ebook img

A Criterion for the Convergence of Learning with Spike Timing Dependent Plasticity PDF

8 Pages·0.185 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Criterion for the Convergence of Learning with Spike Timing Dependent Plasticity

A Criterion for the Convergence of Learning with Spike Timing Dependent Plasticity RobertLegensteinandWolfgangMaass InstituteforTheoreticalComputerScience TechnischeUniversitaetGraz A-8010Graz,Austria flegi,[email protected] Abstract Weinvestigateunderwhatconditionsaneuroncanlearnbyexperimen- tallysupportedrulesforspiketimingdependentplasticity(STDP)topre- dict the arrival times of strong “teacher inputs” to the same neuron. It turns out that in contrast to the famous Perceptron Convergence Theo- rem, which predicts convergence of the perceptron learning rule for a strongly simplified neuron model whenever a stable solution exists, no equally strong convergence guarantee can be given for spiking neurons withSTDP.Butwederiveacriteriononthestatisticaldependencystruc- tureofinputspiketrainswhichcharacterizesexactlywhenlearningwith STDP will converge on average for a simple model of a spiking neu- ron. This criterion is reminiscent of the linear separability criterion of thePerceptronConvergenceTheorem,butitappliesheretotherowsof a correlation matrix related to the spike inputs. In addition we show throughcomputersimulationsformorerealisticneuronmodelsthatthe resultinganalyticallypredictedpositivelearningresultsnotonlyholdfor the common interpretation of STDP where STDP changes the weights ofsynapses,butalsoforamorerealisticinterpretationsuggestedbyex- perimentaldatawhereSTDPmodulatestheinitialreleaseprobabilityof dynamicsynapses. 1 Introduction NumerousexperimentaldatashowthatSTDPchangesthevaluew ofasynapticweight old afterpairingofthefiringofthepresynapticneuronattimetpre withafiringofthepostsy- napticneuronattimetpost =tpre+(cid:1)ttow =w +(cid:1)waccordingtotherule new old w = minfwmax; wold+W+(cid:1)e(cid:0)(cid:1)t=(cid:28)+g ; if(cid:1)t>0 (1) new (cid:26) maxf0; wold(cid:0)W(cid:0)(cid:1)e(cid:1)t=(cid:28)(cid:0)g ; if(cid:1)t(cid:20)0; withsomeparametersW+;W(cid:0);(cid:28)+;(cid:28)(cid:0) > 0(see[1]). Ifduringtrainingateacherinduces firingofthepostsynapticneuron,thisrulebecomessomewhatanalogoustothewell-known perceptron learning rule for McCulloch-Pitts neurons (= “perceptrons”). The Perceptron ConvergenceTheoremstatesthatthisruleenablesaperceptrontolearn,startingfromany initial weights, after finitely many errors any transformation that it could possibly imple- ment. However, we have constructed examples of input spike trains and teacher spike trains (omitted in this abstract) such that although a weight vector exists which produces thedesiredfiringandwhichisstableunderSTDP,learningwithSTDPdoesnotconverge toastablesolution. Ontheotherhandexperimentsinvivohaveshownthatneuronscanbe teachedbysuitableteacherinputtoadoptagivenfiringresponse[2,3].Weshowinsection 2thatsuchconvergenceoflearningforspikingneuronscanbeexplainedbySTDPinthe averagecase,providedthatacertaincriterionismetforthestatisticaldependenceamong Poissonspikeinputs. Thevalidityoftheproposedcriterionistestedinsection3formore realisticmodelsforneuronsandsynapses. 