ebook img

A deep Chandra observation of the cluster environment of the z=1.786 radio galaxy 3C294 PDF

10 Pages·0.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A deep Chandra observation of the cluster environment of the z=1.786 radio galaxy 3C294

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed5February2008 (MNLATEXstylefilev2.2) A deep Chandra observation of the cluster environment of the z = 1.786 radio galaxy 3C294 A.C. Fabian1, J.S. Sanders1, C.S. Crawford1 and S. Ettori2 1InstituteofAstronomy,MadingleyRoad,Cambridge.CB30HA 2ESO,Karl-Schwarzschild-Str.2,D-85748Garchingb.Munchen,Germany 5February2008 3 0 ABSTRACT 0 Wereporttheresultsfroma200ksChandraobservationofthez=1.786radiogalaxy3C294 2 anditscluster environment,increasingby tenfoldourearlierobservation.Thediffuseemis- n sion,extendingabout100kpcaroundthenucleus,hasaroughlyhourglassshapeintheN-S a directionwithsurprisinglysharpedgestotheNandS.Thespectrumofthediffuseemission J iswellfittedbyeitherathermalmodeloftemperature3.5keVandabundance<0.9Z⊙(2s ), 3 orapower-lawwithphotonindex2.3.Iftheemissionisduetohotgasthenthesharpedges 2 meanthatitisprobablynotinhydrostaticequilibrium.Muchoftheemissionisplausiblydue toinverseComptonscatteringoftheCosmicMicrowaveBackground(CMB)bynonthermal 1 electronsproducedearlierbytheradiosource.Therequiredrelativisticelectronswouldbeof v much lower energyand older than those responsiblefor the presentradio lobes. This could 8 accountforthelackofdetailedspatialcorrespondencebetweentheX-raysandtheradioemis- 6 sion,theaxisofwhichisatapositionangleofabout45◦.Hotgaswouldstillberequiredto 4 confine the relativistic plasma; the situation could parallel that of the radio bubbles seen as 1 holesin nearbyclusters, exceptthatin 3C294the bubblesarebrightinX-raysowingto the 0 extremepowerinthesourceandthesixtyfoldincreaseintheenergydensityoftheCMB.The 3 0 X-rayspectrumoftheradionucleusishard,showingareflectionspectrumandironline.The / sourceisthereforeanobscuredradio-loudquasar. h p Keywords: X-rays:galaxies–galaxies:active:clusters:individual(3C294)–intergalactic - medium o r t s a : v 1 INTRODUCTION ies.Hardcastle&Worrall(1999)laterexaminedalongROSATob- i servationtakenwithitsHighResolutionImager(HRI),concluding X 3C294isapowerfulFanaroff-RileyIIradiosource(FRII)atared- thatthesourcewaspossiblyspatiallyextended. shiftof1.786.Ahighresolutionimageoftheradioemissionshows r a it to have a Z-shaped morphology, which may be explained by a We first observed 3C294 with Chandra in 2000, for a total precessingortorquedjet(McCarthyetal.1990).ExtendedLyman of 20 ks with the ACIS-S detector (Fabian et al. 2001). The X- a emissionwasfoundtobeassociatedwiththesource,withalu- ray emission was spatially extended about the central core X-ray minosityof7.6×1044ergs−1 (McCarthyetal.1990).Thesource sourceinadistinctivehourglassshape.Thehourglasswasaligned waslaterobservedbyStocktonetal.(1999) intheK′ bandusing inthenorth-south(N-S)directionandextendedtoradiiofatleast anadaptiveopticssystemontheCanada-France-HawaiiTelescope, 100kpc.Aspectrumofthediffuseemissionwasfittedusingather- resolvingitintoanumberofknotsarrangedoveranapproximately mal model, giving a best-fittingtemperature of 5 keV. The emis- triangular region. They interpreted this pattern as a set of dusty sioncouldhavebeenduetoinverseComptonscattering,butsince dwarf galaxy-like clumps illuminated in a cone by an obscured therewaslittleexcessemissionassociatedwiththeradiojetofthe nucleus. Quirrenbach et al. (2001) observed the system at higher source, except on the southern hotspot, this emission mechanism resolutionwithanadaptiveopticssystemontheKecktelescopein was considered unlikely. The most likely explanation for the ob- K′andHbands,findingemissionfromtwocomponentswithasep- serveddiffuseemissionwasathermalone,generatedbytheintra- arationof∼1arcsec.Onecomponentwasidentifiedastheactive clustermedium(ICM)oftheinnerpartsofacluster.Theexistence nucleus,theotherasthecoreofacollidinggalaxy. ofsuchahotclusteratthisredshiftisconsistentwithalow-density X-ray emissionwas detected fromtheposition of 3C294 by universe. Crawford & Fabian (1996), using ROSAT proportional counter data. The data quality was insufficient to conclude whether the HerewepresenttheresultsofatentimesdeeperChandraex- emission was spatially extended or thermal in origin. Their posure of 3C294, for almost 200 ks. Luminosities and distances favouredmodelwasforX-rayemissionfromarichclusterofgalax- werecalculatedinthispaperbyassumingH0=70kms−1Mpc−1, (cid:13)c 0000RAS 2 A.C. Fabian,J.S. Sanders,C.S. Crawford andS. Ettori W m=0.3andW L =0.7.Relativeabundanceswerecalculatedas- sumingtheresultsofAnders&Grevesse(1989). 