Mon.Not.R.Astron.Soc.000,000–000(0000) Printed30January2014 (MNLATEXstylefilev2.2) A Demonstration of Wavefront Sensing and Mirror Phasing from the Image Domain Benjamin Pope1,2(cid:63), Nick Cvetojevic1,3,4, Anthony Cheetham1, Frantz Martinache5, Barnaby Norris1, Peter Tuthill1 4 1SydneyInstituteforAstronomy,SchoolofPhysics,UniversityofSydney,NSW2006,Australia 1 2Astrophysics,UniversityofOxford,DenysWilkinsonBuilding,KebleRd,OxfordOX13RH,UK. 0 3CentreforUltrahighbandwidthDevicesforOpticalSystems(CUDOS),InstituteofPhotonicsandOpticalScience(IPOS), 2 SchoolofPhysics,UniversityofSydney,Sydney,NSW2006,Australia 4AustralianAstronomicalObservatory,NSW2121,Australia n 5LaboratoireLagrange,CNRSUMR7293,ObservatoiredelaCôted’Azur,Bddel’Observatoire,06304Nice,France a J 9 30January2014 2 ] M ABSTRACT Inastronomyandmicroscopy,distortionsinthewavefrontaffectthedynamicrangeofahigh I . contrastimagingsystem.Theseaberrationsareeitherimposedbyaturbulentmediumsuchas h theatmosphere,bystaticorthermalaberrationsintheopticalpath,orbyimperfectlyphased p subapertures in a segmented mirror. Active and adaptive optics (AO), consisting of a wave- - o front sensor and a deformable mirror, are employed to address this problem. Nevertheless, r thenon-common-pathbetweenthewavefrontsensorandthesciencecameraleadstopersis- t s tentquasi-staticspecklesthataredifficulttocalibrateandwhichimposeafloorontheimage a contrast. In this paper we present the first experimental demonstration of a novel wavefront [ sensorrequiringonlyaminorasymmetricobscurationofthepupil,usingthesciencecamera 1 itselftodetecthighorderwavefronterrorsfromthespecklepatternproduced.Weapplythisto v correcterrorsimposedonadeformablemicroelectromechanical(MEMS)segmentedmirror 6 inaclosedloop,restoringahighqualitypointspreadfunction(PSF)andresidualwavefront 6 errorsoforder∼10nmusing1600nmlight,fromastartingpointof∼300nminpistonand 5 ∼ 0.3mradintip-tilt.Werecommendthisasamethodformeasuringthenon-common-path 7 error in AO-equipped ground based telescopes, as well as as an approach to phasing diffi- . 1 cultsegmentedmirrorssuchasontheJamesWebbSpaceTelescopeprimaryandasafuture 0 directionforextremeadaptiveoptics. 4 1 Key words: techniques: interferometric — techniques: image processing — techniques: : adaptiveoptics v i X r a 1 INTRODUCTION withadeformablemirror(DM)inafeedbacklooptomeasureand correctfordistortionsinthephaseoftheincominglight(Davies& A major goal in present-day astronomy is the direct detection of Kasper2012). planets and other faint companions to stars, a task which simul- The application of AO is not strictly limited to astronomy, taneously requires high contrast and high resolution. This task is however. In optical microscopy it is also the case that the speci- principallylimitedbythediffractionoflightfromtheparentstar, men under study introduces aberrations into the optical path that duetostaticaberrationsinthetelescopeoptics,quasi-staticerrors limit the ability of a microscope to resolve detail deep below the thatvarywithtelescopepointingandenvironmentalconditions,and surfaceofanotherwisetransparentspecimen(Booth2007). thedynamiceffectsofatmosphericturbulence. Thereisathird,related,probleminopticsforwhichawave- Ofthese,byfarthemostseveredifficultyiswithatmospheric front sensor is necessary. The primary mirrors of large telescope turbulence,or‘seeing’.IthasbeenapparentatleastsinceNewton’s areconstructedoutofsegments.Currentexamplesincludethetwo timesthatatmosphericturbulencelimitstheresolutionandsensi- 10-meterW.M.KeckTelescopesandtheJamesWebbSpaceTele- tivityofastronomicalobservations.Thisproblemcanbesubstan- scope.FutureExtremelyLargeTelescopes(ELTS)willfollowthis tiallyovercomebytheuseofadaptiveoptics(AO),firstproposed design:theprimarymirrorsoftheEuropeanELT,theThirtyMeter byBabcock(1953).Inthisapproach,awavefrontsensorispaired Telescope(TMT)andtheGiantMagellanTelescope(TMT)areall tobemadeofmultipleelements.Discontinuitiesinthepupiland (cid:63) E-mail:[email protected] sharp segment edges however come with difficulties that are not (cid:13)c 0000RAS 2 B.J.S.Popeetal. welladdressedbytraditionalwavefrontsensorswhosereconstruc- achievetherequireddiversity,whichisnecessarilytime-consuming torsassumecontinuityofthewavefront.Itisthereforeofprimeim- andthereforeachallengeforbusyobservingschedules. portancetoensurethatallsegmentsarepositionedcorrectlyrelative Thealternativetothisisinterferometriccalibration,asisal- tooneanotherwithoutintroducingsignificantwavefronterrors. ready done with sparse aperture masking with AO (Tuthill et al. Hithertothemostcommontechnologyforwavefrontsensing 2006).AtthecostofFouriercoverageandthroughput,itispossi- has been the Shack-Hartmann wavefront sensor. It uses an array bletoextractclosurephaseswhichareself-calibratingwithrespect oflensletsplacedinare-imagedpupil,suchthatthepositionoff- to phase errors in the pupil. Because they are measured from the setofthespotproducedbyeachlensletencodesinformationabout science camera image, closure-phase are robust against residual thelocalslopeofthewavefront.Thishasbeenregularlyappliedto aberrations,NCP-errorotherwise.Theideaofclosurephasescan generalwavefrontsensingapplicationssinceLane&Tallon(1992) begeneralizedto‘kernelphases’forarbitrarypupilsinthelimitof andisnowubiquitousinastronomicalAO(Davies&Kasper2012). awell-correctedwavefront(Martinache2010).Thisapproachhas HoweverasnotedbyGuyon(2005),theShack-Hartmanntechnol- provenfruitfulindetectingfaintcompanionstobrowndwarfsinthe ogyisintrinsicallyvulnerabletophotonnoiseandrequiresalarge ‘superresolution’regime,beyondtheformaldiffractionlimit,and fraction of the incoming light be diverted for the sole purpose of withthecalibrationschemesproposedbyIreland(2013)cancom- wavefrontsensing.Thisisasignificantdrawbackintheregimeof plementADIandsimilartechniquesatsmallangularseparations. fainttargetsorhigh-contraststudies. Kernel-phaseusesamatrixpseudoinverseapproachandtherefore Other technologies such as the pyramid wavefront sensor hasformalfeaturesincommonwithelectricfieldconjugation.The (Ragazzoni1996),curvaturewavefrontsensor(Roddier1988)and responsematrixishowevernotempiricallydetermined,andrelies phasecontrastmethod(Zernike1934)arepossible.Theyhowever insteadonasimplemodelofthepupilgeometry,whileassuming alsosufferfromsimilardrawbacks. thatamplitudeerrorsarenegligible.Thishastheadvantageofnot Allaforementionedapproachessufferfromthenon-common- requiringcalibrationofthesameextentorduration. path (NCP) error problem, as aberrations occurring downstream Inthispaperwepresentthefirstlaboratorydemonstrationof fromthewavefrontsensorarenotdirectlymeasured.Theseresid- theasymmetricpupilFourierwavefrontsensorproposedbyMarti- ualerrorsgiverisetoquasi-staticspecklesthatimposeadetection nache(2013).Thisemergesnaturallyasadualtothekernelphase floorinhigh-contrastimaging,suchaswiththeP1640integralfield imageanalysismethodputforwardbyMartinache(2010).Bycon- spectrograph(Hinkleyetal.2008;Creppetal.2011;Hinkleyetal. sideringtheproblemofPSFformationfromaninterferometricper- 2011). spective,itispossibletorecoverwithpost-processingamapofthe Solutionstothisproblemrequiresomeformofphaseretrieval wavefrontgivingrisetothePSFofanyinversion-asymmetricpupil usingthesciencecameraitself.Possibleimplementationsfallinto subjecttoweakaberrations.Thisincursamodesthardwarecostof twocategories:thefirstreliesonanactivedifferentialprocess.Di- aminorasymmetricobscurationofthepupil.Forsegmentedmir- versityinthepointspreadfunction(PSF)isintroducedbyanactive rors,thismaybeachievedbysegmenttiltingorbyajudiciousar- elementtodistinguishcoherent,variablediffractionfeaturesfrom rangementofamaskorspiders.Theadvantagehereisthatthisisin incoherent,fixedcelestialobjects.Theotherisapassivedifferential principleasingle-step,requiringnophasediversityormodulation. process. One standard approach representative of this category is Usingsimulations,Martinache(2013)showsthatthemethod angulardifferentialimaging(ADI)(Maroisetal.2006;Lafrenière isparticularlyadaptedtothedetermination(andthereforecorrec- etal.2007),wherethepupilisallowedtorotatewithrespecttothe tion)oftheNCP-errorinanAOsystem.Here,weprovideexperi- sky(asin,forinstance,analt-azimuthmountedtelescope).Ifthis mentalresultsshowingthatitisequallysuitedtothephasingofa rotationoccursonatimescaleshorterthanthatofthevariationof segmentedmirror. thequasi-staticspeckles,itispossibletodistinguishfaintcompan- ionsfromspecklesinthePSF,inpost-processing. TomeasuretheNCP-errorfromthesciencedetector,thestan- 2 PHASETRANSFERALGORITHM dardoptionisthephasediversitytechnique.Multipleimagestaken 2.1 Theory in and out of focus, make it possible to determine uniquely the staticaberrationsacrosstheentirewavefront(Kendricketal.1994; Here we will summarize and explain the theory of the wavefront Campbell et al. 2004; Sauvage et al. 2012). This NCP-error esti- sensingapproachproposedbyMartinache(2013).Inthefollowing matecanbeusedtooffsetthewavefrontsensorzero-positionfor discussionitwillbeimportanttodistinguishbetweenthreeplanes