2 Ananalytical criterionfortheconvergenceofSTDP TheaveragecaseanalysisinthissectionisbasedonthelinearPoissonneuronmodel(see [4,5]). ThisneuronmodeloutputsaspiketrainSpost(t)whichisarealizationofaPoisson processwiththeunderlyinginstantaneousfiringrateRpost(t). Werepresentaspiketrain S(t)asasumofDirac-(cid:14)functionsS(t)= (cid:14)(t(cid:0)t ),wheret isthekthspiketimeof thespiketrain. TheeffectofaninputspikePatkinputiakttimet0 iskmodeledbyanincrease intheinstantaneousfiringrateofanamountw (t0)(cid:15)(t(cid:0)t0), where(cid:15)isaresponsekernel i andw (t0)isthesynapticefficacyofsynapseiattimet0. Weassume(cid:15)(s) = 0fors < 0 i 1 (causality), ds(cid:15)(s) = 1(normalizationoftheresponsekernel),and(cid:15)(s) (cid:21) 0foralls 0 aswellaswRi (cid:21) 0foralli(excitatoryinputs). Inthelinearmodel,thecontributionsofall inputsaresummeduplinearly: n 1 Rpost(t)= dsw (t(cid:0)s)(cid:15)(s)S (t(cid:0)s), (2) j j Xj=1Z0 where S1;:::;Sn are the n presynaptic spike trains. Note that in this spike generation process,thegenerationofanoutputspikeisindependentofpreviousoutputspikes. The STDP-rule (1) avoids the growth of weights beyond bounds 0 and w by simple max clipping. Alternatively one can make the weight update dependent on the actual weight value. In [5] a general rule is suggested where the weight dependence has the form of a powerlawwithanon-negativeexponent(cid:22). Thisweightupdateruleisdefinedby (cid:1)w = W+(cid:1)(1(cid:0)w)(cid:22)(cid:1)e(cid:0)(cid:1)t=(cid:28)+ ; if(cid:1)t>0 (3) (cid:26) (cid:0)W(cid:0)(cid:1)w(cid:22)(cid:1)e(cid:1)t=(cid:28)(cid:0) ; if(cid:1)t(cid:20)0 , where we assumed for simplicity that w = 1. Instead of looking at specific input max spiketrains,weconsidertheaveragebehavioroftheweightvectorfor(possiblycorrelated) homogeneousPoissoninputspiketrains.Hence,thechange(cid:1)w isarandomvariablewith i a mean drift and fluctuations around it. We will in the following focus on the drift by assumingthatindividualweightchangesareverysmallandonlyaveragedquantitiesenter thelearningdynamics,see[6]. LetS bethespiketrainofinputiandletS(cid:3) betheoutput i spiketrainoftheneuron. Themeandriftofsynapseiattimetcanbeapproximatedas 1 0 w_i(t)=W+(1(cid:0)wi)(cid:22)Z0 dse(cid:0)s=(cid:28)Ci(s;t)(cid:0)W(cid:0)wi(cid:22)Z(cid:0)1dses=(cid:28)Ci(s;t) , (4) whereC (s;t)=hS (t)S(cid:3)(t+s)i istheensembleaveragedcorrelationfunctionbetween i i E inputiandtheoutputoftheneuron(see[5,6]). ForthelinearPoissonneuronmodel,input-outputcorrelationscanbedescribedbymeans of correlations in the inputs. We define the normalized cross correlation between input spiketrainsS andS withacommonrater >0as i j hS (t)S (t+s)i C0(s)= i j E (cid:0)1, (5) ij r2 whichassumesvalue0foruncorrelatedPoissonspiketrains. Weassumeinthisarticlethat C0 isconstantovertime. Inoursetup,theoutputoftheneuronduringlearningisclamped ij totheteacherspiketrainS(cid:3) whichistheoutputofaneuronwiththetargetweightvector w(cid:3). Therefore, the input-output correlations C (s;t) are also constant over time and we i denotethembyC (s)inthefollowing. Inourneuronmodel,correlationsareshapedbythe i response kernel (cid:15)(s) and they enter the learning equation (4) with respect to the learning window. Thismotivatesthedefinitionofwindowcorrelationsc+ andc(cid:0) forthepositive ij ij andnegativelearningwindowrespectively: 1 1 1 c(cid:6) =1+ dse(cid:0)s=(cid:28) ds0(cid:15)(s0)C0((cid:6)s(cid:0)s0) . (6) ij (cid:28) Z0 Z0 ij We call the matrices C(cid:6) = fc(cid:6)ijgi;j=1;:::;n the window correlation matrices. Note that windowcorrelationsarenon-negativeandthatforhomogeneousPoissoninputspiketrains and for a non-negative response kernel, they are positive. For soft weight bounds and (cid:22) > 0,asynapticweightcanconvergetoavaluearbitrarilycloseto0or1,butnottoone ofthesevaluesdirectly. Thismotivatesthefollowingdefinitionoflearnability. Definition2.1 We say that a target weight vector w(cid:3) 2 f0;1gn can approximately be learnedinasupervisedparadigmbySTDPwithsoftweightboundsonhomogeneousPois- soninputspiketrains(short:“w(cid:3)canbelearned”)ifandonlyifthereexistW+;W(cid:0) >0, suchthatfor(cid:22)!0theensembleaveragedweightvectorhw(t)i withlearningdynamics E givenbyEquation4convergestow(cid:3)foranyinitialweightvectorw(0)2[0;1]n. Wearenowreadytoformulateananalyticalcriterionforlearnability: Theorem2.1 A weight vector w(cid:3) can be learned for homogeneous Poisson input spike trainswithwindowcorrelationmatricesC+ andC(cid:0) toalinearPoissonneuronwithnon- negativeresponsekernelifandonlyifw(cid:3) 6=0and nk=1wk(cid:3)c+ik > nk=1wk(cid:3)c+jk Pn w(cid:3)c(cid:0) Pn w(cid:3)c(cid:0) k=1 k ik k=1 k jk P P forallpairshi;ji2f1;:::;ng2 withw(cid:3) =1andw(cid:3) =0. i j Proofidea: WeobtainthecorrelationsbetweenaninputandtheoutputbyusingEq. 2: n 1 (cid:3) (cid:3) 0 0 0 C (s)=hS (t)S (t+s)i = w ds (cid:15)(s)hS (t)S (t+s(cid:0)s)i . i i E Xj=1 j Z0 i j E SubstitutionofthisequationintoEq. 4yieldsthesynapticdrift n n w_i =(cid:28)r22W+f+(cid:22)(wi) wj(cid:3)c+ij (cid:0)W(cid:0)f(cid:0)(wi) wj(cid:3)c(cid:0)ij3 . (7) Xj=1 Xj=1 4 5 We find the equilibrium points w of synapse i by setting w_ = 0 in Eq. 7. This yields (cid:22)i i (cid:0)1 w = 1+ 1 , where (cid:3) denotes W+ nj=1wj(cid:3)c+ij. Note that the drift is zero if (cid:22)i (cid:18) (cid:3)1=(cid:22)(cid:19) i W(cid:0)Pn w(cid:3)c(cid:0) w(cid:3) = 0 whichiimplies that w(cid:3) = 0 cannot bePleaj=rn1edj. iFjor w(cid:3) 6= 0, one can show that w(cid:22) = (w(cid:22)1;:::;w(cid:22)n) is the only equilibrium point of the system and that it is stable. Furthermore,oneseesthatlim(cid:22)!0w(cid:22)i = 1ifandonlyif(cid:3)i > 1,andlim(cid:22)!0w(cid:22)i = 0if andonlyif(cid:3)i <1. Therefore,lim(cid:22)!0w(cid:22) =w(cid:3) holdsifandonlyif(cid:3)i >1foralliwith w(cid:3) =1and(cid:3) <1foralliwithw(cid:3) =0. Thetheoremfollowsfromthedefinitionof(cid:3) . i i i i For a wide class of cross-correlation functions, one can establish a relationship between learnabilityby STDP and thewell-known conceptof linearseparabilityfromlinearalge- bra.1 Because of synaptic delays, the response of a spiking neuron to an input spike is delayedbysometimet0. Onecanmodelsuchadelayintheresponsekernelbytherestric- tion(cid:15)(s) = 0foralls (cid:20) t0. InthefollowingCorollaryweconsiderthecasewhereinput correlationsC0(s)appearonlyinatimewindowsmallerthanthedelay: ij Corollary2.1 Ifthereexistsat0 (cid:21)0suchthat(cid:15)(s)=0foralls(cid:20)t0andCi0j(s)=0for all s < (cid:0)t0; i;j 2 f1;:::;ng, then the following holds for the case of homogeneous PoissoninputspiketrainstoalinearPoissonneuronwithpositiveresponsekernel(cid:15): Aweightvectorw(cid:3)canbelearnedifandonlyifw(cid:3) 6=0andw(cid:3)linearlyseparatesthelist L=hhc+;w(cid:3)i;:::;hc+;w(cid:3)ii,wherec+;:::;c+aretherowsofC+. 