···−→P−1 −d−→1 P0 −d→0 P1 −d→1 ··· is totally acyclic if P• is acyclic and Hom (P•,Q) is acyclic for each projective A A-module Q. An A-module M is Gorenstein projective if there is a totally acyclic complex P• of projective A-modules such that M = Kerd1; the complex P• is called a complete resolution of M. From now on, let A be a coherent k-algebra, that is, a left and right coherent algebra over k. Denote by A-mod the category of finitely presented A-modules; it is an abelian category. Denote by A-projthe full subcategory of A-mod formed by finitely generated projective A-modules. For each Gorenstein projective A-module M which is finitely presented, there is a complete resolution P• of M such that P• is a totally acyclic complex of finitely generated projective A-modules; it is calledacomplete resolutionofM inA-proj. Forbe acomplexoffinitely generated projective A-modules P•, recall that P• is totally acyclic if and only if P• and Hom (P•,A) are both acyclic. A Denote by (−)∗ the A-dual functor Hom (−,A) or Hom (−,A). For each A Aop A-module M, there is an evaluation map evA : M → M∗∗ of M with value in A, M whereevA(m)(f)=f(m)foreachm∈M andf ∈M∗. Following[12,ChapterX, M Proposition10.2.6],afinitelypresentedA-moduleM isGorensteinprojectiveifand only if M satisfies the following conditions: (1) Extn(M,A)=0 for n≥1; A (2) Extn (M∗,A)=0 for n≥1; Aop (3) the evaluation map evA :M →M∗∗ is an isomorphism. M A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 3 Denote by A-Gproj the full subcategory of A-mod formed by finitely presented GorensteinprojectiveA-modules. WewillneedthefollowingfactsaboutGorenstein projective A-modules; see, for example, [7, Lemma 4.2.2]. (GP1) A-Gproj is a Frobenius category with projective objects precisely A-proj. (GP2) A-Gprojisclosedunderdirectsummands,extensionsandkernelsofepimor- phisms in A-mod. (GP3) TheA-dualfunctorsinduceexactdualitiesbetweenA-GprojandAop-Gproj. Recall that A-Gproj⊥ contains all finitely presented A-modules of finite projec- tive dimension. Here, A-Gproj⊥ denotes the right perpendicular category A-Gproj⊥ ={M ∈A-mod|Extn(G,M)=0,∀G∈A-Gproj,∀n≥1} A of A-Gproj. In fact, the full subcategory A-Gproj⊥ is closed under cokernels of monomorphisms in A-mod and contains A-proj. The following lemma is well known. ∂ Lemma 2.2. Let ξ : 0 → M → ··· → M −→ M be a sequence of finitely pre- m 1 0 sented Gorenstein projective A-modules with m≥1. Then the following statements are equivalent. (1) ξ∗ =Hom (ξ,A) is exact. A (2) ξ is exact and Coker∂ is a Gorenstein projective A-module. Proof. “(1) =⇒ (2)” Since ξ∗ is exact, Ker∂∗ is a finitely presented Gorenstein projectiveAop-moduleby(GP2). Itfollowsfrom(GP3)thatξ ≃(ξ∗)∗ isexactand Coker∂ ≃(Ker∂∗)∗ is a finitely presented Gorenstein projective Aop-module. “(2)=⇒(1)” This follows from (GP3). (cid:3) 3. The proof of Theorem 1.1 LetAbeacoherentk-algebraandB beafinite-dimensionalk-algebra. Thenthe tensorproductA⊗B ofAandB isacoherentk-algebra. LetX beanA⊗B-module X. Recall that X denotes