2 DATAANALYSIS Theobservationwassplitintotwosections:oneperiodbeginning on 2002 Feb 25 with an exposure of 69.8 ks, and the second on 2002 Feb 27 with an exposure of 122.0 ks. Visual inspection of thelightcurves for thetwoobservations intheband 0.3 to5keV showednoevidenceforcontaminationbyflares,thereforethetotal effectivelengthofobservationswas191.8ks. BothofthedatasetsweretakenusingtheACIS-S3detector inVFAINTmode.Thismodeofobservationgradeseventsusinga 5×5matrixof detectorpixelsaround thecentroidofeachevent, rather than the standard 3×3 matrix for the FAINT observation mode,andyieldsadatasetwithasubstantiallylowerbackground. InordertotakeadvantageoftheVFAINTobservationmode, thedatawerereprocessedusingtheCAIOACIS PROCESS EVENTS toolwiththecheck vf phaoptionswitchedon.Thegainfileapplied Figure1. Energy-mapped image ofthe emission. Events between 0.3to to the reprocessed dataset was acisD2000-08-12gainN0003.fits 1keVarecolouredred,1and1.5keVgreen,and1.5to5keVblue.The fromCALDBversion2.12. dataareplottedwith0.49arcsecpixels,smoothedwithaGaussianofwidth Sincethetwodatasetsweretakenoveronlyafewdays,the 0.25arcsec.Thesizeoftheimageis47×48arcsec2,correspondingtoan roll angles of the spacecraft were within a couple of degrees of areaofroughly400×400kpc2 attheredshiftoftheradiogalaxy.Inthis andallourimages,northistothetopandeastistotheleft. eachother.Thereforewemergedthetwoeventsfilestogetherinto asinglefile,reprojectingthepositionoftheevents(inskyaligned detectorcoordinates)ofthefirstdatasettomatchthatofthesecond. Region Fit-type Best-fittingparametersandreducedc 2 Totestwhetherthisstepwasvalidwegeneratedspatially-weighted responseandancillarymatricesforthediffuseemissionforthetwo Core Power-law G =−0.65,cn2=2.7 data sets individually and compared the differences in fitting the PEXRAV∗ rel.refl=5.1−+12..50, spectra using the two responses on both data sets. There was no cover.NH=8.4−+01..91×1023cm−2, significantdifferenceineitherthequalityofthefitsortheirbest- cover.fract.=97.6−+31..00%,cn2=0.55 fittingparameters. The weighted responses for each region were created from NE Power-law G =0.7,cn2=0.77 theappropriateFEFcalibrationfile(acisD2000-01-29fef piN0002) Par.Cover.† cover.NH=2.5−+11..74×1022cm−2, andtheCIAOMKWARFandMKRMFtools,weightingtheresponse cover.fract.=75+−1546%,G =1.6−+11..01, usingthenumberofcountsinthe0.3to7.5keVband. cn2=0.82 Creatingasuitablebackgroundspectrumisanimportantpart Diffuse MEKAL kT=5.9−+11..38keV,Z=0.07−+00..0276, of the analysis of low surface brightness objects such as the dif- NH=3.8−+12..81×1020cm−2,cn2=1.0 fuseemissionhere.Giventhattheemissionissmallinextentand Power-law G =2.3+0.3, −0.1 theobservationislong,itispreferabletouseabackground spec- NH=1.1±0.3×1021cm−2,cn2=0.91 trumgeneratedfromtheobservationitselfratherthandifferentob- MEKAL‡ kT=3.5−+00..56keV,Z=0.30−+00..2350Z⊙, servations. A blank-sky background dataset would have a differ- cn2=0.98 entinstrumentresponseandgalacticabsorptiontoourobservation. Power-law‡ G =2.29±0.10,cn2=0.64 WethereforeusedblankregionsoftheS3detectorinthemerged events file to provide the background. Too small a region gives Table1.Summaryofresultsofspectralfits.Uncertainties shownare1s . uncertain background subtraction, and toolargerisksintroducing ∗PEXRAVreflection discmodel plus emission from neutral iron line, ab- systematicsfromthevariationofthebackgroundoverthechip.We sorbedwithpartialcoveringmodel.†Power-lawmodelabsorbedwithapar- usedabackgroundfield4.97×1.67arcmin2 alongtheCCDnode tialcoverer.‡MEKALorpower-lawmodelabsorbedwithACISABSmodel whichharboursthediffuseemission,subtractingacircleofradius plusPHABSmodelsettoGalacticabsorption. 0.41arcmincentredonthecentralsource. theresultofwhichshowninFig.2(top).Weremovedthosepho- 2.1 Thediffuseemission tonswhichdidnothave3ormoreneighbouringphotonswithina ThediffuseX-rayemissionhasthedistinctivehourglassshapeseen radiusof1arcsecfromthem.Theremovedphotonswereinaflat in our earlier observation of this object (Fabian et al. 2001). In distributionaroundthediffuseemission. Fig.1weshowimagesoftheemission,smoothedbyaGaussian, Tohighlightthemainfeaturesofthethree-colourimage(Fig. inthreeobservedenergybands(0.3-1.0,1.0-1.5and1.5-5.0keV), 1)weshow asmoothed versionofitinFig.2(bottom). Weused superimposedasred,greenandblue. thebinaccretionalgorithmofCappellari&Copin(2002)tocreate Inordertoseethediffuseemissionabovethebackgroundeas- atessellatedimageineachofthethreebandswitharatioofsignal ilywehaveappliedabackground-reduction technique(analogous toPoissonnoiseof0.8.Thecentroidsofthecellsformedbytessel- to applying a cut in brightness to an image with many photons), lationweretheninterpolatedwiththeNATGRIDnaturalneighbour (cid:13)c 0000RAS,MNRAS000,000–000 A deep Chandraobservationoftheclusterenvironmentof thez=1.786radiogalaxy3C294 3 Figure3.Imagesoftheemissioninthe0.3-1.0(left),1.0-1.5(middle)and1.5-5.0keV(right)bands.Dataareshownwith0.49arcsecpixels,smoothedwith aGaussianofwidth0.25arcsec. interpolationlibrary1toformimages,whichweresuperimposedas red,greenandbluelayers. Therawimages areshown individually inFig.3,emphasiz- ingthat theemission isextended ineach of thethree bands. The diffuseemissionisstillvisibleina3-5keVimage,corresponding to8.4-13.9keVintherestframe.Binningthedatainto16arcsec binsshowsthereisnoevidenceforanylowintensityemissionsur- rounding the central diffuse emission (wecalculate limitsfor the outlyinggasinSection4.1.1). The images also show several point sources: a central hard sourcecorrespondingtothepositionoftheradiocore,anotherhard source 14arcsectothenorth-east (NE),asoft source 9arcsecto thewest-south-west(WSW),andtwofairlysoftsourcesalongthe directionoftheradioaxis(6arcsectotheNEand8arcsectothe SW)corresponding totheposition of theradio hotspots. Wewill discussthesepointsourcesinlatersections. The surface brightness declines sharply at the edge of the hourglassshape.Fig.4showsasurfacebrightnesscutinanorth- southdirection,measuredbymovinga∼21×1arcmin2 