ebook img

A description of Gorenstein projective modules over the tensor products of algebras PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A description of Gorenstein projective modules over the tensor products of algebras

A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES OVER THE TENSOR PRODUCTS OF ALGEBRAS DAWEISHEN Abstract. LetAbeacoherentalgebraandBbeafinite-dimensionalGoren- 6 steinalgebraover afieldk. WedescribefinitelypresentedGorensteinprojec- 1 tiveA⊗kB-modulesintermsoftheirunderlyingonesidedmodules. Moreover, 0 if the global dimension of B is finite, we give a more precise description of 2 finitelypresentedGorensteinprojectiveA⊗kB-modules. n a J 0 3 1. Introduction The study of Gorenstein projective modules is originated by M. Auslander and ] T M. Bridger in [2] under the name “modules of G-dimension zero”. The notion of R Gorenstein projective modules is introduced by E. E. Enochs and O. M. G. Jenda . in [11,12] andis extensively studied by their coauthors. By the pioneeringworkof h t R.-O. Buchweitz in [7], the stable categories of Gorenstein projective modules are a closely related to singularity categories. m OneofthemostimportanttasksinGorensteinhomologicalalgebraistodescribe [ Gorensteinprojectivemodules. Inthispaper,westudyGorensteinprojectivemod- 1 ules over the tensor product of two algebras in terms of their underlying onesided v modules. 6 Another motivation of this work is from monomorphism categories. G. Birkhoff 1 initiatesthestudyofmonomorphismsbetweenabeliangroups[6]. C.M.Ringeland 1 M.Schmidmeier[20]investigatesubmodulecategories. X.-H.LuoandP.Zhang[14] 0 0 generalize their work and introduce monomorphism categories over finite acyclic . quivers. 2 0 Let A be a coherent algebra over a field k, and let Q be a finite acyclic quiver. 6 The monomorphism category Mon(Q,A) defined by X.-H. Luo and P. Zhang is in 1 factafullsubcategoryofthemodulecategoryoverA⊗ kQ. Theyusethiscategory k v: to describe Gorenstein projective modules over A⊗kkQ. Our work is inspired by i the main result of [14]. X LetAbe acoherentalgebraandB beafinite-dimensionalalgebraoverafieldk. r IfB isaGorensteinalgebra,thefollowingresultdescribesfinitelypresentedGoren- a steinprojectiveA⊗ B-modulesintermsoftheirunderlyingonesidedmodules. For k each left A⊗ B-module X, we denote by X the underlying left A-module of X k A and by X the underlying left B-module of X. Denote by D the k-dual functor B Hom (−,k). k Theorem 1.1. Let A be a coherent algebra and B be a finite-dimensional Goren- stein algebra over a field k. Let X be a finitely presented left A⊗ B-module. Then k X is Gorenstein projective if and only if (DB ⊗ X) is a Gorenstein projective A B left A-module and X is a Gorenstein projective left B-module. B Date:February2,2016. 2010 Mathematics Subject Classification. Primary16G10; Secondary16D40. Keywords and phrases. Gorensteinalgebra,Gorensteinprojectivemodule. 1 2 DAWEISHEN IfB hasfiniteglobaldimension,wehavethefollowingmoreprecisedescriptionof finitelypresentedGorensteinprojectiveA⊗ B-modules. ForeachleftB-moduleM, k recall that the radical rad M of M is the intersection of all maximal submodules B of M; see, for example, [1, Chapter 3, §9]. Proposition 1.2. Let A be a coherent algebra and B be a finite-dimensional al- gebra of finite global dimension over a field k. Let X be a finitely presented left A⊗ B-module. Then X is Gorenstein projective if and only if (X/rad X) is a k A B Gorenstein projective left A-module and X is a projective left B-module. B The paper is organized as follows. In Section 2, we recall some facts about the Gorenstein projective modules and the tensor products of algebras. The proofs of Theorem1.1andProposition1.2aregiveninSection3andSection4, respectively. In Section 5, we give some applications of our results. 