the underlying A-module of X and X denotes the A B underlyingB-moduleofX. LetX beafinitelypresentedA⊗B-module. Then X A isfinitelypresented,but X isnotnecessarilyfinitelypresented. Bytheequivalent B conditions for Gorenstein projective modules and Lemma 2.1, we know that X is A Gorenstein projective if and only if X satisfies the following conditions: (1) Extn (X,A⊗DB)=0 for n≥1; A⊗B (2) Extn (X∨,A⊗DB)=0 for n≥1; (A⊗B)op (3) the evaluation map evA⊗DB :X →X∨∨ is an isomorphism. X Here, we denote (−)∨ =HomA⊗B(−,A⊗DB) or Hom(A⊗B)op(−,A⊗DB). The following result indicates that the duality between the categories of finite- dimensional modules over B and Bop induces some special “duality” between the categories of modules over A⊗B and (A⊗B)op. Lemma 3.1. Let U be a finite-dimensional B-module, and let X be an A⊗B- module such that Extn (X,A⊗DB) = 0 for n ≥ 1. Then for each n ≥ 0, there A⊗B is an isomorphism Extn (X,A⊗U)≃Extn (A⊗DU,X∨). A⊗B (A⊗B)op Proof. Wehave(A⊗U)∨ ≃A⊗DU and(A⊗DU)∨ ≃A⊗DDU by[8,ChapterXI, Theorem3.1]. SinceU isfinitedimensionaloverk,A⊗DDU andA⊗U arenatural isomorphic. Then by [1, Chapter 5, Proposition 20.7], there is an isomorphism HomA⊗B(X,A⊗U)≃Hom(A⊗B)op(A⊗DU,X∨). 4 DAWEISHEN Take an exact sequence of finite-dimensional A-modules f 0−→U →I −→V −→0 (3.1) suchthatI isinjective. ApplyingHomA⊗B(X,A⊗−)to(3.1)givesrisetoanexact sequence HomA⊗B(X,A⊗I)HomA⊗−B→(X,A⊗f)HomA⊗B(X,A⊗V) (3.2) −→Ext1 (X,A⊗U)−→Ext1 (X,A⊗I). A⊗B A⊗B Since I is an injective B-module, we have Ext1 (X,A⊗I)=0. A⊗B Applying the k-dual functor D to (3.1), we obtain an exact sequence Df 0−→DV −→DI −→DU −→0. (3.3) Applying Hom (A⊗−,X∨) to (3.3) yields an exact sequence (A⊗B)op Hom (A⊗DI,X∨)Hom(A⊗B)−op→(A⊗Df,X∨)Hom (A⊗DV,X∨) (A⊗B)op (A⊗B)op (3.4) −→Ext1 (A⊗DU,X∨)−→Ext1 (A⊗DI,X∨). (A⊗B)op (A⊗B)op Since A⊗DI is projective, we have Ext1 (A⊗DI,X∨)=0. (A⊗B)op Compare the sequences (3.2) and (3.4). Then there is an isomorphism Ext1 (X,A⊗U)≃Ext1 (A⊗DU,X∨). A⊗B (A⊗B)op By dimension shifting, we can prove the isomorphisms for n≥2. (cid:3) Let U be a finite-dimensional B-module. Assume that the injective dimension m of U is finite. Then there is an exact sequence of finite-dimensional B-modules ξ :I0 −d→0 I1 −→···−→Im −→0 such that each Ii is injective and Kerd0 =U. Lemma 3.2. Let U be a finite-dimensional B-module of finiteinjective dimension, and let X be a finitely presented A⊗ B-module with X Gorenstein projective. A Then the following statements are equivalent. (1) Extn (X,A⊗U)=0 for n≥1. A⊗B (2) HomA⊗B(X,A⊗ξ) is exact. (3) DU⊗ X isaGorensteinprojective A-moduleandTorB(DU,X)=0forn≥1. B n Proof. Since X is Gorenstein projective, we have Extn (X,A⊗DB) = 0 for A A⊗B n ≥ 1. If U is injective, it is easy to see that (1), (2) and (3) all hold. Then we may assume that U has injective dimension m≥1. “(1)⇐⇒(2)” We prove this by induction on m. Ifm=1,thend0 :I0 →I1 issurjective. ApplyHomA⊗B(X,A⊗−)totheshort exact sequence 0−→U −→I0 −d→0 I1 −→0. Then the long exact sequence yields Ext1A⊗B(X,A⊗U)=CokerHomA⊗B(X,A⊗d0) and