1 1 n n 1 n (cid:0) Proofidea: Fromtheassumptionsofthecorollaryitfollowsthatc =1. Inthiscase,the ij conditioninTheorem2.1isequivalenttothestatementthatw(cid:3) linearlyseparatesthelist L=hhc+;w(cid:3)i;:::;hc+;w(cid:3)ii. 1 1 n n Corollary2.1canbeviewedasananalogonofthePerceptronConvergenceTheoremforthe averagecaseanalysisofSTDP.Itsformulationistightinthesensethatlinearseparabilityof thelistLalone(asopposedtolinearseparabilitybythetargetvectorw(cid:3))isnotsufficient to imply learnability. For uncorrelated input spike trains of rate r > 0, the normalized cross correlation functions are given by C0(s) = (cid:14)ij(cid:14)(s), where (cid:14) is the Kronecker ij r ij deltafunction. ThepositivewindowcorrelationmatrixC+isthereforeessentiallyascaled versionoftheidentitymatrix. ThefollowingcorollarythenfollowsfromCorollary2.1: Corollary2.2 Atargetweightvectorw(cid:3) 2f0;1gncanbelearnedinthecaseofuncorre- latedPoissoninputspiketrainstoalinearPoissonneuronwithpositiveresponsekernel(cid:15) suchthat(cid:15)(s)=0foralls(cid:20)0ifandonlyif w(cid:3) 6=0. 3 ComputersimulationsofsupervisedlearningwithSTDP In order to make a theoretical analysis feasible, we needed to make in section 2 a num- ber of simplifying assumptions on the neuron model and the synapse model. In addition a number of approximations had to be used in order to simplify the estimates. We con- sider in this section the more realistic integrate-and-fire model2 for neurons and a model forsynapseswhicharesubjecttopaired-pulsedepressionandpaired-pulsefacilitation,in additiontothelongtermplasticityinducedbySTDP[7]. Thismodeldescribessynapses withparametersU (initialreleaseprobability),D(depressiontimeconstant),andF (facil- itation time constant) in addition to the synaptic weight w. The parametersU, D, and F 1Letc1;:::;cm 2Rnandy1;:::;ym 2f0;1g.Wesaythatavectorw2Rnlinearlyseparates the list hhc1;y1i;:::;hcm;ymii if there exists a threshold (cid:2) such that yi = sign(ci (cid:1)w (cid:0)(cid:2)) fori=1;:::;m.Wedefinesign(z)=1ifz(cid:21)0andsign(z)=0otherwise. 2ThemembranepotentialV oftheneuronisgivenby(cid:28) dVm = (cid:0)(V (cid:0)V )+R (cid:1) m m dt m resting m (I (t)+I +I (t))where(cid:28) =C (cid:1)R =30msisthemembranetimeconstant, syn background inject m m m R =1M(cid:10)isthemembraneresistance,I (t)isthecurrentsuppliedbythesynapses,I m syn background isaconstantbackgroundcurrent,andI (t)representscurrentsinducedbya“teacher”. IfV inject m exceedsthethresholdvoltageV itisresettoV = 14:2mV andheldthereforthelength thresh reset T =3msoftheabsoluterefractoryperiod.Neuronparameters:V =0V,I refract resting background randomlychosenforeachtrialfromtheinterval[13:5nA;14:5nA]. V wassetsuchthateach thresh neuronspikedatarateofabout25Hz. Thisresultedinathresholdvoltageslightlyabove15mV. Synapticparameters:Synapticcurrentsweremodeledasexponentiallydecayingcurrentswithdecay timeconstants(cid:28) =3ms((cid:28) =6ms)forexcitatory(inhibitory)synapses. S S were randomly chosen from Gaussian distributions that were based on empirically found dataforsuchconnections. Wealsoshowthatinsomecasesalessrestrictiveteacherforc- ing suffices, that tolerates undesired firing of the neuron during training. The