2. Preliminaries 2.1. Notation. Throughoutthis paper, k is a fixed field. Let ⊗ denote the tensor productoverk,andletDdenotethek-dualfunctorHom (−,k). Foreachk-algebra k A, we denote by Aop the opposite algebra of A. All modules are left modules; all categories,morphisms and functors are k-linear. 2.2. Tensor products of algebras. Let A be a k-algebra and B be a finite- dimensional k-algebra. Recall from [8, Chapter IX, Theorem 2.8a] the following. Lemma 2.1. Let M be an A-module, P be a finite-dimensional projective Bop- module and X be an A⊗B-module. Then for each n≥0, there is an isomorphism Extn (X,M ⊗DP)≃Extn(X ⊗ P,M). A⊗B A B 2.3. Gorenstein projective modules. Let A be a k-algebra. Following [7, 12], a complex of projective A-modules P• :···−→P−1 −d−→1 P0 −d→0 P1 −d→1 ··· is totally acyclic if P• is acyclic and Hom (P•,Q) is acyclic for each projective A A-module Q. An A-module M is Gorenstein projective if there is a totally acyclic complex P• of projective A-modules such that M = Kerd1; the complex P• is called a complete resolution of M. From now on, let A be a coherent k-algebra, that is, a left and right coherent algebra over k. Denote by A-mod the category of finitely presented A-modules; it is an abelian category. Denote by A-projthe full subcategory of A-mod formed by finitely generated projective A-modules. For each Gorenstein projective A-module M which is finitely presented, there is a complete resolution P• of M such that P• is a totally acyclic complex of finitely generated projective A-modules; it is calledacomplete resolutionofM inA-proj. Forbe acomplexoffinitely generated projective A-modules P•, recall that P• is totally acyclic if and only if P• and Hom (P•,A) are both acyclic. A Denote by (−)∗ the A-dual functor Hom (−,A) or Hom (−,A). For each A Aop A-module M, there is an evaluation map evA : M → M∗∗ of M with value in A, M whereevA(m)(f)=f(m)foreachm∈M andf ∈M∗. Following[12,ChapterX, M Proposition10.2.6],afinitelypresentedA-moduleM isGorensteinprojectiveifand only if M satisfies the following conditions: (1) Extn(M,A)=0 for n≥1; A (2) Extn (M∗,A)=0 for n≥1; Aop (3) the evaluation map evA :M →M∗∗ is an isomorphism. M A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 3 Denote by A-Gproj the full subcategory of A-mod formed by finitely presented GorensteinprojectiveA-modules. WewillneedthefollowingfactsaboutGorenstein projective A-modules; see, for example, [7, Lemma 4.2.2]. (GP1) A-Gproj is a Frobenius category with projective objects precisely A-proj. (GP2) A-Gprojisclosedunderdirectsummands,extensionsandkernelsofepimor- phisms in A-mod. (GP3) TheA-dualfunctorsinduceexactdualitiesbetweenA-GprojandAop-Gproj. Recall that A-Gproj⊥ contains all finitely presented A-modules of finite projec- tive dimension. Here, A-Gproj⊥ denotes the right perpendicular category A-Gproj⊥ ={M ∈A-mod|Extn(G,M)=0,∀G∈A-Gproj,∀n≥1} A of A-Gproj. In fact, the full subcategory A-Gproj⊥ is closed under cokernels of monomorphisms in A-mod and contains A-proj. The following lemma is well known. ∂ Lemma 2.2. Let ξ : 0 → M → ··· → M −→ M be a sequence of finitely pre- m 1 0 sented Gorenstein projective A-modules with m≥1. Then the following statements are equivalent. (1) ξ∗ =Hom (ξ,A) is exact. A (2) ξ is exact and Coker∂ is a Gorenstein projective A-module. Proof. “(1) =⇒ (2)” Since ξ∗ is exact, Ker∂∗ is a finitely