ExtnA⊗B(X,A⊗U) = 0 for n ≥ 2. Therefore, HomA⊗B(X,A⊗ξ) is exact if and only if Extn (X,A⊗U)=0 for n≥1. A⊗B Supposethat(1)and(2)areequivalentform=k ≥1. Iftheinjectivedimension ofU isk+1,thentheinjectivedimensionofV =Cokerd0 isk. Thereisasurjective map p:I0 →V and an exact sequence of finite-dimensional B-modules ξ′ :I1 −d→1 I2 −→···−→Im −→0 A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 5 such that each Ii is injective and Kerd1 = V. Observe that HomA⊗B(X,A⊗ξ) is exact if and only if HomA⊗B(X,A⊗p) is surjective and HomA⊗B(X,A⊗ξ′) is exact. Apply HomA⊗B(X,A⊗−) to the short exact sequence 0−→U −→I0 −p→V −→0. It follows from the long exact sequence that we have Ext1A⊗B(X,A⊗U)=CokerHomA⊗B(X,A⊗p) and Extn+1 (X,A⊗U)=Extn (X,A⊗V) for n≥1. A⊗B A⊗B By induction hypothesis, we know that HomA⊗B(X,A⊗ξ′) is exact if and only if ExtnA⊗B(X,A⊗V) = 0 for n ≥ 1. Therefore, HomA⊗B(X,A⊗ξ) is exact if and only if Extn (X,A⊗U)=0 for n≥1. A⊗B “(2)⇐⇒(3)” It follows from Lemma 2.1 that HomA⊗B(X,A⊗ξ) is isomorphic to HomA(Dξ ⊗B X,A). In particular, HomA⊗B(X,A⊗ξ) is exact if and only if Hom (Dξ ⊗ X,A) is exact. Since ξ is a deleted injective resolution of U, we A B have that Dξ is a deleted projective resolution of DU. Observe that Dξ⊗ X is B a sequence of finitely presented Gorenstein projective A-modules. By Lemma 2.2, Hom (Dξ⊗ X,A)isexactifandonlyifDξ⊗ X isexactandCoker(D(d0)⊗ X)is A B B B aGorensteinprojectiveA-module. AdirectcalculationshowsCoker(D(d0)⊗ X)= B DU⊗ X andthehomologyH (Dξ⊗ X)=TorB(DU,X)forn≥1. Thisfinishes B n B n our proof. (cid:3) Let A be a coherent k-algebra and B be a finite-dimensional k-algebra. For a finitely presentedGorenstein projectiveA⊗B-module X,is X a Gorensteinpro- A jectiveA-module? Thefollowinglemmagivesanaffirmativeansweriftheprojective dimension of DB is finite. Here, we recall that the right perpendicular category B A⊗B-Gproj⊥ of A⊗B-Gproj contains all finitely presented A⊗B-modules of finite projective dimension. Lemma 3.3. Let X bea finitelypresentedGorenstein projective A⊗B-module and P• be a complete resolution of X in A-proj. Assume that the projective dimension of DB is finite. Then the following statements hold. B (1) Extn (X,A⊗DB)=0 for n≥1. A⊗B (2) HomA⊗B(P•,A⊗DB) is acyclic. (3) X is a Gorenstein projective A-module. A Proof. (1)Sincetheprojectivedimensionof DB isfinite,theprojectivedimension B of A⊗BA⊗DB is also finite. Then A⊗DB belongs to A⊗B-Gproj⊥. Therefore, we have Extn (X,A⊗DB)=0 for n≥1. A⊗B (2) Since eachcocycle of P• is a finitely presentedGorenstein projectiveA⊗B- module, it follows from (1) that HomA⊗B(P•,A⊗DB) is acyclic. (3) Observe that P• is a complex of finitely generated projective A-modules. A ByLemma2.1,weinferthatHomA(P•,A)isisomorphictoHomA⊗B(P•,A⊗DB), which is acyclic by (2). Then P• is a complete resolution of X. Therefore, X A A A is a Gorenstein projective A-module. (cid:3) Let A be a coherent k-algebra. We recall that the category of finitely presented Gorenstein projective A-modules is closed under direct summands, extensions and kernels of epimorphisms. Recall that a finite-dimensional k-algebra B is called a Gorenstein algebraiftheinjectivedimensionsof B andB arebothfinite. Inthis B B case, the projective dimension of DB is finite. Recall from [5, Proposition 3.10] B that a B-module M is Gorenstein projective if and only if TorB(DB,M) = 0 for n n≥1. 