boxalong thataxis,excludingthepointsourceinthecentre,theNEandthe WSW.Weshowthenumberofcountsinthethreeobservedbands: 0.3-1.0,1.0-1.5and1.5-5.0keV.Theprofileappearsbox-likewith thenumberofcountsdroppingfromabout60to10inaround5arc- secattheNandSedges. Theprofileintheeast-westdirectiondeclinesmoresmoothly thanthatinthenorth-southdirection.Inthesouthernmostlobethe diffuse emission declines slowly to the east. In the northernmost lobeitdeclinesslowlytothewest. Wefittedthe0.3-6keVspectrumofthediffuseemissionfrom theregionsshown inFig.5by a MEKAL model (Mewe, Gronen- schild&vandenOord1985;Liedahl,Osterheld&Goldstein1995) with a PHABS absorbing screen (Balucinska-Church & McCam- mon1992),givingbest-fittingparametersofkT=5.9+1.8keV,Z= −1.3 0.07−+00..0276Z⊙,NH =3.8−+12..81×1020cm−2 (with1s uncertainties). At2s ,theuncertaintyonthetemperaturewaskT =5.9+3.4 keV. −2.0 The data were binned into spectral bins containing at least 20 Figure2.Greyscaleimageofthediffuseemissionbetween0.3and5keV counts. The spectrum is shown in Fig. 6, with the contributions usingabackgroundremoval technique andsmoothedwithaGaussianof to c 2 from each spectral bin. The reduced c 2 of the fitwas1.00 width0.5arcsec(top).Energymappedimageofthediffuseemission(asin Fig.1)smoothedusingatessellationtechnique(bottom). 1 http://ngwww.ucar.edu/ngdoc/ng/ngmath/natgrid/nnhome.html (cid:13)c 0000RAS,MNRAS000,000–000 4 A.C. Fabian,J.S. Sanders,C.S. Crawford andS. Ettori 100 0.3-1.0 keV 1.0-1.5 keV 1.5-5.0 keV Total 80 A2199 60 nts u o C 40 20 0 -20 -10 0 10 20 Figure6.Spectrumofthediffuseemissionbetween0.3and6keV(from Relative declination (arcsec) theboxedregioninFig.5,alsoshowingc contributionfromeachspectral binwhenfittedwithasingle-componentMEKALmodel. Figure4.Surfacebrightnessprofilealongthenorth-southdirection(nega- tivevaluesaresouth),excludingthecore,NEsourceandtheWSWsource. Valuesshownarethenumberofcountsina0.98×20.6arcsec2box,inthe bands0.3-1,1-1.5,1.5-5.0and0.3-5keV.Thebackgroundlevelisaround5 there is a known degradation of the ACIS soft X-ray response2 countsinthe0.3-5keVband(i.e.beyond15-20arcsecisjustbackground). which may account for this. We have refitted the spectra making Thecontinuouspeakedlineshowsasimilarnorth-southprofileofA2199, useofthepreliminaryresponsemodelACISABSofChartas&Get- onthesamespatialscaleas3C294,inabandequivalentto0.3-1.0keV.The man(2002).Fittingthespectrumfrom0.4-6keV byapower-law countsinthecentral3binsareunderestimated sincethecoresourcewas model(increasingthelowerenergyboundofthespectralfitassug- removedbyexcludinga1.6arcsecradiuscircle. gestedbythedocumentation ofthismodel)andabsorbingitwith the ACISABS model plus a PHABS model (fixed to the Galactic valueof1.2×1020cm−2),thereducedc 2ofthebest-fitwas0.64= 20.6/32. Thebest-fittingphotonindexwas2.29±0.10(1s ),and the intrinsic luminosity of the power-law was 2.5×1044ergs−1 between 1 and 10 keV in the restframe. There was no indication ofanironlineintheresidualsofthepower-lawfit.Wenote,how- ever,thattheenergyofanironlinewouldlieclosetotheiridium M-edgeofthemirror,whichcouldcauseaproblemifthespectral calibrationisnotperfect. We also fitted a MEKAL model absorbed by the ACISABS and PHABS models as above, allowing the abundance and tem- peraturetobefree.Inthatcasethebest-fittingtemperatureofthe gas was 3.5+0.6 keV (1s ) or 3.5+1.1 keV (2s ). The best-fitting −0.5 −0.7 abundance was 0.30−+00..2350Z⊙ (1s ) or 0.30−+00..3507Z⊙ (2s ). A plot of c 2 spaceshowstheerrorsintemperatureandabundance tobe largelyorthogonal. The reduced c 2 of the best-fittingparameters was 0.98=30.3/31. Separate spectra of the northern and south- ern lobe were made, and fitted simultaneously with the absorbed Figure5.Regionsusedforspectralextraction,overlayedontherawX-ray MEKALmodelabove.Therewasnoevidenceintheresidualsofthe imageofthediffuseemissioninthe0.3-5.0keVband.Thetwoboxeswere fitindicatingthatthespectraofthetwolobesweredifferent. theregionsusedfortheanalysisofthediffuseemission.Thecircletothe Asafinalcheck,werefittedthespectrumofthediffuseemis- NEwastheNEsourceregion,andthecircleinthecentrewastheregion sionbyminimizingamodifiedversionoftheC-statistic(allowing usedforthecore.ThediamondontherightmarkstheUSNO-A2.0position backgroundsubtraction;Arnaud2002)ratherthanthec 2-statistic. ofthestar. Withthe MEKALmodel,wefoundtemperatureandabundance of kT =3.9+−00..65 andZ=0.2−+00..22Z⊙ (1s ),fittingthespectrumfrom 0.4-6 keV. Fitting from 1-6 keV, we obtained a temperature of (33.0/33). Theregionswerechosen toexclude theemissionfrom 7.4+2.7 keV, confirmingtheresultaboveusingthe c 2-statistic.A −1.6 alongtheradioaxisofthesource,anareawhichcouldbecontam- power-lawmodelgavethebest-fittingspectralindex2.26+0.09.The −0.10 inatedbyinverseComptonemission.Wesummarisetheresultsof C-statisticdoesnotprovideagoodness-of-fit. spectralfitsinTable1. In summary, providing that we assume that the ACISABS We also fitted the spectrum of the diffuse emission using a model is appropriate for correcting the ACIS-S low energy re- power-lawabsorbedbyaPHABSmodel.Thismodelfittedthespec- sponse,bothMEKALandpower-lawmodelsgiveacceptablefitsto trum well (reduced c 2 =0.91=31.0/34) with a photon index thespectrumofthediffuseemission.Thebest-fittingMEKALtem- of2.3+−00..31,howeveritrequiredstrongabsorptionof(1.1±0.3)× perature is ∼3.5 keV and the abundance is <0.9Z⊙ (2s ), with 1021cm−2 whichwouldbeunreasonableifitweredistributedover thewholevolumeofthediffuseemission. Althoughbothmodelsfittedsofarrequireexcessabsorption, 2 http://cxc.harvard.edu/cal/Links/Acis/acis/Cal prods/qeDeg/ (cid:13)c 0000RAS,MNRAS000,000–000 A deep Chandraobservationoftheclusterenvironmentof thez=1.786radiogalaxy3C294 5 Figure8.SpectrumofthesourcetotheNEoftheradiosource.Thespectral fitshownisapowerlawwithapartialcoveringmodel.Dataarebinnedinto spectralbinscontainingatleast20counts. 