presented Gorenstein projectiveAop-moduleby(GP2). Itfollowsfrom(GP3)thatξ ≃(ξ∗)∗ isexactand Coker∂ ≃(Ker∂∗)∗ is a finitely presented Gorenstein projective Aop-module. “(2)=⇒(1)” This follows from (GP3). (cid:3) 3. The proof of Theorem 1.1 LetAbeacoherentk-algebraandB beafinite-dimensionalk-algebra. Thenthe tensorproductA⊗B ofAandB isacoherentk-algebra. LetX beanA⊗B-module X. Recall that X denotes the underlying A-module of X and X denotes the A B underlyingB-moduleofX. LetX beafinitelypresentedA⊗B-module. Then X A isfinitelypresented,but X isnotnecessarilyfinitelypresented. Bytheequivalent B conditions for Gorenstein projective modules and Lemma 2.1, we know that X is A Gorenstein projective if and only if X satisfies the following conditions: (1) Extn (X,A⊗DB)=0 for n≥1; A⊗B (2) Extn (X∨,A⊗DB)=0 for n≥1; (A⊗B)op (3) the evaluation map evA⊗DB :X →X∨∨ is an isomorphism. X Here, we denote (−)∨ =HomA⊗B(−,A⊗DB) or Hom(A⊗B)op(−,A⊗DB). The following result indicates that the duality between the categories of finite- dimensional modules over B and Bop induces some special “duality” between the categories of modules over A⊗B and (A⊗B)op. Lemma 3.1. Let U be a finite-dimensional B-module, and let X be an A⊗B- module such that Extn (X,A⊗DB) = 0 for n ≥ 1. Then for each n ≥ 0, there A⊗B is an isomorphism Extn (X,A⊗U)≃Extn (A⊗DU,X∨). A⊗B (A⊗B)op Proof. Wehave(A⊗U)∨ ≃A⊗DU and(A⊗DU)∨ ≃A⊗DDU by[8,ChapterXI, Theorem3.1]. SinceU isfinitedimensionaloverk,A⊗DDU andA⊗U arenatural isomorphic. Then by [1, Chapter 5, Proposition 20.7], there is an isomorphism HomA⊗B(X,A⊗U)≃Hom(A⊗B)op(A⊗DU,X∨). 4 DAWEISHEN Take an exact sequence of finite-dimensional A-modules f 0−→U →I −→V −→0 (3.1) suchthatI isinjective. ApplyingHomA⊗B(X,A⊗−)to(3.1)givesrisetoanexact sequence HomA⊗B(X,A⊗I)HomA⊗−B→(X,A⊗f)HomA⊗B(X,A⊗V) (3.2) −→Ext1 (X,A⊗U)−→Ext1 (X,A⊗I). A⊗B A⊗B Since I is an injective B-module, we have Ext1 (X,A⊗I)=0. A⊗B Applying the k-dual functor D to (3.1), we obtain an exact sequence Df 0−→DV −→DI −→DU −→0. (3.3) Applying Hom (A⊗−,X∨) to (3.3) yields an exact sequence (A⊗B)op Hom (A⊗DI,X∨)Hom(A⊗B)−op→(A⊗Df,X∨)Hom (A⊗DV,X∨) (A⊗B)op (A⊗B)op (3.4) −→Ext1 (A⊗DU,X∨)−→Ext1 (A⊗DI,X∨). (A⊗B)op (A⊗B)op Since A⊗DI is projective, we have Ext1 (A⊗DI,X∨)=0. (A⊗B)op Compare the sequences (3.2) and (3.4). Then there is an isomorphism Ext1 (X,A⊗U)≃Ext1 (A⊗DU,X∨). A⊗B (A⊗B)op By dimension shifting, we can prove the isomorphisms for n≥2. (cid:3) Let U be a finite-dimensional B-module. Assume that the injective dimension m of U is finite. Then there is an exact sequence of finite-dimensional B-modules ξ :I0 −d→0 I1 −→···−→Im −→0 such that each Ii is injective and Kerd0 =U. Lemma 3.2. Let U be a finite-dimensional B-module of finiteinjective dimension, and let X be a finitely presented A⊗ B-module with X Gorenstein projective. A Then the following statements are equivalent. (1) Extn (X,A⊗U)=0 for n≥1. A⊗B (2) HomA⊗B(X,A⊗ξ) is exact. (3) DU⊗ X isaGorensteinprojective A-moduleandTorB(DU,X)=0forn≥1. B n Proof. Since X is Gorenstein projective, we have Extn (X,A⊗DB) = 0 for A A⊗B n ≥ 1. If U is injective, it is easy to see that (1), (2) and (3) all hold. Then we may assume that U has injective dimension m≥1. “(1)⇐⇒(2)” We prove this by induction on m. Ifm=1,thend0 :I0 →I1 issurjective. ApplyHomA⊗B(X,A⊗−)totheshort exact sequence 0−→U −→I0 −d→0 I1 −→0. Then the long exact sequence yields Ext1A⊗B(X,A⊗U)=CokerHomA⊗B(X,A⊗d0) and ExtnA⊗B(X,A⊗U) = 0 for n ≥ 2. Therefore, HomA⊗B(X,A⊗ξ) is exact if and only if Extn (X,A⊗U)=0 for n≥1. A⊗B Supposethat(1)and(2)areequivalentform=k ≥1. Iftheinjectivedimension