6 DAWEISHEN Theorem 3.4. LetAbea coherent k-algebra andB bea finite-dimensional Goren- stein k-algebra. Let X be a finitely presented A⊗B-module. Then the following statements are equivalent. (1) X is a Gorenstein projective A⊗B-module. (2) X is a Gorenstein projective A-module and Extn (X,A⊗B)=0 for n≥1. A A⊗B (3) (DB ⊗ X) is a Gorenstein projective A-module and X is a Gorenstein A B B projective B-module. Proof. “(1) =⇒ (2)” Since X is a Gorenstein projective A⊗B-module, we have Extn (X,A⊗B) = 0 for n ≥ 1. Then X is a Gorenstein projective A-module A⊗B A by Lemma 3.3. “(2)=⇒ (1)” Since B is a Gorenstein algebra, it is easy to see that A⊗DB is a tilting (A⊗B)op-module in the sense of [10, 16]. Since Extn (X,A⊗B) = 0 A⊗B for n ≥ 1, we have Extn (A⊗DB,X∨) = 0 for n ≥ 1 by Lemma 3.1. Here, (A⊗B)op we recall that (−)∨ denotes the A⊗DB-dual functors. Itfollowsfrom[16,Theorem1.16]and[16,Proposition1.20]thatforeachn≥0, there is an isomorphism Extn (X∨,A⊗DB) (A⊗B)op ≃Extn (Hom (A⊗DB,X∨),Hom (A⊗DB,A⊗DB)). (A⊗B)op (A⊗B)op (A⊗B)op Then for each n≥1, we have Extn(A⊗B)op(HomA⊗B(X,A⊗B),A⊗B) ≃Extn(A⊗B)op(HomA⊗B(X,A⊗B),HomA⊗B(A⊗B,A⊗B)) ≃Extn (Hom (A⊗DB,X∨),Hom (A⊗DB,A⊗DB)) (A⊗B)op (A⊗B)op (A⊗B)op ≃Extn (X∨,A⊗DB) (A⊗B)op =0. Observe that the composite of X →X∨∨ with the series of isomorphisms X∨∨ =Hom (X∨,A⊗DB) (A⊗B)op ≃Hom (Hom (A⊗DB,X∨),Hom (A⊗DB,A⊗DB)) (A⊗B)op (A⊗B)op (A⊗B)op ≃Hom(A⊗B)op(HomA⊗B(X,A⊗B),HomA⊗B(A⊗B,A⊗B)) ≃Hom(A⊗B)op(HomA⊗B(X,A⊗B),A⊗B) is an isomorphism. It is easy to see that the composite is the evaluation map of X with value in A⊗B. Therefore, X is a Gorenstein projective A⊗B-module. “(2)=⇒(3)”Since X isaGorensteinprojectiveA-moduleandExtn (X,A⊗ A A⊗B B)=0 for n≥1, we infer that (DB⊗ X) is a Gorenstein projective A-module A B and TorB(DB,M)=0 for n≥1 by Lemma 3.2. Then X is a Gorenstein projec- n B tive B-module. “(3)=⇒(2)” Since X is Gorenstein projective, we have TorB(DB,M)=0 for B n n ≥ 1. Observe that (DB ⊗ X) is a Gorenstein projective A-module and B A B B has finite injective dimension. Then X is a Gorenstein projective A-module. It A follows from Lemma 3.2 that Extn (X,A⊗B)=0 for n≥1. (cid:3) A⊗B Recall that a finite-dimensional k-algebra B is called a self-injective algebra if B is injective or, equivalently, DB is projective. The following corollary is also B B a special case of [9, Theorem 3.6]. Corollary 3.5. Let A be a coherent k-algebra and B be a finite-dimensional self- injective k-algebra. Then a finitely presented A⊗B-module X is Gorenstein pro- jective if and only if X is a Gorenstein projective A-module. A A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 7 Proof. “=⇒” This follows from Lemma 3.3. “⇐=” Since