close-loopoperation. intheopticalpath:thepupilplane,definedatthetelescopeaper- TheDMitselfcanbeusedtointroducetheknownphaseper- ture;theimageplane,asrecorded(forinstance)byacamera;and turbationinordertocalibrateorsuppressspeckles.Thelargenum- theFourierplane,theFouriertransformoftheimage.Theimage ber of degrees of freedom offered by a DM leads to variety of ofapointsource(orequivalentlythepointspreadfunctionofthe control algorithms: from random perturbations of the DM while imagingsystem)isgivenbythesquaredFouriertransformofthe monitoring a metric function of the PSF (Ren et al. 2012); iter- electricfieldinthepupil,andthereforethecomplexvisibilitiesin ative speckle nulling loop compatible with coronagraphic mode theFourierplanearegivenbythefield’sautocorrelation.Forarbi- (Martinacheetal.2012);toamorecompletedeterminationofthe traryaberrations,itisnotingeneralpossibletouniquelymapfrom wavefront with a finite number of DM modulations (Keller et al. informationintheimageplaneonlytothewavefrontinthepupil 2012). A comparable method compatible with a coronagraphic plane, because the autocorrelation of an arbitrary function is not imagingmodeshouldrelyontheelectricfieldconjugationframe- uniquelyinvertible. work (Give’on et al. 2007; Thomas et al. 2010; Give’On et al. If the aberrations are small (ϕ (cid:46) 1 rad), it is however pos- 2011),toconstructacomplextransfermatrixfortherealandimag- sible to treat this mapping as a linear operation. Using a discrete inarypartsoftheelectricfieldbetweenpupilandfocalplanes,for modelofthepupilitisthenstraightforwardtocomputethephase direct speckle nulling within a finite region of the field of view. transfermatrixassociatedwiththisoperator.Inthispaper,willcon- These approaches all rely on sequential motions of the DM to sidermodelsofthehexagonalsegmentedMEMSmirrorusedfor (cid:13)c 0000RAS,MNRAS000,000–000 WavefrontSensingfromtheImageDomain 3 [h!] structedfromtheFourierplane(Martinache2013).Inthefollow- ing,wewillbrieflyoutlinetheinversionmethod. Itiscrucialinthiscasethatthepupilitselfnotbecentrosym- metric:thatis,thatunderthetransformation(x,y) → (−x,−y) itdoesnotmapontoitself.Thisisbecauseotherwiseitisnotpos- sible to distinguish between pupil modes of odd and even parity underinversion. Withasymmetricpupil,onlyoddmodesofthepupilappear in the row space and can be sensed when constructing the pseu- doinverse. Introducing a pupil plane asymmetry, even of a very small character, breaks this degeneracy, and the pseudoinverse of thistransfermatrixwillaccordinglymaptothefullspaceofpupil modes. ThecolumnvectorsinUprovideasetoforthonormalmodes for describing phases in the pupil. The transfer matrix A maps these one-to-one onto a corresponding orthonormal basis of row vectors in V, normal modes for the Fourier plane. These can be Figure1.AmodeloftheDragonflysegmentedmirror.Bluepointsrepresent thoughtofasbeingsimilartoasymmetry-adaptedsetofZernike- pointstiltedon-axis;redpoints,anequivalentsamplingtoillustratemirrors like modes for an arbitrary pupil. The Moore-Penrose pseudoin- tiltedawayfromtheopticalaxis. verseA+mapsthevectorsbackintheoppositedirection: theDragonflypupilremappinginterferometer(Kotanietal.2009), A+ =V·Σ+·UT (4) whichisascalemodeloftheJWST pupil.Afilledpupilisshown k inFigure1. whereΣ+ denotesthediagonalmatrixwhoseentriesarethe k Martinache(2010)showedthatthesingularvaluedecompo- reciprocalsofthefirstkdiagonalentriesofΣ.Examplesofthese sition(SVD)ofthetransfermatrixisseparableintomappingsbe- modesaredisplayedinFigure2. tweenpairsoforthonormalphasevectorsinthepupilandFourier planes,andakernelspaceofvectorsintheFourierplanetowhich nosmallperturbationsinthepupilplanecanbemapped. 2.2 SoftwareImplementation Inparticular,wecanwritethisexpressionas. In this experiment we have used a Python implementation of the asymmetric pupil Fourier wavefront sensing algorithm, sharing Φ=A·ϕ+Φ (1) 0 severalcommonfeatureswiththepysco‘PYthonSelf-Calibrating for a transfer matrix A, pupil phases ϕ, observed Fourier Observables’ kernel-phase analysis code. We calculate the pseu- phasesΦand‘true’sourceFourierphasesΦ .Asimplemethod doinversefromtheSVDofthetransfermatrixA,includingonly 0 forobtainingthematrixAisdescribedinMartinache(2010).We thefirst200singularvaluesandcorrespondingmodesoutofatotal thenobtaintheSVDofA, numberof∼1000.Thiscutoffat200modeswaschoseninorderto helpsmooththeresultantwavefrontestimate,asthemirrorphasing problemrequirespredominantlylow-orderinformation A=U·Σ·VT (2) WhileAisingeneralsparse,wetakecarenottonaïvelyapply sparsematrixalgebrapackages,andinsteadtreatthefullmatrixin