2.3 TheNorth-East(NE)source TheX-rayspectrumofthesourcetotheNEofthecoreisshown in Fig. 8. It is well fitted by an absorbed (N ∼ 1020cm−2) H Figure7.SmoothedHSTimageoftheareaofthediffuseX-rayemission, power-law model, but the best-fitting photon index is unphysical overlayedbycontoursfromasmoothedX-rayimage,adjustedsothatthe at 0.7. A partial covering model fitsbetter, withanabsorption of opticalpositionofthestariscoincidentwiththepositionofitsX-raysource. 2.5+1.4×1022cm−2,apartialcoveringfractionof75+14percent, −1.7 −56 Northistothetopinthisimage.Thearrowshowsthepositionofavery apowerlawindexof1.6+1.1(1s errors).Thereducedc 2forthefit faintopticalpointsourcecoincidentwiththeNEX-raysource.Thereisan −1.0 was0.82=3.3/4.Themodelwasfittedtothedatainspectralbins opticalelongatedstructureatthepositionoftheX-raynucleusof3C294. ofatleast20counts,andbetweentheenergiesof0.5and7keV.We added Galactic absorption and corrected the data with the ACIS- areduced c 2 of0.98.Thebest-fittingpower-lawspectralindexis ABS model, although the correction makes no difference to the 2.3,withareducedc 2of0.64. best-fittingparameters.Thesourcecontainsveryfewcountsbelow 0.8keV,suggestingitisheavilyabsorbed.Ifthissourceliesatthe sameredshiftas3C294itsintrinsicluminosityis2.8×1044ergs−1 2.2 ThesourcetotheWest-South-West(WSW) between1and10keV. TheHSTimageof3C294inFig.7containsavery-faintpoint Weextractedarchival HubbleSpace Telescope(HST)WideField sourceatthelocationoftheNEsource.Weestimatedaphotometric PlanetaryCamera2(WFPC2)dataoffourobservationsof3C294 redshiftforthissourceusingthepubliclyavailablecode HYPERZ (datasetsU27LFC0{1,2,3,4}T).Theobservationsweretakenusing (Bolzonella,Miralles&Pello´2000),andcalibrated,archivalimag- afilterwithacentralwavelengthof6895A˚,andeachhadanexpo- ing data from the HST (F702 filter), INT Wide-Field Camera (i´ sure time of 140 s. The data were combined using the IRAF task Sloanfilter)andUKIRT(Kfilter).Thebestsolutionisconsistent CRREJ. withz=z3C294, though weemphasize that thisisbased on three The HST field in Fig. 7 is dominated by a star known as filtersonly.Thebest-fittingsolutionisz=1.93+0.14,andthereisa U1200-07227692intheUSNO-A2.0catalogue(Monetetal.1998). −1.23 secondarysolutionz=2.97+0.41(90percentconfidenceintervals). ThestarhasBandR-bandmagnitudesof13.0and11.5inthatcat- −0.97 ThefluxfromthissourceinX-raysvariedbetweentheorigi- alogue,andaVbandmagnitudeof12.0(HubbleGuideStarCata- nalChandraobservationandtheonewepresenthere.Intheorig- logue1.2,Laskeretal.1990).Quirrenbachetal.(2001)discussthe inal observation on 2000 October 29 the count rate between 0.5- various disagreeingmeasurements of thepositionof thisstar,but 7keVwas(2.2±0.3)×10−3s−1.Thecombinedcountratefrom statethattheUSNO-A2.0positionisthemostaccurate.Theposi- themergeddatasetshereis(9.2±0.7)×10−4s−1.Thereforethe tioninthiscatalogue(14:06:43.3,+34:11:23.5)matcheswithinan fluxofthesourcedeclinedbyafactorof∼2.4in4.2×107s. arcsecthepositionofthesoftX-raysourcetothesouth-east-eastof thecentralnucleus(Figs.3&5). ThisstarwasreportedtobeanF-typestarbyWyndham(1966; 2.4 Thecorespectrum spectrumtakenbyF.Zwicky1965).Stockton,Canalizo&Ridgway (1999)foundthestartobeadoublewithaseparationof0.13arc- A power law model is not a good fit to the spectrum of the core sec, and an intensity ratio of 1.5:1 in K′. McCarthy et al. (1990) source,associatedwiththecentralactivenucleus.Thebest-fitting from its spectrum find it to be a subgiant K star, with a spectral photonindexwasnotphysical at−0.65, andthereduced c 2 was breakat4000A˚. 2.7.Thedatawerefitbetween0.5and7keV. Thefluxofthissourceis∼6×10−16ergcm−2s−1 between Amuchbetterfitisfoundusingapartially-obscuredPEXRAV 0.3and5keV. Thisfluxislow(relativetoitsoptical luminosity) (Magdziarz&Zdziarski1995)reflectionmodelplusemissionfrom whencomparedwiththefluxesofopticallybrightmain-sequence a neutral iron line at 6.4 keV (Fig. 9), with Galactic absorption. stars(Hu¨nsch,Schmitt&Voges1998).Thelowfluxismoretypical ACISABScorrection had littleeffect on thebest fittingvalues, al- ofsubgiantKstarsthanF-typestars. thoughtheuncertaintiesonthebest-fittingparameterswerelower (cid:13)c 0000RAS,MNRAS000,000–000 6 A.C. Fabian,J.S. Sanders,C.S. Crawford andS. Ettori Figure 9. Spectrum and PEXRAV plus iron line fit of the central X-ray source.Dataarebinnedintospectralbinscontainingatleast20countsand fittedbetween0.5and7keV. Figure11.X-rayemissionbetween0.3and5keVshowningreyscale(asin Fig.2[top]).Overlayedarethe6cmradioemissioncontours,andaLyman- a contour(roughlytriangular)takenfromFig.2,McCarthyetal.(1990). 