results of section 2 predict that the temporal structure of correlations has a strong influence on the outcomeofalearningexperiment. Weusedinputspiketrainswithcrosscorrelationsthat decay exponentially with a correlation decay constant (cid:28) .3 In experiment 1 we consider cc relativelybroadtemporalcorrelations((cid:28) =10ms)andinexperiment2weconsidersharper cc correlations((cid:28) =6ms). cc Experiment 1 (correlated input with (cid:28) =10ms): In this experiment, a leaky integrate- cc and-fireneuronreceivedinputsfrom100dynamicsynapses. 90%ofthesesynapseswere excitatory and 10% were inhibitory. For each excitatory synapse, the maximal efficacy w was chosen from a Gaussian distribution with mean 54 and SD 10:8, bounded by max 54(cid:6)3SD. The90excitatoryinputsweredividedinto9groupsof10synapsespergroup. Spiketrainswerecorrelatedwithingroupswithcorrelationcoefficientsbetween0and0:8, whereastherewerevirtuallynocorrelationsbetweenspiketrainsofdifferentgroups.4 Tar- get weight vectors w(cid:3) were chosen in the most adverse way: half of the weights of w(cid:3) withineachgroupwassetto0,theotherhalftoitsmaximalvaluew (seeFig.1C). max A target trained 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 time [sec] B 1 C 60 target 40 0.8 w 20 0.6 0 0 20 40 60 80 angular error [rad] Synapse 0.4 spike correlation [s=5ms] D 60 trained 40 0.2 w 20 0 0 0 500 1000 1500 2000 2500 0 20 40 60 80 time [sec] Synapse Figure1: Learningatargetweightvectorw(cid:3)oncorrelatedPoissoninputs.A)Outputspiketrainon testdataafteronehouroftraining(trained)comparedtothetargetoutput(target). B)Evolutionof theanglebetweenweightvectorw(t)andthevectorw(cid:3)thatimplementsF inradiant(angularerror, solidline),andspikecorrelation(dashedline). C)Targetweightvectorw(cid:3) consistingofelements withvalue0orthevaluew assignedtothatsynapse. D)Correspondingweightsofthelearned max vectorw(t)after40minutesoftraining. Beforetraining,theweightsofallexcitatorysynapseswereinitializedbyrandomlychosen small values. Weights of inhibitory synapses remained fixed throughout the experiment. Informationaboutthetargetweightvectorw(cid:3) wasgiventotheneurononlyintheformof shortcurrentinjections(1(cid:22)Afor0.2ms)atthosetimeswhentheneuronwiththeweight vector w(cid:3) would have produced a spike. Learning was implemented as standard STDP (seerule1)withparameters(cid:28)+ =(cid:28)(cid:0) =20ms,W+ =0:45,W(cid:0)=W+ =1:05. Additional inhibitoryinputwasgiventotheneuronduringtrainingthatreducedtheoccurrenceofnon- 3Weconstructedinputspiketrainswithnormalizedcrosscorrelations(seeEquation5)approxi- matelygivenbyC0(s)= ccij e(cid:0)jsj=(cid:28)cc betweeninputsiandjforameaninputrateofr=20Hz, ij 2(cid:28)ccr acorrelationcoefficientc ,andacorrelationdecayconstantof(cid:28) =10ms. ij cc 4Thecorrelationcoefficientc forspiketrainswithinwithingroupkconsistingof10spiketrains ij wassettoc =cc =0:1(cid:3)(k(cid:0)1)fork=1;:::;9. ij k teacher-inducedfiringoftheneuron(seetextbelow).5 Twodifferentperformancemeasures were used for analyzing the learning progress. The “spike correlation” measures for test inputs that were not used for training (but had been generated by the same process) the deviationbetweentheoutputspiketrainproducedbythetargetweightvectorw(cid:3) forthis