ebook img

A Cp-Theory Problem Book: Compactness in Function Spaces PDF

538 Pages·2015·5.173 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Cp-Theory Problem Book: Compactness in Function Spaces

Problem Books in Mathematics Vladimir V. Tkachuk A Cp-Theory Problem Book Compactness in Function Spaces Problem Books in Mathematics SeriesEditor: PeterWinkler DepartmentofMathematics DartmouthCollege Hanover,NH03755 USA Moreinformationaboutthisseriesathttp://www.springer.com/series/714 Vladimir V. Tkachuk A Cp-Theory Problem Book Compactness in Function Spaces 123 VladimirV.Tkachuk DepartamentodeMatematicas UniversidadAutonomaMetropolitana Iztapalapa,Mexico ISSN0941-3502 ISSN2197-8506 (electronic) ProblemBooksinMathematics ISBN978-3-319-16091-7 ISBN978-3-319-16092-4 (eBook) DOI10.1007/978-3-319-16092-4 LibraryofCongressControlNumber:2015933375 MathematicsSubjectClassification:Primary54C35,Secondary46E10 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) Preface This is the third volume of the series of books of problems in C -theory entitled p “AC -TheoryProblemBook”,i.e.,thisbookisacontinuationofthetwovolumes p subtitledTopologicalandFunctionSpacesandSpecialFeaturesofFunctionSpaces. The series was conceivedas an introductionto C -theorywith the hope that each p volumecouldalsobeusedasareferenceguideforspecialists. Thefirstvolumeprovidesaself-containedintroductiontogeneraltopologyand C -theoryandcontainssomehighlynon-trivialstate-of-the-artresults.Forexample, p Section1.4presentsShapirovsky’stheoremontheexistenceofapoint-countable(cid:2)- baseinanycompactspaceofcountabletightnessandSection1.5bringsthereader to the frontier of the modern knowledge about realcompactness in the context of functionspaces. The second volume covers a wide variety of topics in C -theory and general p topology at the professional level, bringing the reader to the frontiers of modern research.Itpresents,amongotherthings,aself-containedintroductiontoAdvanced Set Theory and Descriptive Set Theory, providing a basis for working with most popularaxiomsindependentofZFC. Thispresentvolumebasicallydealswithcompactnessanditsgeneralizationsin the context of function spaces. It continues dealing with topology and C -theory p ataprofessionallevel.Themainobjectiveistodevelopfromscratchthetheoryof compactspacesmostusedinFunctionalAnalysis,i.e.,Corsoncompacta,Eberlein compacta,andGul’kocompacta. InSection1.1ofChapter1,webuildupthenecessarybackgroundpresentingthe basicresultsonspacesC .X/whenX hasacompact-likeproperty.Inthissection, p thereaderwillfindtheclassicaltheoremofGrothendieck,a verydeeptheoremof Reznichenkoon!-monolithity,underMAC:CH,ofacompactspaceX ifC .X/ p isLindelöf,aswellastheresultsofOkunevandTamanoonnon-productivityofthe LindelöfpropertyinspacesC .X/. p ThemainmaterialofthisvolumeisplacedinSections1.2–1.4ofChapter1.Here we undertake a reasonably complete and up-to-date developmentof the theory of Corson,Gul’ko,andEberleincompacta.Section1.5developsthetheoryofsplittable v vi Preface spacesandgivesfar-reachingapplicationsofextensionoperatorsinbothC -theory p andgeneraltopology. We usealltopologicalmethodsdevelopedin thefirsttwovolumes,sowe refer totheir problemsandsolutionswhennecessary.Of course,the authordidhisbest to keep every solution as independent as possible, so a short argument could be repeatedseveraltimesindifferentplaces. The author wants to emphasize that if a postgraduate student mastered the materialofthefirsttwovolumes,itwillbemorethansufficienttounderstandevery problemandsolutionofthisbook.However,fora concretetopicmuchless might beneeded.Finally,letmeoutlinesomepointswhichshowthepotentialusefulness ofthepresentwork. • theonlybackgroundneededissomeknowledgeofsettheoryandrealnumbers; anyreasonablecourseincalculuscoverseverythingneededtounderstandthis book; • thestudentcanlearnallofgeneraltopologyrequiredwithoutrecurringtoany textbook or papers; the amountof general topology is strictly minimal and is presentedinsuchawaythatthestudentworkswiththespacesC .X/fromthe p verybeginning; • whatissaidinthepreviousparagraphistrueaswellifamathematicianworking outsideoftopology(infunctionalanalysis,forexample)wantstouseresultsor methodsofC -theory;he(orshe)willfindthemeasilyinaconcentratedform p orwithfullproofsifthereissuchaneed; • thematerialwepresenthereisuptodateandbringsthereadertothefrontierof knowledgeinareasonablenumberofimportantareasofC -theory; p • this book seems to be the first self-contained introduction to C -theory. p Although there is an excellent textbook written by Arhangel’skii (1992a), it heavilydependsonthereader’sgoodknowledgeofgeneraltopology. MexicoCity,Mexico VladimirV.Tkachuk Contents 1 BehaviorofCompactnessinFunctionSpaces ............................ 