ofU isk+1,thentheinjectivedimensionofV =Cokerd0 isk. Thereisasurjective map p:I0 →V and an exact sequence of finite-dimensional B-modules ξ′ :I1 −d→1 I2 −→···−→Im −→0 A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 5 such that each Ii is injective and Kerd1 = V. Observe that HomA⊗B(X,A⊗ξ) is exact if and only if HomA⊗B(X,A⊗p) is surjective and HomA⊗B(X,A⊗ξ′) is exact. Apply HomA⊗B(X,A⊗−) to the short exact sequence 0−→U −→I0 −p→V −→0. It follows from the long exact sequence that we have Ext1A⊗B(X,A⊗U)=CokerHomA⊗B(X,A⊗p) and Extn+1 (X,A⊗U)=Extn (X,A⊗V) for n≥1. A⊗B A⊗B By induction hypothesis, we know that HomA⊗B(X,A⊗ξ′) is exact if and only if ExtnA⊗B(X,A⊗V) = 0 for n ≥ 1. Therefore, HomA⊗B(X,A⊗ξ) is exact if and only if Extn (X,A⊗U)=0 for n≥1. A⊗B “(2)⇐⇒(3)” It follows from Lemma 2.1 that HomA⊗B(X,A⊗ξ) is isomorphic to HomA(Dξ ⊗B X,A). In particular, HomA⊗B(X,A⊗ξ) is exact if and only if Hom (Dξ ⊗ X,A) is exact. Since ξ is a deleted injective resolution of U, we A B have that Dξ is a deleted projective resolution of DU. Observe that Dξ⊗ X is B a sequence of finitely presented Gorenstein projective A-modules. By Lemma 2.2, Hom (Dξ⊗ X,A)isexactifandonlyifDξ⊗ X isexactandCoker(D(d0)⊗ X)is A B B B aGorensteinprojectiveA-module. AdirectcalculationshowsCoker(D(d0)⊗ X)= B DU⊗ X andthehomologyH (Dξ⊗ X)=TorB(DU,X)forn≥1. Thisfinishes B n B n our proof. (cid:3) Let A be a coherent k-algebra and B be a finite-dimensional k-algebra. For a finitely presentedGorenstein projectiveA⊗B-module X,is X a Gorensteinpro- A jectiveA-module? Thefollowinglemmagivesanaffirmativeansweriftheprojective dimension of DB is finite. Here, we recall that the right perpendicular category B A⊗B-Gproj⊥ of A⊗B-Gproj contains all finitely presented A⊗B-modules of finite projective dimension. Lemma 3.3. Let X bea finitelypresentedGorenstein projective A⊗B-module and P• be a complete resolution of X in A-proj. Assume that the projective dimension of DB is finite. Then the following statements hold. B (1) Extn (X,A⊗DB)=0 for n≥1. A⊗B (2) HomA⊗B(P•,A⊗DB) is acyclic. (3) X is a Gorenstein projective A-module. A Proof. (1)Sincetheprojectivedimensionof DB isfinite,theprojectivedimension B of A⊗BA⊗DB is also finite. Then A⊗DB belongs to A⊗B-Gproj⊥. Therefore, we have Extn (X,A⊗DB)=0 for n≥1. A⊗B (2) Since eachcocycle of P• is a finitely presentedGorenstein projectiveA⊗B- module, it follows from (1) that HomA⊗B(P•,A⊗DB) is acyclic. (3) Observe that P• is a complex of finitely generated projective A-modules. A ByLemma2.1,weinferthatHomA(P•,A)isisomorphictoHomA⊗B(P•,A⊗DB), which is acyclic by (2). Then P• is a complete resolution of X. Therefore, X A A A is a Gorenstein projective A-module. (cid:3) Let A be a coherent k-algebra. We recall that the category of finitely presented Gorenstein projective A-modules is closed under direct summands, extensions and kernels of epimorphisms. Recall that a finite-dimensional k-algebra B is called a Gorenstein algebraiftheinjectivedimensionsof B andB arebothfinite. Inthis B B case, the projective dimension of DB is finite. Recall from [5, Proposition 3.10] B that a B-module M is Gorenstein projective if and only if TorB(DB,M) = 0 for n n≥1. 