input,andtheoutputspiketrainproducedforthesameinputbytheneuronwiththecurrent weight vector w(t)6. The angular error measures the angle between the current weight vector w(t) and the target weight vector w(cid:3). The results are shown in Fig. 1. One can seethatthedeviationofthelearnedweightvectorshowninpanelDfromthetargetweight vectorw(cid:3) (panelC)isverysmall,evenforhighlycorrelatedgroupsofsynapseswithhet- erogeneoustargetweights. Nosignificantchangesintheresultswereobservedforlonger simulations(4hourssimulatedbiologicaltime),showingstabilityoflearning. On20trials (each with a new random distribution of maximal weights w , different initializations max w(0)oftheweightvectorbeforelearning,andnewPoissonspiketrains),aspikecorrela- tionof0:83(cid:6)0:06wasachieved(angularerror6:8(cid:6)4:7degrees).Notethatlearningisnot only based on teacher spikes but also on non teacher-induced firing. Therefore, strongly correlated groups of inputs tend to cause autonomous (i.e., not teacher-induced) firing of theneuronwhichresultsinweightincreasesforallweightswithinthecorrespondinggroup ofsynapsesaccordingtowell-knownresultsforSTDP[8,5]. Obviouslythiseffectmakes it quite hard to learn a target weight vector w(cid:3) where half of the weights for each corre- lated group have value 0. The effect is reduced by the additional inhibitory input during trainingwhichreducesundesiredfiring. However,withoutthisinputaspikecorrelationof 0:79(cid:6)0:09couldstillbeachieved(angularerror14:1(cid:6)10degrees). A 1 B 0.35 predicted to be learnable 0.9 0.3 predicted to be not learnable n0.8 on0.25 spike correlatio000...567 1−spike correlati0.001..512 0.4 0.05 0.3 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 5 10 15 input correlation cc weight error [°] Figure 2: A)Spikecorrelationachievedforcorrelatedinputs(solidline). Someinputswerecor- relatedwithccplottedonthex-axis. Also,asacontrolthespikecorrelationachievedbyrandomly drawnweightvectorsisshown(dashedline,wherehalfoftheweightsweresettow andtheother max weightsweresetto0). B)Comparisonbetweentheoryandsimulationresultsforaleakyintegrate- and-fireneuronandinputcorrelationsbetween0:1and0:5((cid:28) = 6ms). Eachcross(opencircle) cc marksatrialwherethetargetvectorwaslearnable(notlearnable)accordingtoTheorem2.1. The actuallearningperformanceofSTDPisplottedforeachtrialintermsoftheweighterror(x-axis)and 1minusthespikecorrelation(y-axis). Experiment2(testingthetheoreticalpredictionsfor(cid:28) =6ms): Inordertoevaluatethe cc dependence of correlation among inputs we proceeded in a setup similar to experiment 1. 4inputgroupsconsistingeachof10inputspiketrainswereconstructedforwhichthe correlations within each group had the same value cc while the input spike train to the other 50 excitatory synapses were uncorrelated. Again, half of the weights of w(cid:3) within 5Weadded30inhibitorysynapseswithweightsdrawnfromagammadistributionwithmean25 andstandarddeviation7:5,thatreceivedadditional30uncorrelatedPoissonspiketrainsat20Hz. 6ForthatpurposeeachspikeinthesetwooutputspiketrainswasreplacedbyaGaussianfunction with an SD of 5ms. The spike correlation between both output spike trains was defined as the correlationbetweentheresultingsmoothfunctionsoftime(forsegmentsoflength100s). eachcorrelatedgroup(andwithintheuncorrelatedgroup)wassetto0,theotherhalftoa