Theleft-annihilatorofA,K,isthenspannedbythecolumns all operations. We do this in order to preserve small components ofUcorrespondingtosingularvaluesofzero.Itisthenpossibleto ofthenormalmodes,whichwefoundweretruncatedinthesparse extractkernelphasessuchthat: treatmentinsuchawayastopreventtheconvergenceofthealgo- rithm. K·Φ=K·A·ϕ+K·Φ Thealgorithmproceedsasfollows.Theimageisloaded,bias- 0 ∴K·Φ=0+K·Φ . (3) subtracted,re-centred,theFouriertransformtaken,andsampledat 0 the baselines generated by the pupil model. We then operate on By extracting these kernel phases K · Φ from high-Strehl theseuv phaseswiththetransfermatrixpseudoinverse,toobtain astronomicalobservations,suchasfromspacetelescopesorwith a pupil wavefront map. Next, we fit and subtract an overall tip- assistancefromextremeadaptiveoptics,itispossibletodramati- tiltfromthismap,toaccountforimperfectionsintherecentring. callyenhancethesignal-to-noiseofphaseinformationcontributed Finally, we obtain the piston, tip and tilt on each segment from by real asymmetries in an astronomical source. Even in the case the mean, x gradient and y gradient of the wavefront across the ofanominallydiffraction-limitedspacetelescope,low-levelther- samplingpoints. malandvibrationalmodesofthetelescopeopticsneverthelesscon- Inallpracticalcases,theseoperationsareveryfast.Forapupil tributetothedegradationofthewavefrontqualityandthereforethe samplingasdenseasinFigure1,thistakesoforderseveralseconds PSF.Usingkernelphaseanalysis,Popeetal.(2013)wereableto on a laptop with Intel(R) Core(TM) i7-2760QM CPU running at obtainhighresolution,high-contrastinformationatandbeyondthe 2.40GHz. Likewise, the entire process of extracting a wavefront formaldiffractionlimitoftheHubbleSpaceTelescope. fromafreshimageframecantakeaslittleastwosecondsforsuch TheremainingphasevectorsintheSVDcanbeusedtocon- asampling. structaMoore-Penrosepseudoinverseofthephasetransfermatrix, We have not attempted to optimize the computational speed sothatsmallaberrationsinthewavefrontcanbeuniquelyrecon- of this algorithm, which is implemented in pure Python. As the (cid:13)c 0000RAS,MNRAS000,000–000 4 B.J.S.Popeetal. Figure2.Examplesofpupilmodepatternscalculatedforthefirstnon-redundantmaskgeometryasshowninFigure4,interpolatedontotheconvexhullof thepupilsampleset.Colourscaleisarbitrary. densityofapupilsamplingincreases,thenumberofuvbaselines growsrapidly,andalthoughrequiredonlyonce,theSVDmaybe very slow, or fail to converge. Precalculation of these matrices is thereforeessential. After this, processing time for a typical single frame in this experimentissetbytheFastFourierTransform(FFT)ofa1024x 1024image,samplingatthe1872uniquebaselinepointsandmul- tiplyingthisvectorbya1874x284matrix.Thistook∼2sonour operatinglaptop.TheFFTsteptakes76%ofthecalculationtime inthiscase,whichwesuggestcouldinAOapplicationsbesignif- icantlyimprovedwithmoreefficientalgorithmsandhardware.A high order AO system such as PALM-3000 or SCExAO on a 5- 10mtelescopeneedstooperateat∼kHzrates(Davies&Kasper 2012)anditisnotunreasonabletoexpectthistobeachievable. Future applications should rely on a library of pupil models pre-computed with high-performance methods. With such high- performanceresources,thisapproachtowavefrontsensingwillbe compatible for a very fast closed AO loop. For this experiment, Figure3.Experimentallayoutusedfortestingthesegmentphasingalgo- suchalinkwasmaintainedbetweencomputerscontrollingthecam- rithm.AsinglemodelasersourcewascollimatedontotheMEMS,passing era and running analysis software using a file-sharing client. In throughamasktoremoveunwantedstraylightfromtheperiphery.Each future implementations, we recommend both operations be con- segmentwascontrolledintip,tilt,andpiston.Thelightwasthenfocused ductedonthesamecomputer. ontoanInGaAsNIRdetectorusinganachromaticdoubletlensformingthe image.InsetimagesofMEMSfromHelmbrechtetal.(2011). 3 APPARATUS Camera), focused using a 200 mm focal length NIR achromatic TheexperimentalsetupusedtotestthealgorithmisshowninFig- doublet lens (Thorlabs AC254-200-C-ML). A number of silver ure 3. A Micro-Electro-Mechanical Segmented Mirror (MEMS) coatedmirrorswithtip-tiltadjustmentwereusedintheopticalpath served as an analogue of a typical telescope segmented primary tosteerthebeam,ensuringon-centreincidenceforallkeyoptical mirror.TheMEMSconsistsof37hexagonal,gold-platedmirrors components. arrangedina4-ringhexagonalclose-packedconfiguration,which As mentioned above, the MEMS acted as a scale model for canbeadjustedelectronicallyinpiston,tip,andtilt,toaprecision theJWST pupil.However,becausetheMEMShasanadditional ofafewnm(IrisAOPT-111DMHelmbrechtetal.