2.5 Radiohotspots Fig.11 shows anoverlay of the X-rayemission between 0.3and 5 keV, overlayed with 6 cm radio and a Lyman-a contour taken from Fig. 2 of McCarthy et al. (1990). To make this image, the McCarthyetal.datawereconvertedtoJ2000coordinates,andthe Figure10.Best-fittingmodelforthecorespectrum,plottedasEFE.The central radio source was aligned withthe Chandra X-ray source. widthoftheironlineissethereto0.05keV.Modelincludespartialcoverer, TheradiohotspotsareinasimilarpositiontothetwoX-raypoint ACISABSandGalacticabsorptions. sourcesalongtheradioaxis,buttheX-raysourcesarerotatedby about6degreesclockwiseaboutthecorefromtheradiohotspots, since we did not fit for Galactic absorption, instead fixing it. We andappeartobecloserin.Eachspotisdisplacedbyabout1.8arc- quotethevalues correctedby ACISABSabsorption here. Thepar- sec.TheX-raysourcescontaintoofewcountstogenerateaspec- tialcovererwasplacedattheredshiftofthesource. trum,butcaneasilybeseeninthe0.3-1and1-1.5keVimages,but The relative ratio of the reflected to direct component was notfrom1.5-5keV,indicatingthattheyhavesoftspectra(G >2.3, foundtobe5.1+−21..05(1s ).Thecoveringmodelhadacolumndensity thevalueofthediffuseflux,Section2.1).Ifweassumeaphoton of8.4+1.1×1023cm−2 andacoveringfractionof97.6+1.0percent indexforthespectrumofthehotspotsof2.3,theunabsorbedflux −0.9 −3.0 (1s ). Solar abundance was assumed, as was an inclination angle emitted in a 1.2 arcsec radius circle about the NE hotspot from of 60◦, and the width of the iron line was set to zero. The re- 1-10keVis5.8×10−16ergcm−2s−1 (restframe1-10keVlumi- duced c 2 of the fit was 0.55=5.0/9. The flux in the iron line nosityL1−10∼1.7×1043ergs−1).TheintrinsicfluxfortheSW was2.0+−11..31×10−6photons−1 cm−2.UsinganF-test,weestimate hotspotis5.5×10−16ergcm−2s−1 (L1−10∼1.6×1043ergs−1). thereisonlya3.5percentprobabilityofanintrinsicspectrumwith- outtheaddedneutralironlinegivingasagoodafitasamodelwith theline. Fig.10showsthespectrumofthebest-fittingmodel,withthe widthoftheironlinesetto0.05keV.Theintrinsicluminosityofthe 3 INTERPRETATIONOFTHEPOINTSOURCES underlyingpowerlawis1.1×1045ergs−1 between1and10keV 3.1 TheNEsource intherestframe,aftercorrectionforabsorption.Wenotethatthe directemissionleakingtoourlineofsightbelow1.5keV(Fig.10) ThissourceisbrightintheX-raybandandhasalowopticalflux. neednotbeduetopartialcovering,butjusttosomeoftheradia- TheX-rayspectrumindicatesthatitishighlyabsorbed.Thesource tionbeingscatteredbyionizedgas.Inthiscasetheabovenucleus hasalsovariedinX-raybrightnessstronglyover18months. Itis luminosityisalowerlimit. thereforelikelytobeaSeyfertIIgalaxy(ofanintrinsicluminosity The HST image in Fig. 7 shows a faint elongated structure of2.5×1044ergs−1 between1and10keV),harbouringahighly atthepositionoftheX-raynucleus,alignedroughlyinthenorth- obscuredAGN.Thegalaxymaybeamemberofthecluster,apos- southdirection. sibilitysupportedbyitsphotometricredshift. (cid:13)c 0000RAS,MNRAS000,000–000 A deep Chandraobservationoftheclusterenvironmentof thez=1.786radiogalaxy3C294 7 3.2 Radioaxisfeatures ∼1044ergs−1.Usingthislimitwecansaythatthemeandensityof gasintheshellmustbelessthan1/5oftheaveragedensityofgas Foursourcesappeartoliealongthedirectionoftheradioaxis:the making the observed extended X-ray source. This is inconsistent core(§2.4),twosourcescoincidentwiththeradiohotspots,andthe withthecoldfronthypothesis. NEsource(§2.3).Indeed,theNEsourceisonadirectlinejoining Fabianetal.(2001)concludedthatthediffuseemissionfound the lower hotspot and the core. It is tempting to directly connect around the point source in 3C294 was most likely direct X-ray the NE source with the radio axis, but it is difficult to suggest a emissionfromthecoreofacluster.Unfortunatelyouranalysisof mechanismdescribinghowtheradioaxiscouldtriggeractivityin this longer observation presents some difficulty for this interpre- theNEsource,whichappearstobeaSeyfertII.Thehotspots,the tation. In particular, the sharp drops observed at the edges of the core,andtheNEsourceareprobablyalignedbychance. diffuseemissionareincontrasttotheexpectedprofilefromintra- ThereisanenhancementoftheX-rayemissionalongtheSW clustergas.WeplotasurfacebrightnesscutofAbell2199(taken side of the jet, and there isalso ahole in emission along the NE fromdatainJohnstoneetal.2002),aclusterataredshiftof0.0309, side(Figs.11 and2). Thismay indicatethat thejetisrelativistic onFig.4.Thiscutwasproducedbyenlargingthesizeofthemov- andbeamed,withtheSWsidebeingbeamedtowardsus. ingboxby afactor of 13.7, corresponding totherelativeangular diameterdistanceof3C294comparedtoA2199,andexaminingan energyrangeof0.82to2.71keV,correspondingtoanenergyrange 3.3 Thecentralsource of 0.3to1keV attheredshift of 3C294. Thecut through A2199 The spectrum of the central source is fit well with a model of a has alargecentral peak, indicating gas withashort cooling time highly obscured, reflection-dominated, AGN. The intrinsic lumi- in the centre, and no sharp drops in brightness. The cut through nosityofthenucleusisoftheorderof1045ergs−1. 