randomlychosenmaximalvalue. Thelearningperformanceafter1houroftrainingfor20 trials is plotted in Fig. 2A for 7 different values of the correlation cc ((cid:28) = 6ms) that is cc appliedin4oftheinputgroups(solidline). In order to test the approximate validity of Theorem 2.1 for leaky integrate-and-fire neu- rons and dynamic synapses, we repeated the above experiment for input correlations cc=0:1;0:2;0:3;0:4,and0:5. Foreachcorrelationvalue,20learningtrials(withdifferent targetvectors)weresimulated. Foreachtrialwefirstcheckedwhetherthe(randomlycho- sen)targetvectorw(cid:3)waslearnableaccordingtotheconditiongiveninTheorem2:1(65% of the 100 learning trials were classified as being learnable).7 The actual performance of learningwithSTDPwasevaluatedafter50minutesoftraining.8 TheresultisshowninFig. 2B. Itshows that the theoreticalprediction of learnability or non-learnability forthe case ofsimplerneuronmodelsandsynapsesfromTheorem2.1translatesinabiologicallymore realisticscenariointoaquantitativegradingofthelearningperformancethatcanultimately beachievedwithSTDP. A 1 B target 0.2 0.8 U angular error [rad] 0.1 0.6 wspeiikgeh tc odrerveilaattiioonn 0 5 10 15 20 Synapse 0.4 C trained 0.2 0.2 U 0.1 0 0 0 500 1000 1500 2000 2500 5 10 15 20 time [sec] Synapse Figure3: ResultsofmodulationofinitialreleaseprobabilitiesU.A)PerformanceofU-learningfor agenericlearningtask(seetext).B)TwentyvaluesofthetargetU vector(eachcomponentassumes itsmaximalpossiblevalueorthevalue0).C)CorrespondingU valuesafter42minutesoftraining. Experiment 3 (Modulation of initial release probabilities U by STDP): Experimental data from [9] suggest that synaptic plasticity does not change the uniform scaling of the amplitudes of EPSPs resulting from a presynaptic spike train (i.e., the parameter w), but ratherredistributesthesumoftheiramplitudes. IfoneassumesthatSTDPchangesthepa- rameterU thatdeterminesthesynapticreleaseprobabilityforthefirstspikeinaspiketrain, whereastheweightwremainsunchanged,thenthesameexperimentaldatathatsupportthe classicalruleforSTDP,supportthefollowingruleforchangingU: U = minfUmax;Uold+U+(cid:1)e(cid:0)(cid:1)t=(cid:28)+g ; if(cid:1)t>0 (8) new (cid:26) maxf0;Uold(cid:0)U(cid:0)(cid:1)e(cid:1)t=(cid:28)(cid:0)g ; if(cid:1)t(cid:20)0 ; withsuitablenonnegativeparametersUmax;U+;U(cid:0);(cid:28)+;(cid:28)(cid:0). Fig. 3 shows results of an experiment where U was modulated with rule (8) (similar to experiment1,butwithuncorrelatedinputs). 20repetitionsofthisexperimentyieldedafter 42minutesoftrainingthefollowingresults: spikecorrelation0:88(cid:6)0:036,angularerror 27:9(cid:6)3:7degrees,forU+ =0:0012,U(cid:0)=U+ =1:055. Apparentlytheoutputspiketrain is less sensitive to changes in the values of U than to changes in w. Consequently, since 7Wehadchosenaresponsekerneloftheform(cid:15)(s)= (cid:28)1(cid:0)1(cid:28)2(e(cid:0)s=(cid:28)1 (cid:0)e(cid:0)s=(cid:28)2)with(cid:28)1 =2ms and(cid:28)2 =1ms(Leastmeansquaresfitofthedoubleexponentialtotheperi-stimulus-timehistogram (PSTH)oftheneuron,whichreflectstheprobabilityofspikingasafunctionoftimessinceaninput spike),andcalculatedthewindowcorrelationsc+ andc(cid:0) numerically. ij ij 8Toguaranteethebestpossibleperformanceforeachlearningtrial,trainingwasperformedon27 differentvaluesforW(cid:0)=W+between1:02and1:15. only the behavior of a neuron with vector U(cid:3) but not the vector U(cid:3) is made available to theneuronduringtraining,theresultingcorrelationbetweentarget-andactualoutputspike trains is quite high, whereas angular error between U(cid:3) and U(t), as well as the average deviationinU,remainratherlarge. We also repeated experiment 1 (correlated Poisson inputs) with rule (8) for U-learning. 