DB is a projective B-module and X is a Gorenstein projective B A A-module,weinferthat (DB⊗ X)isaGorensteinprojectiveA-module. Observe A B that all B-modules are Gorenstein projective. Then it follows from Theorem 3.4 that X is a Gorenstein projective A⊗B-module. (cid:3) 4. The proof of Proposition 1.2 Throughoutthis section, A is a coherentk-algebraandB is a finite-dimensional k-algebraoffinite globaldimension. LetM be aB-module. Recallthatthe radical rad M of M is the intersection of all maximal submodules of M. In particular, B the radicalradB of B is anidealofB. Recallthat D denotes the k-dualfunctor. B Lemma 4.1. Let X be a finitely presented A ⊗ B-module. Then the following statements are equivalent. (1) Extn (X,A⊗B)=0 for n≥1. A⊗B (2) Extn (X,A⊗S)=0 for each simple B-module S and n≥1. A⊗B (3) Extn (X,A⊗D(B/radB))=0 for n≥1. A⊗B Proof. LetX bethe fullsubcategoryofB-modformedbyobjectsU whichsatisfies Extn (X,A ⊗ U) = 0 for n ≥ 1. Then X is closed under direct summands, A⊗B extensions and cokernels of monomorphisms in B-mod. “(1)=⇒(2)” Observe that simple B-modules have finite projective dimensions. Since B belongs to X, each simple B-module S belongs to X. “(2) =⇒ (1)” Since B has finite length and each simple B-module S belongs B to X, we infer that B belongs to X. “(2)⇐⇒(3)” Since D(B/radB) is a finite-dimensional semisimple B-module B andeachsimple B-module S is a directsummand of D(B/radB), it follows that B D(B/radB)belongstoX ifandonlyifeachsimple B-moduleS belongstoX. (cid:3) LetX be anA⊗B-module. ThenradB·X =rad X isanA⊗B-submodule of B X;see[1,Chapter4,Corollary15.21]. Observethat(B/radB)⊗ X isisomorphic B to X/(radB·X). Then X/rad X ≃(B/radB)⊗ X as A⊗B-modules. B B Proposition 4.2. Let A be a coherent k-algebra and B be a finite-dimensional k- algebraoffiniteglobaldimension. LetX beafinitelypresentedA⊗B-module. Then X is Gorenstein projective if and only if (X/rad X) is a Gorenstein projective A B A-module and X is a projective B-module. B Proof. “=⇒” Since X is a Gorenstein projective A⊗B-module, it follows from Theorem 3.4 and Lemma 4.1 that X is a Gorenstein projective A-module and A Extn (X,A⊗D(B/radB))=0 for n≥1. A⊗B Since X isGorensteinprojectiveandtheinjectivedimensionof D(B/radB)is A B finite, (X/rad X)isaGorensteinprojectiveA-moduleandTorB(B/radB,X)= A B n 0 for n ≥ 1 by Lemma 3.2. Then X is flat. Since B is a finite-dimensional k- B algebra, it follows that X is a projective B-module. B “⇐=”Since X projective,wehaveTorB(S,X)=0foreachsimpleBop-modules B n S and n≥ 1. Since (B/radB)⊗X is a Gorenstein projective A-module, S⊗ X B is a Gorensteinprojective A-module for eachsimple Bop-modules S. Since B has B finite length, we infer that X is a Gorenstein projective A-module. A Since X is projective,TorB(B/radB,X)=0 forn≥1. Observethat X and B n A (X/rad X) are Gorenstein projective A-modules, and D(B/radB) has finite A B B injective dimension. By Lemma 3.2,we haveExtn (X,A⊗D(B/radB))=0for A⊗B n ≥ 1. Then it follows from Theorem 3.4 and Lemma 4.1 that X is a Gorenstein projective A⊗B-module. (cid:3) 8 DAWEISHEN Example 4.3. Let Q=(Q ,Q ) be a finite quiver. Here, Q is the set of vertices 0 1 0 and Q is the set of arrows of the quiver Q; see [4, Chapter III, §1]. 