3C294isquiteunlikeA2199, withalargelyflatprofileandsharp dropsattheedges.Note,however,thatthediffuseemissionhasa lessabruptedgetotheeastandwest.ThesharpnessoftheNand SedgestotheX-rayemissionmeanthat thegasisdisturbedand 4 INTERPRETATIONOFTHEDIFFUSEEMISSION notincompletehydrostaticequilibrium.Transonicmotionmaybe 4.1 Thermal sufficienttoaccountforwhatisseen. Unfortunately we cannot distinguish between a thermal and 4.1.1 Hydrostaticmodels non-thermalsourceofthediffuseemissiononspectralgrounds,nor If we approximate the emitting volumes as two spheres of ra- identifyanironline. dius6.4arcsec,thenthetotalemittingvolumeis3.9×1070cm3. Using the normalisation of the MEKAL model (with the ACIS- 4.1.2 Shocksandmergers ABScorrection),wefindtheelectrondensitytobeapproximately 2.6×10−2cm−3.Theenergycontentofthehotgasisthereforeof Alternatively,ifthecentralengineunderwentamassiveexplosion theorder(3/2)kBTnV ∼1.5×1061erg(assumingkT ∼3.5keV), inthepastwemaybeobservingtheshockedmaterialbehindtwo where n is the total particle density. If this were delivered over shockfrontstravellingtothenorthandsouth.InthatcasetheAGN 108yr,thiswouldrequireapowerof5×1045ergs−1,notinclud- must be embedded in a dense environment such as a cluster, as ingPdV work. is shown by the calculated electron density. A factor of 4 den- Ifweareobservinggasinhydrostaticequilibrium,thesharp sityincreasebytheshockwouldimplyne∼7×10−3cm−3 inthe edgesat100kpcmeanthatthescaleheightthereis∼20kpc.The preshockedgas,unlessadiabaticexpansionwasalreadystrong.The virialtemperatureoftheclusterthenhastobe∼100/20=5times preshocktemperatureisunknownbutmustbesuchthatthegasout- thetemperatureofthegas.Thereforeifthisisaclusterinhydro- sidetheshockisundetectable(e.g.kT <1.5keV).Thetotalther- staticequilibriumitmustbeveryhot,extremelymassive,andmore malenergyinthegasis∼1.5×1061erg.Theshockvelocitymust massivethanRXJ1347-1145(Allen,Schmidt&Fabian2002). be greater than 2000kms−1. Therefore the timesince theexplo- SharpX-rayedgesareseeninmanynearbyclustersinaphe- sionis∼5×107yr.Thetotalenergyintheexpandinggas(thermal nomenonknownasacoldfront(Markevitchetal.2000).Thegas plus kinetic) must be ∼2×1061erg, and the power greater than temperaturedecreasessharplyacrossthesefeatures,withthecooler 1046ergs−1. gas being closer to the centre; pressure is continuous across the Simpson&Rawlings(2002)makethehypothesisthatthedif- front. If this is the explanation for the sharp edges to the diffuse fuseX-rayemissionin3C294isproducedbytwoshockspropagat- X-ray emission of 3C294, there must be hotter surrounding gas. inginoppositedirectionsfromthesiteofacollisionoftwoclusters. Assuming pressure equilibrium across the front, then the ratioof Inthismodelthepowerfulradiosourceinthecoreof3C294would thetemperaturesofthegaseithersideofthefrontisapproximately have been triggered by the merger. If the collision velocity were equal to the inverse of the ratio of their densities. If we estimate ∼1000−2000kms−1 thentherewouldbeenoughenergytoraise thedensitydropasafactorof2.5(estimatedfromFig.4),thenthe thetemperatureoftheclusterfrom2to5keV.Oneproblemwith outertemperatureshouldberoughly8keV.Thisagainmakesthe this model is that the surface brightness profile we observe does clusterveryhotandrareatitsredshift(Fabianetal.2001).More- notmatchthatexpectedfromsimulationsofmerginggalaxies(e.g. over,theinteriorsofnearbyclusterswithcoldfrontsdonotshow Ritchie&Thomas2002).Theregionofemissionisnotexpectedto brightnessprofilesasflatasweseehere. haveaflatbrightnessprofileandtheedgesoftheheatedregionare We can place a limit on the luminosity of any gas that lies notsharp. outside of the observed diffuse emission. We calculated the flux Itisinterestingthatalthoughthediffuseemissionfrom3C294 limit in a shell between radii of 16 and 55 arcsec from the core, doesnotappeartohavethesamemorphologyassomeclustersof assuming a temperature for the gas of 3.5 keV, an abundance of galaxiesthoughttobemerging(e.g.Markevitch&Vikhlinin2001), 0.3Z⊙, and Galactic absorption, and find the 3s upper limit on thereisaresemblancewithAbell2256whichhassubcomponents the intrinsic luminosity of that gas between 1 and 10 keV to be of ∼4.5 keV and 7−8 keV in an early state of merger at red- (cid:13)c 0000RAS,MNRAS000,000–000 8 A.C. Fabian,J.S. Sanders,C.S. Crawford andS. Ettori andawayfromtheobserver, rotatedaboutthex-axis.Thecentral source was switched on at t =0 for 104 yr. The emission along eachlineofsightwasthenintegratedalongthex-axistosimulate thesurfacebrightnesscutinFig.4. WeshowinFig.12thecalculatedprofilesforthreedifferent times.Althoughtheprofilesappearfairlyflat,inlineartermsthey fallsteeplyfromthecentre.Thereisalsoagapinthecentre,which iscausedbythegrowingshellofphotonsmovingalongthecones. Thegapmaybeavoidedbymodifyingtheburstofradiationfrom the core to have a longer-living tail. 3C294 has a dip in surface brightness to the north of the core, but it is shallow. This model has difficulty in reproducing the flat brightness profile across the cluster.Ifthedensityprofileintheclusterwereinverted(asfora bubble,seeSection4.3),oriftheradiationwasconfinedcloseto theplaneoftheskyinafan-likeshape,thenthebrightnessprofile couldbeflattened. Figure12. Surface brightness profiles from the simplescattering model. Threetimesareshown,7×104,1.7×105,and2.5×105yr,fromtheinner- Afurtherproblemwiththismodelisthatonlyasmallfraction mostout. ofthephotonsemittedwillbescatteredbythecluster.Wecanes- timatewhattherequiredpowerforthecentralsourceis.Thelumi- nosityofthecones(excludingtheradioaxis)is∼3×1044ergs−1. shift0.058(Sunetal.2002).ThecoreofA2256hastwosharpand Ifathirdoftheskyissubtendedbythecones(approximatelycor- smoothedgeslike3C294.Howeverthephysicalscaleofthecoreis rectiftheopeninganglesoftheconesare30◦),and1percentof