1 1.1 TheSpacesC .X/forCompactandCompact-LikeX................ 3 p 1.2 CorsonCompactSpaces................................................ 13 1.3 MoreofLindelöf˙-Property.Gul’koCompactSpaces.............. 22 1.4 EberleinCompactSpaces............................................... 31 1.5 SpecialEmbeddingsandExtensionOperators ........................ 39 2 SolutionsofProblems001–500............................................. 47 3 BonusResults:SomeHiddenStatements ................................. 459 3.1 StandardSpaces......................................................... 461 3.2 MetrizableSpaces....................................................... 463 3.3 CompactSpacesandTheirGeneralizations ........................... 465 3.4 PropertiesofContinuousMaps......................................... 467 3.5 CoveringProperties,NormalityandOpenFamilies................... 468 3.6 CompletenessandConvergenceProperties............................ 470 3.7 Ordered,Zero-DimensionalandProductSpaces...................... 471 3.8 CardinalInvariantsandSetTheory .................................... 472 4 OpenProblems .............................................................. 473 4.1 SokolovSpacesandCorsonCompactSpaces......................... 475 4.2 Gul’koCompactSpaces ................................................ 477 4.3 EberleinCompactSpaces............................................... 478 4.4 TheLindelöf˙-PropertyinC .X/ .................................... 480 p 4.5 TheLindelöfPropertyinXandC .X/ ................................ 482 p 4.6 ExtralandExtendialSpaces............................................ 485 4.7 Point-FiniteCellularityandCalibers................................... 488 vii viii Contents 4.8 GrothendieckSpaces.................................................... 489 4.9 Raznoie(UnclassifiedQuestions)...................................... 491 Bibliography...................................................................... 493 ListofSpecialSymbols.......................................................... 513 Index............................................................................... 519 Detailed Summary of Exercises 1.1.TheSpacesC .X/forCompactandCompact-likeX. p Somepropertiesofzero-dimensionalspaces .................Problems001–005. Densealgebrasinfunctionspaces ..........................Problems006–007. Stone–WeierstrasstheoremintheformofKakutani ................Problem008. Uniformlydensesubspacesoffunctionspaces ...............Problems009–010. Somepropertiesofk-directedandk-perfectclasses. .........Problems011–013. ThesubsetsrepresentativeforC .X/ ............................Problem014. p ExpressingpropertiesofC .X!/intermsofC .X/ .........Problems015–018. p p ObtainingC .X/2P whenP isan!-perfectclass. ..............Problem019. p Lindelöf˙-propertyinC .X/andC .X!/. ................Problems020–025. p p NormalityinC .X/foraLindelöf˙-spaceX. ..............Problems026–028. p Normalityisdensesubsetsofproducts ...........................Problem029. LindelöfpropertyofC .X/forcompactspacesX ...........Problems030–032. p CompactEG-spacesareFréchet–Urysohn ........................Problem033. AnymetrizablespaceisEG .....................................Problem034. EmbeddingspacesinC .X/foracompact-likeX. ..........Problems035–043. p Closuresofcompact-likesetsinC .X/forcompactX. ......Problems044–049. p HurewiczspacesandtheirC ’s ............................Problems050–059. p EmbeddingC .X/insequentialspaces .....................Problems060–063. p Radialityandpseudoradialityinfunctionspaces. .............Problems064–075. LindelöfpropertyinC .X;D/anditsderivatives ............Problems076–078. p Nowheredenseclosedsetsincompactspaces .....................Problem079. NormalityofC .X/forcompactX underMAC:CH ........Problems080–081. p LindelöfsubspacesinC .X/foracompactLOTSX. .............Problem082. p ClosuresofLindelöfsetsinC .X/foracompactX. .........Problems083–084. p OnsubsetsofC .(cid:3)C1/separatingpointsof(cid:3)C1 ...............Problem085. p LindelöfsubspacesaresmallinC .X/foradyadicX. .......Problems086–087. p CompactainC .X/forLindelöfX underPFA ..............Problems088–089. p Lindelöfpropertyofcountablepowers ......................Problems090–091. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.