1 Let I be an admissible ideal of the path algebra kQ such that B = kQ/I be a finite-dimensional k-algebra of finite global dimension. We denote by e the trivial i path, S(i) the simple B-module and I(i) the indecomposable injective B-module at the vertex i∈Q . 0 Let A be a coherent k-algebra and X be a finitely presented A⊗ B-module. Then for each i ∈ Q there is a finitely presented A-module X = e X; and for 0 i i eachα∈Q there anA-module mapX :X →X . Here, s(α) is the staring 1 α s(α) t(α) vertex of α and t(α) is the terminating vertex of α. For each α∈Q , let f be the natural A-module map 1 i f =(X ):⊕ X →X . i α α∈Q1,t(α)=i s(α) i WeclaimthatthereisanisomorphismDS(i)⊗ X ≃Cokerf ofA-modules. Then B i it follows fromProposition4.2 that X is Gorensteinprojectiveif andonly if X is B a projective B-module and Cokerf is a Gorenstein projective A-modules for each i i∈Q ; compare [14, 15]. 0 For the claim, we take the injective copresentation 0−→S(i)−→I(i)−(h→α)⊕ I(sα) α∈Q1,t(α)=i ofthe simple B-moduleS(i),whereh isinducedbymultiplicationofα. Applying α theleftexactfunctorD(−)⊗ X totheabovesequence,weobtainanisomorphism B DS(i)⊗ X ≃Cokerf of A-modules. B i 5. Applications Let A be a finite-dimensional k-algebra. Let n ≥ 1 be a positive integer, and denote by [n] the set {1,2,··· ,n} of positive integers less than or equal to n. Recall from [17, 7.1] that an n-periodic complex of finite-dimensional A-modules is a collection (X ,X ,i ∈ [n]), where X is a finite-dimensional A-module and X i αi i αi is an A-module map from X to X satisfying X X = 0 for each i ∈ [n]. i i+1 α(i+1) αi Here,we identify n+1with 1. Ann-periodic chain map is a collection(f ,i∈[n]), i wheref :X →Y isanA-modulemapsatisfyingf X =Y f foreachi∈[n]. i i i i+1 αi αi i Denote by C (A-mod) the category of n-periodic complexes of finite-dimensional n A-modules. LetZ bethequiverwithnverticesandnarrowswhichformsanorientedcycle. n The vertex set of Z is identified with [n] = {1,2,··· ,n}; and there is a unique n arrowα fromitoi+1foreachi∈[n]. LetB betheradicalsquarezerok-algebra i n givenbyZ . ThenB isaself-injectiveNakayamaalgebra. Denotebye thetrivial n n i path at i∈[n]. Recall that A⊗B -mod denotes the categoryof finite-dimensional n A⊗B -modules. n There is an equivalence R : A⊗B -mod → C (A-mod) of abelian categories; n n compare [14, Lemma 2.1]. The functor R sends a module X in A⊗B -mod to n (X ,X ,i∈[n]), where X =e X and X is induced by multiplication of α . i αi i i αi i DenotebyC (A-proj)thecategoryofn-periodiccomplexesoffinite-dimensional n projective A-modules; it is a Frobenius category [17, Proposition 7.1]. Denote by K (A-proj)thehomotopycategoryofcomplexesinC (A-proj);itisatriangulated n n category[13]. NotethatamorphisminC (A-proj)ishomotopictozeroifandonly n if it factors through