(2011)).Each outer ring of segments when compared to the JWST primary, a hexagonalsegmentis700µmcorner-to-corner(or606.2µmflat- maskwasplacedatadistanceof< 1mminfrontoftheMEMS to-flat),withthewholeMEMSactiveareameasuring∼ 4.2mm which blocked out the unwanted segments. To further match the in diameter. The MEMS was illuminated by a narrowband laser JWST pupil,atiltwasappliedtothecentralsegmentsuchthatit source(TunicsTunableC-bandlaser)atawavelengthof1600nm, didnotcontributeanylighttotheimageplane,steeringthebeam which was injected into a single-mode optical fibre (SMF-28), away from the centre of the detector. The ability to tilt away un- and collimated using a reflective fibre collimator (a 90◦ off-axis wantedMEMSsegmentsallowedforanarbitrarylayoutforvarious parabolic mirror). The reflected light from the MEMS formed an pupil-shapestobecreatedfortestingthealgorithm’sperformance. image on an InGaAs detector array (Xenics Xeva 1.6-640 NIR ExamplescanbeseeninFigure4. (cid:13)c 0000RAS,MNRAS000,000–000 WavefrontSensingfromtheImageDomain 5 Figure4.SchematicsofthevariousMEMSpupilpatternsusedtotestthealgorithm.Foralltests,theouterringofsegmentswasblockedbyapupilmask(gray segments)anddidnotcontributelighttothefinalimage.Thesegmentswhichwereunwantedweresteeredawaybytiltingthesegmentstotheirmaximum travelsuchthattheywerenotfocusedontotheNIRdetector(pinksegments).Theremainingsegments(blue)wereusedtoformtheimage.Thistechnique enablesthecreationofarbitrarysegmentpatternsinthepupiltoassesstheimpactofsymmetry-breakingrequiredforconvergence,aswellasapproximating spiderlayoutsinthepupil. OurapparatusdiffersfromJWST’sgeometryinanotherim- metricsamplingbutafullpupil,wefailtoachieveanysignificant portant respect: while we have tilted away the central segment restorationofthePSF. whichwouldbeblockedbythesecondarymirroroftherealtele- Unfortunately,theNIRcamerausedintheseexperimentshad scope,wehavenotattemptedtoincludethespiderswhichsupport afarlowerdynamicrange,andfarhighernoisefloor,thanthatof thissecondarymirror.Oneshouldnotethatwiththreespiders,the state-of-the-artNIRdetectorsusedonmoderntelescopes.Assuch, JWST pupil is already asymmetric, and it will be useful in fu- visualising the faint airy rings without saturating the central spot turetoestablishwhetherthisinitselfprovidesenoughasymmetry wasnotpossible.Thisisfurthercomplicatedbyhighdetectornon- forourwavefrontsensingscheme.Thisremainsbeyondthescope linearity at both the low, and high, ADU ranges. While we have of the present work. This may raise the question as to whether correctedforthese,thisprocesswillhaveinducedsmallextraerrors thepresenceofspidersmayactuallyharmtheperformanceofthis inourmeasurement. method.Sincethespiderscontributetothepupilstructureonlyat veryhighspatialfrequencies,wedonotexpectthemtocontribute detrimentally to wavefront sensing at the low spatial frequencies 4.1 InitialTests requiredinthemirrorphasingproblem. Inordertoestablishtheeffectivenessofthewavefrontsensor,we initially tested its accuracy using the simplest possible cases. As mentioned in Section 2.1, the sensor only functions if the pupil symmetryisbrokeninsomemanner.Hence,forourinitialexper- 4 RESULTS imentsweusedtheSectorAsymmetryPattern#1(seeFig4.)by In the following Subsections 4.2-4.4 we will discuss the results tiltingawayascalenetriangleofsegments,providingthegreatest ofthedifferentwavefrontsensingexperimentsperformed:inSec- possiblepupilasymmetry. tion4.1wedescribeinitialtestsestablishingtheeffectivenessofthe With the pupil pattern established, we set all remaining technique;inSection4.2,wephaseanentiremirrortiltingawaya MEMS segments to their mechanical zero positions, and recon- scalenearrayofthreesegmentseachtime;inSection4.3,removing structedawavefrontfromanexposurehere.Wethentookthisas awholequadrantofthefullmirror,thenwithonlyasinglemirror ourarbitraryzerowavefrontforallsegments.Itisimportanttonote missingattheedge;andinSection4.4,withoutalteringthemirror thatwhiletheMEMSisabletozerothepistonsofthesegmentsto structure and simulating the asymmetry in the pupil sampling. In anaccuracyof10nm,therearefurtherwavefronterrorsandglobal allcaseswithrealpupilasymmetrywerecoverahigh-qualityPSF tiltsinducedbydownstreamoptics,forinstancemirrors,lens,de- fromaninitially-heavily-degradedmap;andinthecasewithasym- tector window, so that this zero-point wavefront map is not per- (cid:13)c 0000RAS,MNRAS000,000–000 6 B.J.S.Popeetal. tonmeasurementforthethreesegmentsthatwerepistoned.Ascan