abouttwiceaslargethanthatoftheemissionfrom3C294,andthe theradiationisscatteredbytheelectrons,thenthiswouldrequirean profilenotasflat. X-rayluminositybetween1and10keVfromthecentralsourceof Carilli et al. (2002) argue that diffuse X-ray emission seen ∼1047ergs−1.Thetotalbolometricpowerofthesourcewouldbe around the narrow-line radio galaxy PKS 1138-262 is caused by significantlylarger.Thisluminosityismuchhigherthanthatseen theradiosourceshockingacocoonofgas.Themorphologyofthe (Section2.4)butthesourcemaybevariable.Itwouldneedtobe X-rayemissionfrom3C294suggeststhisisnotthecaseinthisob- poweredbyaccretionontoa1010M⊙blackhole. ject,astheemissiondoesnothavetheellipsoidalshapeofaradio Adifferentnon-thermalmodelisthatweareobservinginverse cocoon(e.g.Cygnus-A,Smithetal.2002). Comptonscatteredradiationfromrelativisticelectrons.Inthatcase In summary, the evidence suggests that a thermal origin for theelectronscouldeitherbeapopulationscatteringCMB(Cosmic the diffuse emission is implausible unless the gas is in a dynam- Microwave Background) photons requiring energies of g ∼1000 ically active state, and requires significant gas extending beyond (inordertoscatterphotonsintothe1keVband),org ∼10−100to thatseen. scatterUV-IRradiationfromthecentralsource(e.g.Brunetti,Setti &Comastri1997).TheenergydensityintheCMBatthatredshift was ∼2×10−11ergcm−2, and the energy density from the nu- 4.2 Non-thermal cleuswouldbe∼3×10−12L d−2ergcm−2 (L istheluminos- 47 2 47 AdifferentinterpretationisthatweareobservingX-raysfromthe ity of the source in units of 1047ergs−1, and d2 is the distance centralAGNscatteredbytheelectronsinasurroundingcluster(see fromthesourceinunitsof102kpc).TheinverseComptoncooling Sazonov, Sunyaev &Cramphorn 2002). Inthismodel thecentral time of the CMB-scattering electrons would be ∼6×107yr and sourceswitchedononlyrecently,andthefluxrisetimewasshort thecoolingtimeoftheUV-scatteringelectronslongerbyafactor so the furthest edges are sharp. A toroidal dust cloud around the of∼1000.Wethereforerequirethetotalenergyinrelativisticelec- nucleus could collimate the radiation into the two cones seen to tronsto be∼5×1059ergif theradiation was scattered fromthe either sideof the nucleus. Thismodel hasdifficultyinproducing CMB,andafactor1000timesgreaterifitwasscatteredfromthe theobservedsurfacebrightnessprofile.Sincethefluxdropsasthe UV radiation field. We now ignore the UV case given its energy square of the radius, and the density of any plausible scattering requirements.Thetotalenergyinrelativisticparticlesmaybe10to medium will decrease withdistance fromthe AGN, the brightest 100timeslargerthan5×1059ergifweaccountforotherparticles partofthescatteredradiationshouldbeclosesttotheAGN,with suchaslowenergyelectronsandprotons.Toprovideanequivalent thebrightnessdecliningquicklywithradius. energydensity totheCMB magneticallywould require afieldof Thebrightness profilecanbeflattenedbyinclining theradi- 24m G,whichismuchmorethanthatfoundinlow-redshiftclusters ation cone towards the observer. To test whether this is a viable (B∼fewm G;Clarke,Kronberg&Bo¨hringer2001).Providingthe explanationfortheobservedsurfacebrightnessprofile,wemadea magneticfieldisofasimilarstrengthtothatinlowredshiftclusters, simplenumericalscatteringmodel.Weassumedtheopticaldepth inverseComptonlossesareexpectedtodominateoversynchrotron waslowenoughsothatonlysinglescatteringeventswereimpor- losses. g ∼1000 electrons will radiate at around 2MHz in a m G tant.Theemissionalongalineofsightwascalculatedbyintegrat- field,butotherwisewouldbeundetectable.Suchan‘inverseComp- ingalongthatlinetheproductofthedensityofthescatteringmate- toncloud’modelwouldbethemostenergeticallyefficientwayof rial(takentobeproportionaltothereciprocalofthedistancefrom explainingthedata.Inordertoconfinethisrelativisticplasmathe thecentre), and thefluxatthat position atthe timewhen theob- gaseousmediumofatleastagroupwouldberequiredinordernot serverseesit(originallyemittedfromacentralsource,buttaking tolosetheenergybyadiabaticexpansion. into account light travel time). The emission is integrated along AninverseComptonoriginforthediffuseX-rayssurrounding positionswhich lieinsidetheradiationcones. Thecones havean 3C294thereforeappearstobeenergeticallyfeasible.Suchacom- opening angleof30◦ andareinclinedatanangleof15◦ towards ponentinlowerredshiftclusterswillnotbedominant,owingtothe (cid:13)c 0000RAS,MNRAS000,000–000 A deep Chandraobservationoftheclusterenvironmentof thez=1.786radiogalaxy3C294 9 sixty-foldlowerenergydensityoftheCMB.Itmayhoweverbede- 3C294isanexceptionalobject,andmayberevealinganen- tectable(e.g.theComacluster,Fusco-Femianoetal.1999;seealso ergeticphaserelevanttomanyrichclustersofgalaxiesinwhicha thetheoreticaldiscussionbySarazin1999).InverseComptonscat- powerful active nucleus transfers considerable energy, and a rel- teringisalsoinvokedtoexplainthehotspotsinseveralotherradio ativistic particle population, into the ICM. This may be crucial sources(Celotti,Ghisellini&Chiaberge2001;Hardcastle,Birkin- forexplainingthepropertiesofpresent-dayclusters(seee.g.Wu, shaw & Worrall 2001), and may account for the excess emission Fabian&Nulsen2000). from the radio hotspots in 3C294 (Section 2.5). The X-ray mor- phology of the diffuse emission does not match that of the radio source(Fig.11;McCarthyetal.1990) orof deeper radioimages ACKNOWLEDGEMENTS (K.Blundell,priv.comm.).Inparticular,theX-rayemissiontothe NWandSEofthenucleushasnoradiocounterpart.Thatneednot ACFandCSCthanktheRoyal Societyfortheirsupport. Theau- beamajorproblemthough,sincethehigherenergyelectronpopu- thors are also grateful to Poshak Gandhi for his analysis of the lation(g &104)necessaryforradioemissionwouldhavealifetime availableopticaldatafortheNEsource. of<106yrandsobeabsent.Wecouldsimplybeseeingtheolder The HST data presented in this paper were obtained from electronpopulationinasourcewherethejetdirectionhaschanged theMultimissionArchiveattheSpaceTelescopeScienceInstitute by∼60◦overthepast108yr. (MAST).STScIisoperatedbytheAssociationofUniversitiesfor ResearchinAstronomy,Inc.,underNASAcontractNAS5-26555. 