a contractible n-periodic complex of projective A-modules. Recall that A⊗B -Gproj denotes the Frobenius category of finite-dimensional n GorensteinprojectiveA⊗B -modules. DenotebyA⊗B -Gprojthestablecategory n n ofA⊗B -Gproj;itisatriangulatedcategory[13]. ThestablecategoryA⊗B -Gproj n n A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 9 is obtained from A⊗B -Gproj by factoring out the ideal of all maps which factor n through projective A⊗B -modules; see [4, Chapter IV, §1]. n Lemma 5.1. Let A be a finite-dimensional k-algebra of finite global dimension. Then the functor R induces equivalences: (1) C (A-proj)≃A⊗B -Gproj of Frobenius categories; n n (2) K (A-proj)≃A⊗B -Gproj of triangulated categories. n n Proof. (1)SinceAhasfiniteglobaldimension,anyGorensteinprojectiveA-module is projective. By Corollary 3.5, a finite-dimensional A⊗B -module X is Goren- n stein projective if and only if X is a projective A-module for each i ∈ [n]. It is i routine to check that R preservesexact structures. Then R induces anequivalence C (A-proj)≃A⊗B -Gproj of Frobenius categories. n n (2)Observethatafinite-dimensionalA⊗B -moduleX isprojectiveifandonlyif n R(X)isacontractiblen-periodiccomplexofprojectiveA-modules. Thenitfollows from(1)thatRinducesanequivalenceK (A-proj)≃A⊗B -Gprojoftriangulated n n categories. (cid:3) We now give a new proof of the main theorem in [21]. Proposition5.2. LetAandA′ betwofinite-dimensional k-algebras offiniteglobal dimension. If A and A′ are derived equivalent, then K (A-proj) and K (A′-proj) n n are triangle equivalent. Proof. SinceAandA′ arederivedequivalent,itfollowsfrom[19,Theorem2.1]that A⊗B and A′⊗B are also derived equivalent. Then the triangulated quotient n n categories Db(A ⊗ B -mod)/Kb(A ⊗ B -proj) and Db(A′ ⊗ B -mod)/Kb(A′ ⊗ n n n B -proj) are triangle equivalent by [18, Theorem 1.1]. n Since A has finite global dimension and B is a self-injective algebra, A⊗B n n is a Gorenstein algebra. By [7, Theorem 4.4.1], the triangulated quotient category Db(A⊗B -mod)/Kb(A⊗B -proj) and A⊗B -Gproj are triangle equivalent. It n n n follows that A⊗B -Gproj and A′ ⊗B -Gproj are triangle equivalent. Then by n n Lemma5.1,weknowthatK (A-proj)andK (A′-proj)aretriangleequivalent. (cid:3) n n Let A be a finite-dimensional k-algebra. Denote by Ae = A⊗Aop the envelop- ing algebra of A. For a finite-dimensional Gorenstein k-algebra A, recall that a finite-dimensional Gorenstein projective A-module of finite projective dimension is projective; see, for example, [7, Lemma 5.1.1]. Proposition 5.3. Let A be a finite-dimensional Gorenstein k-algebra. Then A is a Gorenstein projective Ae-module if and only if A is a self-injective algebra. Proof. “=⇒” Since A is a finite-dimensional Gorenstein projective Ae-module, it follows from Theorem 3.4 that DA is a Gorenstein projective A-module. Since A DA has finite projective dimension, we know that DA is projective. Then A is A A a self-injective algebra. “⇐=” Since A is a self-injective algebra, Ae is a self-injective algebra by [3, Proposition2.2]. Then all Ae-modules are Gorensteinprojective. Therefore, A is a Gorenstein projective Ae-module. (cid:3) Acknowledgments The author is thankful to Professors Xiao-Wu Chen, Yu Ye and Guodong Zhou fornumerousinspiringdiscussions. TheauthorissupportedbyChinaPostdoctoral Science Foundation (No. 2015M581563)and by STCSM (No. 13DZ2260400). 