6 DAWEISHEN Theorem 3.4. LetAbea coherent k-algebra andB bea finite-dimensional Goren- stein k-algebra. Let X be a finitely presented A⊗B-module. Then the following statements are equivalent. (1) X is a Gorenstein projective A⊗B-module. (2) X is a Gorenstein projective A-module and Extn (X,A⊗B)=0 for n≥1. A A⊗B (3) (DB ⊗ X) is a Gorenstein projective A-module and X is a Gorenstein A B B projective B-module. Proof. “(1) =⇒ (2)” Since X is a Gorenstein projective A⊗B-module, we have Extn (X,A⊗B) = 0 for n ≥ 1. Then X is a Gorenstein projective A-module A⊗B A by Lemma 3.3. “(2)=⇒ (1)” Since B is a Gorenstein algebra, it is easy to see that A⊗DB is a tilting (A⊗B)op-module in the sense of [10, 16]. Since Extn (X,A⊗B) = 0 A⊗B for n ≥ 1, we have Extn (A⊗DB,X∨) = 0 for n ≥ 1 by Lemma 3.1. Here, (A⊗B)op we recall that (−)∨ denotes the A⊗DB-dual functors. Itfollowsfrom[16,Theorem1.16]and[16,Proposition1.20]thatforeachn≥0, there is an isomorphism Extn (X∨,A⊗DB) (A⊗B)op ≃Extn (Hom (A⊗DB,X∨),Hom (A⊗DB,A⊗DB)). (A⊗B)op (A⊗B)op (A⊗B)op Then for each n≥1, we have Extn(A⊗B)op(HomA⊗B(X,A⊗B),A⊗B) ≃Extn(A⊗B)op(HomA⊗B(X,A⊗B),HomA⊗B(A⊗B,A⊗B)) ≃Extn (Hom (A⊗DB,X∨),Hom (A⊗DB,A⊗DB)) (A⊗B)op (A⊗B)op (A⊗B)op ≃Extn (X∨,A⊗DB) (A⊗B)op =0. Observe that the composite of X →X∨∨ with the series of isomorphisms X∨∨ =Hom (X∨,A⊗DB) (A⊗B)op ≃Hom (Hom (A⊗DB,X∨),Hom (A⊗DB,A⊗DB)) (A⊗B)op (A⊗B)op (A⊗B)op ≃Hom(A⊗B)op(HomA⊗B(X,A⊗B),HomA⊗B(A⊗B,A⊗B)) ≃Hom(A⊗B)op(HomA⊗B(X,A⊗B),A⊗B) is an isomorphism. It is easy to see that the composite is the evaluation map of X with value in A⊗B. Therefore, X is a Gorenstein projective A⊗B-module. “(2)=⇒(3)”Since X isaGorensteinprojectiveA-moduleandExtn (X,A⊗ A A⊗B B)=0 for n≥1, we infer that (DB⊗ X) is a Gorenstein projective A-module A B and TorB(DB,M)=0 for n≥1 by Lemma 3.2. Then X is a Gorenstein projec- n B tive B-module. “(3)=⇒(2)” Since X is Gorenstein projective, we have TorB(DB,M)=0 for B n n ≥ 1. Observe that (DB ⊗ X) is a Gorenstein projective A-module and B A B B has finite injective dimension. Then X is a Gorenstein projective A-module. It A follows from Lemma 3.2 that Extn (X,A⊗B)=0 for n≥1. (cid:3) A⊗B Recall that a finite-dimensional k-algebra B is called a self-injective algebra if B is injective or, equivalently, DB is projective. The following corollary is also B B a special case of [9, Theorem 3.6]. Corollary 3.5. Let A be a coherent k-algebra and B be a finite-dimensional self- injective k-algebra. Then a finitely presented A⊗B-module X is Gorenstein pro- jective if and only if X is a Gorenstein projective A-module. A A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 7 Proof. “=⇒” This follows from Lemma 3.3. “⇐=” Since DB is a projective B-module and X is a Gorenstein projective B A A-module,weinferthat (DB⊗ X)isaGorensteinprojectiveA-module. Observe A B that all B-modules are Gorenstein projective. Then it follows from Theorem 3.4 that X is a Gorenstein projective A⊗B-module. (cid:3) 4. The proof of Proposition 1.2 Throughoutthis section, A is a coherentk-algebraandB is a finite-dimensional k-algebraoffinite globaldimension. LetM be aB-module. Recallthatthe radical rad M of M is the intersection of all maximal submodules of M. In particular, B the radicalradB of B is anidealofB. Recallthat D denotes the k-dualfunctor. B Lemma 4.1. Let X be a finitely presented A ⊗ B-module. Then the following statements are equivalent. (1) Extn (X,A⊗B)=0 for n≥1. A⊗B (2) Extn (X,A⊗S)=0 for each simple B-module S and n≥1. A⊗B (3) Extn (X,A⊗D(B/radB))=0 for n≥1. A⊗B Proof. LetX bethe fullsubcategoryofB-modformedbyobjectsU whichsatisfies Extn (X,A ⊗ U) = 0 for n ≥ 1. Then X is closed under direct summands, A⊗B extensions and cokernels of monomorphisms in B-mod. “(1)=⇒(2)” Observe that simple B-modules have finite projective dimensions. Since B belongs to X, each simple B-module S belongs to X. “(2) =⇒ (1)” Since B has finite length and each simple B-module S belongs B to X, we infer that B belongs to X. “(2)⇐⇒(3)” Since