A decomposition for SU(2) Yang-Mills fields 3 1 0 2 n a J 0 SedighehDeldar∗ 1 UniversityofTehran ] E-mail:[email protected] h t - AhmadMohamadnejad p e UniversityofTehran h E-mail:[email protected] [ 1 v MotivatedbyAbeliandominance,wesupposethatthefieldstrengthtensorinthelowenergylimit 7 oftheSU(2)Yang-MillstheoryisGmn =Gmn n,whereGmn isaspace-timetensorandnisaunit 5 0 vectorfieldwhichselectstheAbeliandirectionateachspace-timepoint. Basedonthisformof 2 thefieldstrengthtensor,weproposeadecompositionfortheYang-Millsfieldwiththreedegrees . 1 offreedom. Itseemsthatbythiskindofdecompostion,bothmonopolesandvorticesappearat 0 3 the same time. We have also obtainedthe Dirac quantizationconditionwith a rescaled electric 1 charge. : v i X r a XthQuarkConfinementandtheHadronSpectrum 8-12October2012 TUMCampusGarching,Munich,Germany ∗ Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ AdecompositionforSU(2)Yang-Millsfields SedighehDeldar 1. Decompositionofthe Yang-Millsfield Even though the gauge field Am is a proper order parameter for describing the Yang-Mills theory initsultraviolet limit,thelowenergy limitoftheYang-Millstheorybehaves likeadualsu- perconductor [1]and some other order parameters maybecome more appropriate. Therefore, one can decompose the Yang-Mills fields to new collective variables. Decomposing the Yang-Mills fields has been done before by different methods [2]. These decompositions pursue different pur- posesinparticularinconnection withtheissueofquarkconfinementinquantumchromodynamics (QCD). We propose a decomposition based on the especial form of Gmn which is appropriate for theinfrared regimeoftheSU(2)Yang-MillstheorywithAbeliandominance [3] Gmn =Gmn n, (1.1) where Gmn is a colorless tensor and n is an isotriplet unit vector field which gives the Abelian direction ateach space-time point. Onecanconstruct anorthogonal basis forthecolorspace by n anditsderivatives, andthenexpandthegaugefieldAm Am =Cm n+f 1¶ m n+f 2n׶ m n. (1.2) ForSU(2)fieldstrength tensor, wehave Gmn =¶ m An −¶ n Am +gAm ×An . (1.3) SubstitutingEq. (1.2)in(1.3)andchangingthevariablesf = r ,1+gf = s ,wegetthefollowing 1 g2 2 g decomposition 1 r s Am =Cm n+ ¶ m n×n+ ¶ m n+ n׶ m n. (1.4) g g2 g2 ItiseasytoshowthatEq. (1.1)issatisfiedifCm isdecomposed asthefollowing 1 Cm = (s¶ m r −r¶ m s ), (1.5) ga2 A constraint on r and s is obtained as well: r 2+s 2 =a2, a is constant. Therefore, Cm is re- stricted andit hasone dynamical degree offreedom because itdepends on r and s whichare not independent. Thus,therearetotallythreedynamicaldegreesoffreedom: twofornandoneforCm . Thefieldstrength tensor canbe rewritten in termsof electric and magnetic fieldstrength ten- sors, Fmn andHmn ,respectively: Gmn =(Fmn +Hmn )n, (1.6) where 1 Fmn =¶ m Cn −¶ n Cm , Hmn =−g′n.(¶ m n׶ n n), (1.7) and 1 = 1−a2 whereg′ istherescaled electriccharge. g′ g g3 2 AdecompositionforSU(2)Yang-Millsfields SedighehDeldar 2. Vortices and monopoles Vorticeswillappearinastopologicalsingularitiesofthescalarfield(r ,s ),if"two-dimensional hedgehog ansatz"ischosen −→ r (r ,s )=a =a(cos(mj ),sin(mj )), m∈Z, (2.1) r wherej istheazimuthalcircularcoordinate of S1. UsingEq. (2.1)inEq. (1.5)oneobtains R Cm =−m¶ m j ⇒Cr =Cz=0, Cj =−m ⇒−→B =−2md (r)bk. (2.2) g gr gr Thisrepresents avortex-like objectwhichshowsthatthemagneticfieldissingularonthezaxis. Toobtainthemagneticmonopole, wechooseahedgehog configuration n= ra andweget, r −→ 1 m 1 B =Bbr, B=Hqj =−g′n.(¶ q n׶ j n)=−g′r2, m∈Z. (2.3) ′ From Eq. (2.3) one gets gg =m. This is the Dirac quantization condition, but with a rescaled m ′ electric charge g. Forourdecomposition, therelation between gandg is m a gg =m(1−( )2). (2.4) m g If a goes to zero, the familiar Dirac quantization condition would be restored. In addition, in this limitourdecompositionreducestotheChodecompositionwheretheU(1)fieldisnolongerdecom- posed, and consequently no vortices appear. So, it seems that the presence of vortices influences theDiracquantization condition byrescaling theelectric coupling orcharge. 3. Conclusion We conjecture a special form of the field strength tensor for the infrared limit of the SU(2) Yang-MillstheorytoproposeadecompositionfortheYang-Millsfield. Inthisdecomposition both vorticesandmonopolescanappearatthesametime. Diracquantization conditionisalsoobtained, butwitharescaled colorcharge. References [1] Y.Nambu,Phys.Rev.D104262(1974);M.Creutz,Phys.Rev.D102696(1974);G.’tHooft,High EnergyPhysics,EditoriceCompositori,Bologna(1975);S.Mandelstam,Phys.Report23245(1976); A.Polyakov,Nucl.Phys.B120,429(1977);G.’tHooft,Nucl.Phys.B153,141(1979). [2] Y.M.Cho,Phys.Rev.D21(1980)1080;Phys.Rev.D232415(1981).L.FaddeevandA.J.Niemi, Phys.Rev.Lett.821624(1999).S.V.Shabanov,Phys.Lett.B458322(1999);Phys.Lett.B463263 (1999). [3] T.SuzukiandI.Yotsuyanagi,Phys.Rev.D424257(1990);J.D.Stack,S.D.Neiman,andR. Wensley,Phys.Rev.D503399(1994);H.ShibaandT.Suzuki,Phys.Lett.B333461(1994). 3