beseeninFig.5,thereconstructedpistononthecorrectsegment tracks the input values very closely (within the measurement er- rorof10%)between−135nm&+300nmofpiston,outsideof which (< −135 nm) it varies more or less wildly. This is in ac- cordance with our expectation that for input errors larger than a thresholdvalueof1radthereconstructionshouldfail,asthecubic termdominatesoverthelinearterm.Wenotethatthisinpractice occurredforrelativelysmallnegativevalues,butmaintaineditsac- curacyforpositivevaluesforasfaraswetested;thismaybeowing owingtophaseoffsetsfromthezero-phasereferencelevel,which wasbiasedsuchthatthe‘errorcentre’tookapositivevalue.Also shown in Fig. 5 is the mean residual measured pistons from the remainingunpistonedsegments. We note that the wavefront recorded for the other segments variesinproportiontothepistonedsegment.Thisgivesrisetoan RMS wavefront error across the pupil that grows monotonically with any local error. We conjecture that the reason for this is the choice of basis. The phase is projected onto a truncated basis of modessupportedonalimited,discretesetofpoints.Accordinglya largephaseerrornearananti-nodeofoneofthesemodesisliable tobiasthereconstructionacrossthewholepupil.Becausethisbias ismonotonicwiththeinput,whenanegativefeedbackloopisap- plied,asinthefollowingexperiments,itwillingeneralbeironed outastheiterationsprogressandwillnotsignificantlyaffectcon- vergenceofthealgorithm. 4.2 Non-RedundantTripletAsymmetries As noted in Section 2.1, the singular value decomposition con- structstwobasissetstospanthepupilandFourierplanes.While themethodonlyrequiresthatthepupilpossessnoinversionsym- metry,itisapparentfromsimpleinspectionofthegeneratedpupil modesthattheyarebyconstructionsymmetry-adaptedtoanyother symmetries present in the pupil, most notably lines of reflection symmetry. Itthereforeseemedmostpromisingforaninitialtesttophase a pupil with no symmetries at all. One choice is to remove first onescalenetriangleofsegments,andthenbringthesebackinand Figure5.Measuredsegmentpistonsusingthewavefrontsensorforseg- removeacomplementarytripletnon-redundantwithrespecttothe ment #3 (top), #8 (middle), & #19 (bottom). The RMS piston values of first.Inthismanner,allFouriercomponentsandallmirrorsegments theremainingunpistonedsegmentsarealsoshown.Thehighlightedorange aresensed,andtherearenospatialsymmetriesinthepupilsused sectionofthegraphshowstheregionwhichisoutsidethe1radthreshold forsensing. (dominatedbythecubictermandnolongerlinear),wherethereconstruc- Theremainingmirrorsweresettotheirfiducialflatconfigura- tionhasfailed. tions.Then,randompistonsandtip-tiltsweredrawnfromnormal distributionswithvariancesof300nmand0.3mradrespectively, andappliedtotheMEMScontrols.Theseerrorswerechosensuch fectlyflat.However,becauseintheexperimentspresentedinthis thatatthe1600nmwavelengththeRMSerrorwouldbejustbe- subsectionwemeasurearelativepistoncomparedtoanarbitrary yondoftheexpected∼λ/2π =250nmlimitforthelinearphase startingposition,andnotanabsolutepiston,thisdifferentialtech- regime. niqueisadequatetodemonstratethewavefrontsensor’sapplicabil- Startingtheloopfromthispoint,weranthePSFrestoration ity. loop first for the first non-redundant pattern shown in Figure 4, MEMSsegments3,8,&19(seeFig.4.)wereindependently whichremovedsegments3,15,&19.AsshowninFigures6,the pistonedfrom−300nmto+300nmin20nmincrements.Ateach PSFwasquicklyrestored. step an image was taken of the resulting PSF and the wavefront Inordertophasetheentiremirrorincludingtheinactiveseg- reconstructedbyouralgorithm.Afterthephase-mapwasnormal- ments,wetiltedthesebacktotheirfiducialzeropositionsandtilted izedtothezeroreferencemap,pistonofallactivesegmentswere awaythreephasedsegmentsasshowninPattern2ofFigure4.We extracted.Animportantsubtletyisthatthemeasuredwavefrontpis- repeatedtheprocedurehere,andsimilarlyobtainedahighquality tonisactuallytwicetheMEMSsegmentpiston,becausethelight PSF. reflectingoffthesegmentacquiresanopticalpathlengthdifference Bythenrestoringthesettingsofthesegmentsremovedinthe inbothdirections. firstpattern,wewerethenabletophasetheentiremirror.Unfortu- Figure 5 shows the accuracy of the wavefront sensor’s pis- nately,thefinalphasedmirrorconfigurationledtosaturationofthe (cid:13)c 0000RAS,MNRAS000,000–000 WavefrontSensingfromtheImageDomain 7 centralpixels,whichwasnoticedonlyinsubsequentanalysis.Nev- 5 CONCLUSIONS ertheless,itisvisuallyapparentfrominspectionofthePSFthatthe This paper provides experimental evidence that the focal-plane diffraction pattern agrees extremely well with that