D(B/radB) is a finite-dimensional semisimple B-module B andeachsimple B-module S is a directsummand of D(B/radB), it follows that B D(B/radB)belongstoX ifandonlyifeachsimple B-moduleS belongstoX. (cid:3) LetX be anA⊗B-module. ThenradB·X =rad X isanA⊗B-submodule of B X;see[1,Chapter4,Corollary15.21]. Observethat(B/radB)⊗ X isisomorphic B to X/(radB·X). Then X/rad X ≃(B/radB)⊗ X as A⊗B-modules. B B Proposition 4.2. Let A be a coherent k-algebra and B be a finite-dimensional k- algebraoffiniteglobaldimension. LetX beafinitelypresentedA⊗B-module. Then X is Gorenstein projective if and only if (X/rad X) is a Gorenstein projective A B A-module and X is a projective B-module. B Proof. “=⇒” Since X is a Gorenstein projective A⊗B-module, it follows from Theorem 3.4 and Lemma 4.1 that X is a Gorenstein projective A-module and A Extn (X,A⊗D(B/radB))=0 for n≥1. A⊗B Since X isGorensteinprojectiveandtheinjectivedimensionof D(B/radB)is A B finite, (X/rad X)isaGorensteinprojectiveA-moduleandTorB(B/radB,X)= A B n 0 for n ≥ 1 by Lemma 3.2. Then X is flat. Since B is a finite-dimensional k- B algebra, it follows that X is a projective B-module. B “⇐=”Since X projective,wehaveTorB(S,X)=0foreachsimpleBop-modules B n S and n≥ 1. Since (B/radB)⊗X is a Gorenstein projective A-module, S⊗ X B is a Gorensteinprojective A-module for eachsimple Bop-modules S. Since B has B finite length, we infer that X is a Gorenstein projective A-module. A Since X is projective,TorB(B/radB,X)=0 forn≥1. Observethat X and B n A (X/rad X) are Gorenstein projective A-modules, and D(B/radB) has finite A B B injective dimension. By Lemma 3.2,we haveExtn (X,A⊗D(B/radB))=0for A⊗B n ≥ 1. Then it follows from Theorem 3.4 and Lemma 4.1 that X is a Gorenstein projective A⊗B-module. (cid:3) 8 DAWEISHEN Example 4.3. Let Q=(Q ,Q ) be a finite quiver. Here, Q is the set of vertices 0 1 0 and Q is the set of arrows of the quiver Q; see [4, Chapter III, §1]. 1 Let I be an admissible ideal of the path algebra kQ such that B = kQ/I be a finite-dimensional k-algebra of finite global dimension. We denote by e the trivial i path, S(i) the simple B-module and I(i) the indecomposable injective B-module at the vertex i∈Q . 0 Let A be a coherent k-algebra and X be a finitely presented A⊗ B-module. Then for each i ∈ Q there is a finitely presented A-module X = e X; and for 0 i i eachα∈Q there anA-module mapX :X →X . Here, s(α) is the staring 1 α s(α) t(α) vertex of α and t(α) is the terminating vertex of α. For each α∈Q , let f be the natural A-module map 1 i f =(X ):⊕ X →X . i α α∈Q1,t(α)=i s(α) i WeclaimthatthereisanisomorphismDS(i)⊗ X ≃Cokerf ofA-modules. Then B i it follows fromProposition4.2 that X is Gorensteinprojectiveif andonly if X is B a projective B-module and Cokerf is a Gorenstein projective A-modules for each i i∈Q ; compare [14, 15]. 0 For the claim, we take the injective copresentation 0−→S(i)−→I(i)−(h→α)⊕ I(sα) α∈Q1,t(α)=i ofthe simple B-moduleS(i),whereh isinducedbymultiplicationofα. Applying α theleftexactfunctorD(−)⊗ X totheabovesequence,weobtainanisomorphism B DS(i)⊗ X ≃Cokerf of A-modules. B i 5. Applications Let A be a finite-dimensional k-algebra. Let n ≥ 1 be a positive integer, and denote by [n] the set {1,2,··· ,n} of positive integers less than or equal to n. Recall from [17, 7.1] that an n-periodic complex of finite-dimensional A-modules is a collection (X ,X ,i ∈ [n]), where X is a finite-dimensional A-module and X i αi i αi is an A-module map from X to X satisfying X X = 0 for each i ∈ [n]. i i+1 α(i+1) αi Here,we identify n+1with 1. Ann-periodic chain map is a collection(f ,i∈[n]), i wheref :X →Y isanA-modulemapsatisfyingf X =Y f foreachi∈[n]. i i i i+1 αi αi i Denote by C (A-mod) the category of n-periodic complexes of finite-dimensional n A-modules. LetZ bethequiverwithnverticesandnarrowswhichformsanorientedcycle. n The vertex set of Z is identified with [n] = {1,2,··· ,n}; and there is a unique n arrowα fromitoi+1foreachi∈[n]. LetB betheradicalsquarezerok-algebra i n givenbyZ . ThenB isaself-injectiveNakayamaalgebra. Denotebye thetrivial n n i path at i∈[n]. Recall that A⊗B -mod denotes the categoryof finite-dimensional n A⊗B -modules. n There is an equivalence R : A⊗B -mod → C (A-mod) of abelian categories; n n compare [14, Lemma 2.1]. The functor R sends a module X in A⊗B -mod to n (X ,X ,i∈[n]), where X =e X and X is induced by multiplication of α . i αi i i αi i DenotebyC (A-proj)thecategoryofn-periodiccomplexesoffinite-dimensional n projective A-modules; it is a Frobenius category [17, Proposition 7.1]. Denote by K (A-proj)thehomotopycategoryofcomplexesinC (A-proj);itisatriangulated n n category[13]. NotethatamorphisminC (A-proj)ishomotopictozeroifandonly n if it factors through a contractible n-periodic complex of projective A-modules. Recall that A⊗B -Gproj denotes the Frobenius category of finite-dimensional n GorensteinprojectiveA⊗B -modules. DenotebyA⊗B -Gprojthestablecategory n n ofA⊗B -Gproj;itisatriangulatedcategory[13]. ThestablecategoryA⊗B -Gproj n n A DESCRIPTION OF GORENSTEIN PROJECTIVE MODULES 9 is obtained from A⊗B -Gproj by factoring out the ideal of all maps which factor n through projective A⊗B -modules; see [4, Chapter IV, §1]. n Lemma 5.1. Let A be a finite-dimensional k-algebra of finite global dimension. Then the functor R induces equivalences: (1) C (A-proj)≃A⊗B -Gproj of Frobenius categories; n n (2) K (A-proj)≃A⊗B -Gproj of triangulated categories. n n Proof. (1)SinceAhasfiniteglobaldimension,anyGorensteinprojectiveA-module is projective. By Corollary 3.5, a finite-dimensional A⊗B -module X is Goren- n stein projective if and only if X is a projective A-module for each i ∈ [n]. It is i routine to check that R preservesexact structures. Then R induces anequivalence C (A-proj)≃A⊗B -Gproj of Frobenius categories. n n (2)Observethatafinite-dimensionalA⊗B -moduleX isprojectiveifandonlyif n R(X)isacontractiblen-periodiccomplexofprojectiveA-modules. Thenitfollows from(1)thatRinducesanequivalenceK (A-proj)≃A⊗B -Gprojoftriangulated n n categories. (cid:3) We now give a new proof of the main theorem in [21]. Proposition5.2. LetAandA′ betwofinite-dimensional k-algebras offiniteglobal dimension. If A and A′ are derived equivalent, then K (A-proj) and K (A′-proj) n n are triangle equivalent. Proof. SinceAandA′ arederivedequivalent,itfollowsfrom[19,Theorem2.1]that A⊗B and A′⊗B are also derived equivalent. Then the triangulated quotient n n categories Db(A ⊗ B -mod)/Kb(A ⊗ B -proj) and Db(A′ ⊗ B -mod)/Kb(A′ ⊗ n n n B -proj) are triangle equivalent by [18, Theorem 1.1]. n Since A has finite global dimension and B is a self-injective algebra, A⊗B n n is a Gorenstein algebra. By [7, Theorem 4.4.1], the triangulated quotient category Db(A⊗B -mod)/Kb(A⊗B -proj) and A⊗B -Gproj are triangle equivalent. It n n n follows that A⊗B -Gproj and A′ ⊗B -Gproj are triangle equivalent. Then by n n Lemma5.1,weknowthatK (A-proj)andK (A′-proj)aretriangleequivalent. (cid:3) n n Let A be a finite-dimensional k-algebra. Denote by Ae = A⊗Aop the envelop- ing algebra of A. For a finite-dimensional Gorenstein k-algebra A, recall that a finite-dimensional Gorenstein projective A-module of finite projective dimension