20repetitionswithdifferenttargetweightsanddifferentinitialconditionsyieldedafter35 minutes of training: spike correlation 0:75(cid:6)0:08, angular error 39:3(cid:6)4:8 degrees, for U+ =8(cid:1)10(cid:0)4,U(cid:0)=U+ =1:09. 4 Discussion Themainconclusionofthisarticleisthatformanycommondistributionsofinputspikes a spiking neuron can learn with STDP and teacher-induced input currents any map from inputspiketrainstooutputspiketrainsthatitcouldpossiblyimplementinastablemanner. We have shown in section 2 that a mathematical average case analysis can be carried out for supervised learning with STDP. This theoretical analysis produces the first criterion that allows us to predict whether supervised learning with STDP will succeed in spite of correlationsamongPoissoninputspiketrains. Forthespecialcaseof“sharpcorrelations” (i.e. whenthecrosscorrelationsvanishfortimeshiftslargerthanthesynapticdelay)this criterioncanbeformulatedintermsoflinearseparabilityoftherowsofacorrelationmatrix related to the spike input, and itsmathematicalform istherefore reminiscent of the well- knownconditionforlearnabilityinthecaseofperceptronlearning. InthissenseCorollary 2.1 can be viewed as an analogon of the Perceptron Convergence Theorem for spiking neuronswithSTDP. FurthermorewehaveshownthatanalternativeinterpretationofSTDPwhereoneassumes thatitmodulatestheinitialreleaseprobabilitiesU ofdynamicsynapses, ratherthantheir scalingfactorsw,givesrisetoverysatisfactoryconvergenceresultsforlearning. Acknowledgment: We would like to thank Yves Fregnac, Wulfram Gerstner, and espe- ciallyHenryMarkramforinspiringdiscussions. References [1] L.F.AbbottandS.B.Nelson. Synapticplasticity:tamingthebeast. NatureNeurosci.,3:1178– 1183,2000. [2] Y. Fregnac, D. Shulz, S. Thorpe, and E. Bienenstock. A cellular analogue of visual cortical plasticity. Nature,333(6171):367–370,1988. [3] D.Debanne,D.E.Shulz,andY.Fregnac.Activitydependentregulationofon-andoff-responses incatvisualcorticalreceptivefields. JournalofPhysiology,508:523–548,1998. [4] R.Kempter,W.Gerstner,andJ.L.vanHemmen. Intrinsicstabilizationofoutputratesbyspike- basedhebbianlearning. NeuralComputation,13:2709–2741,2001. [5] R. Gu¨tig, R. Aharonov, S. Rotter, and H. Sompolinsky. Learning input correlations through non-lineartemporallyasymmetrichebbianplasticity.JournalofNeurosci.,23:3697–3714,2003. [6] R.Kempter,W.Gerstner,andJ.L.vanHemmen. Hebbianlearningandspikingneurons. Phys. Rev.E,59(4):4498–4514,1999. [7] H.Markram,Y.Wang,andM.Tsodyks. Differentialsignalingviathesameaxonofneocortical pyramidalneurons. PNAS,95:5323–5328,1998. [8] S. Song, K. D. Miller, and L. F. Abbott. Competitive hebbian learning through spike-timing dependentsynapticplasticity. NatureNeuroscience,3:919–926,2000. [9] H.MarkramandM.Tsodyks.Redistributionofsynapticefficacybetweenneocorticalpyramidal neurons. Nature,382:807–810,1996.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.