calculated for wavefront sensing technique proposed by Martinache (2013) is thediffractionlimitofaflatpupil. sound:evenforasegmentedaperture,itispossibletodirectlysense aberrationsfromtheanalysisofasingleaberratedPSF,ifonein- troducessomeasymmetryinthepupil.Fromtheaboveresults,it isclearthatlargelyindependentofthedegreeorstructureofasym- 4.3 WedgeandSingleMirrorAsymmetries metry, mirror phasing was rapid and effective. It is not possible basedonlyontheseresultstosuggestanoptimalasymmetricmask We repeated the previous experiment for two other asymmetries: strategy;ontheotherhand,itisclearthatthealgorithmisveryfor- first,withthewedgeasymmetryasshowninFigure4,andsecond, givingwithrespecttothepupilgeometry.Itmayaccordinglybea withthesingle-mirrorasymmetry.Inbothcasesthealgorithmcon- fruitfuldirectionforfuturesimulationstooptimizethepupilmask vergedtoahigh-qualityPSFaswiththenon-redundantpattern. geometryandanyeffectthattelescopespidersmayhave. Duringthefirstattemptwiththewedgeasymmetry,wenoted This new wavefront sensing method is immediately applica- thatonemirror’spistonpositionasrecordedbythecontrollerwas bletoseveralexistingandnear-futuresystemswhereahigh-quality approximately800nmawayfromtheothers,thatis,halfthewave- wavefrontisdegradedbyquasi-staticwavefronterrorsarisingfrom lengthofthe1600nmlaserusedasthelightsource.Thissuggested smallopticalaberrations.Asthisexperimenthasshown,theprob- that while the wavefront appeared flat under this monochromatic lem of phasing a segmented mirror such as the upcoming James source,thiswasbecausetheFourierwavefrontsensingapproachis WebbSpaceTelescopeiseasilysolvedbythismethod.Whilethe insensitivetoa2π wrappinginphase.Wethereforemanuallyad- initialopticalpatherrorfollowingunfoldingislikelytobeofor- justedthismirror800nmdown,neartothesettingsfortheother der∼tensofµm,andothermethodswillberequiredtoachieve mirrors,andfoundthatthealgorithmquicklyconvergedagaintoa coarse phasing, our approach is suitable as a ‘tweeter’ on top of diffraction-limitedPSF. thisbywhichthemirrorshapecanbefine-tunedandmaintained. TheresultsofbothexperimentsaredisplayedinFigure6. Inthisway,itwillbepossibletohaveanequivalentof‘activeop- Inthiscase,forbothpupilconfigurationsnosuchsaturation tics’tomaintainauniformlyhighqualitywavefrontbyadjusting occurred, and we were able to estimate the final Strehl ratio. In theJWST segments,requiringonlythatitbrieflyobserveabright ordertoavoidabiasfromresidualscatteredlight,wedidnotdi- pointsource. rectlycalculatetheoverlapintegralwithadiffraction-limitedPSF, Asecondexampleinwhichthismethodcanbeappliedisin butrathercalculatedradialencircledenergyprofilesformeasured correctingstaticNCP-erroronground-basedtelescopeswithAO. and theoretical images. These were calculated for the diffraction ThisNCP-errorisinmanyhighcontrastimagingapplicationsthe limit,andfora99.0%StrehlratioPSFsimulatedforthemanufac- limitingerrorsource(e.g.inCreppetal.(2011))andavarietyof turer’squotedpositionaccuracylimitfortheMEMS,withsegment solutionshavebeenproposed(Thomasetal.2012;N’Diayeetal. positionsdrawnfromauniformdistributionbetween±10nmin 2013).Fewofthese,withtheexceptionofRenetal.(2012),avoid pistonand±0.05mradintip-tilt.SimulatedPSFswith97%Strehl the necessity of introducing substantial additional hardware into ratiowereapoorfittotheexperimentalprofiles.Wethereforecon- thebeampath,withtheattendantcostsoftime,expenseandresid- cludethatthefinalStrehlS wasintherange0.97 < S < 0.99. ual optical errors. Ren et al. (2012) present a novel and effective Nevertheless, for all images there were departures at large radial algorithm for attaining a particular desired PSF, but the method distances, which we suggest are due to contamination with stray demonstratedherehastheadvantageofproducingaflatwavefront light.Fromthesecalculationswearguethatintheinnerregionsof quickly,foranarbitrarypupil,withoutmodel-dependentdistortions thePSFweattainperformancelimitedprimarilybythetoleranceof andsuitableforgeneralobserving. theMEMSpositioning,andcloselyapproachthediffractionlimit. In applications where the readout speed of a camera can be mademuchfasterthantheatmosphericcoherencetimet ,thetech- 0 nique demonstrated here would appear an ideal method of high- orderwavefrontsensing.Thiswillbethecaseinanysituationin 4.4 NoAsymmetry whichspeckleinterferometrymightordinarilybedone,andisac- cordinglyrestrictedonlytobrighttargets. InSection2.1,itwasstatedthatthematrixpseudoinversedoesnot spanthewholerangeofsymmetricandantisymmetricmodesofthe pupilunlessthepupilmodelitselfisasymmetric.Fromthisitisnot