is projective; see, for example, [7, Lemma 5.1.1]. Proposition 5.3. Let A be a finite-dimensional Gorenstein k-algebra. Then A is a Gorenstein projective Ae-module if and only if A is a self-injective algebra. Proof. “=⇒” Since A is a finite-dimensional Gorenstein projective Ae-module, it follows from Theorem 3.4 that DA is a Gorenstein projective A-module. Since A DA has finite projective dimension, we know that DA is projective. Then A is A A a self-injective algebra. “⇐=” Since A is a self-injective algebra, Ae is a self-injective algebra by [3, Proposition2.2]. Then all Ae-modules are Gorensteinprojective. Therefore, A is a Gorenstein projective Ae-module. (cid:3) Acknowledgments The author is thankful to Professors Xiao-Wu Chen, Yu Ye and Guodong Zhou fornumerousinspiringdiscussions. TheauthorissupportedbyChinaPostdoctoral Science Foundation (No. 2015M581563)and by STCSM (No. 13DZ2260400). 10 DAWEISHEN References [1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, vol.13 ofGraduate TextsinMathematics,Springer-Verlag,NewYork-Heidelberg,1974. [2] M.Auslander andM.Bridger,Stable module theory,vol.94ofMemoirsoftheAmerican Mathematical Society, AmericanMathematical Society, Providence,R.I.,1969. [3] M. Auslander and I. Reiten, Cohen-Macaulay and Gorenstein Artin algebras, in Rep- resentation theory of finite groups and finite-dimensional algebras, vol. 95 of Progress in Mathematics,Birkh¨auser,Basel,1991, pp.221–245. [4] M.Auslander,I.Reiten,andS.O.Smalø,RepresentationtheoryofArtinalgebras,vol.36 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995. [5] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein alge- bras,J.Algebra,288(2005), pp.137–211. [6] G.Birkhoff,SubgroupsofAbelianGroups,Proc.LondonMath.Soc.,S2-38(1935),pp.385– 401. [7] R.-O.Buchweitz,MaximalCohen-MacaulaymodulesandTate-cohomologyoverGorenstein rings.UnpublishedManuscript,Availableat: http://hdl.handle.net/1807/16682, 1987. [8] H. Cartan and S. Eilenberg,Homological algebra, Princeton UniversityPress,Princeton, N.J.,1956. [9] X.-W. Chen,Totally reflexiveextensions and modules,J.Algebra,379(2013), pp.322–332. [10] E. Cline, B. Parshall, and L. Scott, Derived categories and Morita theory, J. Algebra, 104(1986), pp.397–409. [11] E.E.Enochs andO.M.G.Jenda,Gorenstein injectiveand projective modules, Math.Z., 220(1995), pp.611–633. [12] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, vol. 30 of de Gruyter ExpositionsinMathematics, WalterdeGruyter&Co.,Berlin,2000. [13] D.Happel,Onthederivedcategoryof afinite-dimensionalalgebra,Comment.Math.Helv., 62(1987), pp.339–389. [14] X.-H.LuoandP.Zhang,MonicrepresentationsandGorenstein-projectivemodules,Pacific J.Math.,264(2013), pp.163–194. [15] X.-H.LuoandP.Zhang,MonicmonomialrepresentationsIGorenstein-projectivemodules, arXiv:1510.05124. [16] Y.Miyashita,Tilting modules of finiteprojective dimension,Math.Z,193(1986), pp.113– 146. [17] L. Peng and J. Xiao, Root categories and simple Lie algebras, J. Algebra, 198 (1997), pp.19–56. [18] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra, 61 (1989), pp.303–317. [19] J. Rickard,Derived equivalences as derived functors,J.London Math.Soc.(2), 43(1991), pp.37–48. [20] C. M. Ringel and M. Schmidmeier, Submodule categories of wild representation type, J. PureAppl.Algebra,205(2006), pp.412–422. [21] X. Zhao, A note on the equivalence of m-periodic derived categories, Sci. China Math., 57 (2014), pp.2329–2334. DepartmentofMathematics,ShanghaiKeylaboratoryofPMMP,EastChinaNormal University,Shanghai200241,P. R.China E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.