10 DAWEISHEN References [1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, vol.13 ofGraduate TextsinMathematics,Springer-Verlag,NewYork-Heidelberg,1974. [2] M.Auslander andM.Bridger,Stable module theory,vol.94ofMemoirsoftheAmerican Mathematical Society, AmericanMathematical Society, Providence,R.I.,1969. [3] M. Auslander and I. Reiten, Cohen-Macaulay and Gorenstein Artin algebras, in Rep- resentation theory of finite groups and finite-dimensional algebras, vol. 95 of Progress in Mathematics,Birkh¨auser,Basel,1991, pp.221–245. [4] M.Auslander,I.Reiten,andS.O.Smalø,RepresentationtheoryofArtinalgebras,vol.36 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995. [5] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein alge- bras,J.Algebra,288(2005), pp.137–211. [6] G.Birkhoff,SubgroupsofAbelianGroups,Proc.LondonMath.Soc.,S2-38(1935),pp.385– 401. [7] R.-O.Buchweitz,MaximalCohen-MacaulaymodulesandTate-cohomologyoverGorenstein rings.UnpublishedManuscript,Availableat: http://hdl.handle.net/1807/16682, 1987. [8] H. Cartan and S. Eilenberg,Homological algebra, Princeton UniversityPress,Princeton, N.J.,1956. [9] X.-W. Chen,Totally reflexiveextensions and modules,J.Algebra,379(2013), pp.322–332. [10] E. Cline, B. Parshall, and L. Scott, Derived categories and Morita theory, J. Algebra, 104(1986), pp.397–409. [11] E.E.Enochs andO.M.G.Jenda,Gorenstein injectiveand projective modules, Math.Z., 220(1995), pp.611–633. [12] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, vol. 30 of de Gruyter ExpositionsinMathematics, WalterdeGruyter&Co.,Berlin,2000. [13] D.Happel,Onthederivedcategoryof afinite-dimensionalalgebra,Comment.Math.Helv., 62(1987), pp.339–389. [14] X.-H.LuoandP.Zhang,MonicrepresentationsandGorenstein-projectivemodules,Pacific J.Math.,264(2013), pp.163–194. [15] X.-H.LuoandP.Zhang,MonicmonomialrepresentationsIGorenstein-projectivemodules, arXiv:1510.05124. [16] Y.Miyashita,Tilting modules of finiteprojective dimension,Math.Z,193(1986), pp.113– 146. [17] L. Peng and J. Xiao, Root categories and simple Lie algebras, J. Algebra, 198 (1997), pp.19–56. [18] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra, 61 (1989), pp.303–317. [19] J. Rickard,Derived equivalences as derived functors,J.London Math.Soc.(2), 43(1991), pp.37–48. [20] C. M. Ringel and M. Schmidmeier, Submodule categories of wild representation type, J. PureAppl.Algebra,205(2006), pp.412–422. [21] X. Zhao, A note on the equivalence of m-periodic derived categories, Sci. China Math., 57 (2014), pp.2329–2334. DepartmentofMathematics,ShanghaiKeylaboratoryofPMMP,EastChinaNormal University,Shanghai200241,P. R.China E-mail address: [email protected]