immediatelyapparentthatanasymmetricsamplingofasymmetric ACKNOWLEDGEMENTS pupilwouldnotpermitthesensingofallmodes. ThisresearchhasmadeuseofNASA’sAstrophysicsDataSystem. Inordertotestthis,wetiltedallmirrorson-axisapartfromthe This research was supported by the Australian Research centrepanel,anddeletedonepointfromthepupilsamplinginorder CouncilCentreofExcellenceforUltrahighbandwidthDevicesfor tomakeitasymmetricandobtainamatrixwithmodesspanningall OpticalSystems(projectnumberCE110001018). therequiredmodes.Afterrandomizingtheon-axismirrorsettings PartofthisworkwasperformedattheOptoFabnodeofthe as previously, we attempted to phase the mirror as before. After AustralianNationalFabricationFacility(ANFF). seventeeniterationstherewasnosignofimprovementatallinthe PSF,andweconcludedthatthemethodwasineffectiveinthiscase. Thisistobeexpectedontheoreticalgrounds,asforaneven mode of an even pupil, the phase of the autocorrelation vanishes REFERENCES and we expect no signal in the Fourier plane, irrespective of the pupilmodeladoptedincomputation. Babcock,H.W.1953,PASP,65,229 (cid:13)c 0000RAS,MNRAS000,000–000 8 B.J.S.Popeetal. Figure6.DemonstrationshowingactivephasingoftheMEMSmirrorusingthewavefrontsensorinasemi-closedloop.Theleftcolumnidentifiestheactive areaoftheMEMS,withspecificsegmentstiltedawaytocreatedifferentasymmetries(asdescribedinmoredetailinFig.4).Themiddletwocolumnsshow theuncorrectedPSF,formedbyrandomlyinducingpistons,tip,andtiltstotheMEMS,andthefinalcorrectedPSFafterrunningthephasingalgorithmfor10 loops.ThefarrightcolumnshowstheidealtheoreticalPSFfortheparticularMEMSgeometries.Allimagesarefifth-rootstretchedsuchthattheAirypattern isclearlyvisible. (cid:13)c 0000RAS,MNRAS000,000–000 WavefrontSensingfromtheImageDomain 9 Booth, M. J. 2007, Philosophical Transactions of the Royal So- (SPIE)ConferenceSeries cietyA:Mathematical,PhysicalandEngineeringSciences,365, Zernike,F.1934,MNRAS,94,377 2829 Campbell, H. I., Zhang, S., Greenaway, A. H., & Restaino, S. 2004,OpticsLetters,29,2707 Crepp,J.R.,Pueyo,L.,Brenner,D.,etal.2011,ApJ,729,132 Davies,R.&Kasper,M.2012,ARA&A,50,305 Give’on, A., Kern, B., Shaklan, S., Moody, D. C., & Pueyo, L. 2007, in Society of Photo-Optical Instrumentation Engineers (SPIE)ConferenceSeries,Vol.6691,SocietyofPhoto-Optical InstrumentationEngineers(SPIE)ConferenceSeries Give’On, A., Kern, B. D., & Shaklan, S. 2011, in Society of Photo-OpticalInstrumentationEngineers(SPIE)ConferenceSe- ries,Vol.8151,SocietyofPhoto-OpticalInstrumentationEngi- neers(SPIE)ConferenceSeries Guyon,O.2005,ApJ,629,592 Helmbrecht,M.A.,He,M.,Kempf,C.J.,&Besse,M.2011,in SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)Con- ferenceSeries,Vol.7931,SocietyofPhoto-OpticalInstrumenta- tionEngineers(SPIE)ConferenceSeries Hinkley,S.,Oppenheimer,B.R.,Brenner,D.,etal.2008,inSoci- etyofPhoto-OpticalInstrumentationEngineers(SPIE)Confer- enceSeries,Vol.7015,SocietyofPhoto-OpticalInstrumentation Engineers(SPIE)ConferenceSeries Hinkley, S., Oppenheimer, B. R., Zimmerman, N., et al. 2011, PASP,123,74 Ireland,M.J.2013,MNRAS,433,1718 Keller,C.U.,Korkiakoski,V.,Doelman,N.,etal.2012,inSociety ofPhoto-OpticalInstrumentationEngineers(SPIE)Conference Series,Vol.8447,SocietyofPhoto-OpticalInstrumentationEn- gineers(SPIE)ConferenceSeries Kendrick,R.L.,Acton,D.S.,&Duncan,A.L.1994,Appl.Opt., 33,6533 Kotani, T., Lacour, S., Perrin, G., Robertson, G., & Tuthill, P. 2009,OpticsExpress,17,1925 Lafrenière,D.,Marois,C.,Doyon,R.,Nadeau,D.,&Artigau,É. 2007,ApJ,660,770 Lane,R.G.&Tallon,M.1992,Appl.Opt.,31,6902 Marois,C.,Lafrenière,D.,Doyon,R.,Macintosh,B.,&Nadeau, D.2006,ApJ,641,556 Martinache,F.2010,ApJ,724,464 Martinache,F.2013,PASP,125,422 Martinache,F.,Guyon,O.,Clergeon,C.,&Blain,C.2012,PASP, 124,1288 N’Diaye,M.,Dohlen,K.,Fusco,T.,&Paul,B.2013,A&A,555, A94 Pope,B.,Martinache,F.,&Tuthill,P.2013,ApJ,767,110 Ragazzoni,R.1996,JournalofModernOptics,43,289 Ren,D.,Dong,B.,Zhu,Y.,&Christian,D.J.2012,PASP,124, 247 Roddier,F.1988,Appl.Opt.,27,1223 Sauvage,J.-F.,Mugnier,L.,Paul,B.,&Villecroze,R.2012,Op- ticsLetters,37,4808 Thomas, S., Poyneer, L., Savransky, D., et al. 2012, in Society ofPhoto-OpticalInstrumentationEngineers(SPIE)Conference Series,Vol.8447,SocietyofPhoto-OpticalInstrumentationEn- gineers(SPIE)ConferenceSeries Thomas,S.J.,Give’On,A.A.,Dillon,D.,etal.2010,inInthe SpiritofLyot2010 Tuthill,P.,Lloyd,J.,Ireland,M.,etal.2006,inSocietyofPhoto- Optical Instrumentation Engineers (SPIE) Conference Series, Vol.6272,SocietyofPhoto-OpticalInstrumentationEngineers (cid:13)c 0000RAS,MNRAS000,000–000