4.3 Ahybridmodel Manyclustersseenatlowredshiftwithcentralradiosourceshave REFERENCES bubbles of radio plasma displacing the X-ray emitting gas (e.g. AllenS.W.,SchmidtR.W.,FabianA.C.,2002,MNRAS,335,256 Perseuscluster,Fabianetal.2000;HydraA,McNamaraetal.2000; AndersE.,GrevesseN.,1989,GeochimicaetCosmochimicaActa,53,197 CygnusA,Wilson,Young&Shopbell2000).Perhapsthepowerful ArnaudK.A.,2002,ApJ,submitted radiosource3C294hascreatedexceptionallylargebubblesinthe Balucinska-ChurchM.,McCammonD.,1992,ApJ,400,699 NSdirectioninthesurrounding ICMonatimescaleof∼108 yr. BolzonellaM.,MirallesJ.-M.,Pello´R.,2000,A&A,363,476 AsforthebubblesinHydraAandPerseus,theexpansionmaybe BrunettiG.,SettiG.,ComastriA.,1997,A&A,325,898 subsonic.Thegaswillfallbackwhentheradiosourcedropsinin- CappellariM.,CopinY.,2002,inRosadoM.,BinetteL.,AriasL.,eds,ASP tensity.TheX-rayemissioncanthenbepartiallythermal,atlarge Conf.Ser.,Galaxies:theThirdDimension,astro-ph/0202379 CarilliC.L.,HarrisD.E.,PentericciL.,Ro¨ttgeringH.J.A.,MileyG.K.,Kurk distancesfromthecentre,andnon-thermal nearerthecentre,par- J.D.,vanBreugelW.,2002,ApJ,567,781 ticularlyalongtheradioaxis. CelottiA.,GhiselliniG.,ChiabergeM.,2001,MNRAS,321,L1 Ifweareobservingbubbles,thepressureofnon-thermalpar- ChartasG.,GetmanK.,2002,http://www.astro.psu.edu/users/chartas/xcontdir/xcont.html ticlesinthebubbleswillbeclosetothepressureofthesurround- ClarkeT.E.,KronbergP.P,Bo¨hringerH.,ApJ,547,L111 ingthermal gas.Ifweassumeacoolingtimefortheelectronsof CrawfordC.S.,FabianA.C.,1996,MNRAS,282,1483 ∼6×107 yr,emittingapower of3×1044ergs−1,thenthetotal EttoriS.,FabianA.C.,AllenS.W.,JohnstoneR.M.,2002,MNRAS,331, energyinthebubbleswouldbe5.7a×1057erg(whereaisafactor 635 to account for energy inparticles not emittedin the band we are FabianA.C.etal.,2000,MNRAS,318,L65 observing in). Assuming a volume of 4×1070cm3, the pressure FabianA.C.,CrawfordC.S.,EttoriS.,SandersJ.S.,2001,MNRAS,322, insidethelobeswouldbe1.5a×10−11ergcm−3.Thispressureis L11 consistentwiththepressurefoundinmanyclusters. Fusco-FemianoR.,dalFiumeD.,FerettiL.,GiovanniniG.,GrandiP.,Matt G.,MolendiS.,SantangeloA.,1999,ApJ,513,L21 Inthispicture,were3C294tobeatz=0,theinverseCompton HardcastleM.J.,WorrallD.M.,1999,MNRAS,309,969 emissionwouldbe60timesweaker,andthermalemissionfromthe HardcastleM.J.,BirkinshawM.,WorrallD.M.,2001,MNRAS,323,L17 surroundingclusterwoulddominatetheX-rayimage.Thebubbles Johnstone R.M., Fabian A.C., Allen S.W., Sanders J.S., 2002, MNRAS, couldappearasholesintheX-rayemission. 336,299 LaskerB.M.,SturchC.R.,McLeanB.J.,JenkerH.,SharaM.M.,1990,AJ, 99,2019 LiedahlD.A.,OsterheldA.L.,GoldsteinW.H.,1995,ApJ,438,L115 5 CONCLUSIONSANDDISCUSSION MagdziarzP.,ZdziarskiA.A.,1995,MNRAS,273,837 MarkevitchM.,etal.,2000,ApJ,541,542 3C294 is a powerful, type II, radio-loud quasar, surrounded by MarkevitchM.,VikhlininA.,2001,ApJ,563,95 extensive diffuse X-ray emission. A diffuse ICM is likely to be McCarthyP.J.,SpinradH.,vanBreugelW.,LiebertJ.,DickinsonM.,Djor- present,atleastastheworkingsurfacefortheradiolobesandpro- govskiS.,EisenhardtP.,1990,ApJ,365,487 viding at least some the X-ray emission via bremsstrahlung. The McNamaraB.R.etal.,2000,ApJ,534,L135 sharpNandSedgestotheX-rayemissionmean,forathermalori- MeweR.,GronenschildE.H.B.M.,vandenOordG.H.J.,1985,A&AS,62, gin,thatthegasisnotincompletehydrostaticequilibrium.Itmay 197 havebeendisplacedwithintheinnerthirdbyabubbleofrelativistic MonetD.,et.al.,1998,USNO-A2.0(Washington:USNO) QuirrenbachA.,RobertsJ.E.,FidkowskiK.,deVriesW.,vanBreugelW., plasma.InverseComptonemissionfromrelativisticelectronswith g ∼103 probably accounts for emission from the radio hotspots, 2001,ApJ,556,108 RitchieB.W.,ThomasP.A.,2002,MNRAS,329,675 and possibly all the diffuse emission if such a population exists SarazinC.L.,1999,ApJ,520,529 wellbeyondtheradiostructure.TheX-rayspectrumofthediffuse SimpsonC.,RawlingsS.,2002,MNRAS,334,511 emission mildly favours a power-law of non-thermal origin, pro- SazonovS.Yu.,SunyaevR.A.,CramphornC.K.,2002,A&A,393,793 videdthatthepreliminaryACISABSmodelforthecorrectionofthe SmithD.A.,WilsonA.S.,ArnaudK.A.,TerashimaY.,YoungA.J.,2002, softX-raydegradationofthedetectorisadequate. ApJ,565,195 (cid:13)c 0000RAS,MNRAS000,000–000 10 A.C. Fabian,J.S.Sanders,C.S. Crawford andS. Ettori StocktonA.,CanalizoG.,RidgwayS.E.,1999,ApJ,519,L131 SunM.,MurrayS.S.,MarkevitchM.,VikhlininA.,2002,ApJ,565,867 WilsonA.S.,YoungA.J.,ShopbellP.L.,2000,ApJ,544,L27 WuK.K.S.FabianA.C.,NulsenP.E.J,2000,MNRAS,318,889 WyndhamJ.D.,1966,ApJ,144,459 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.