ebook img

A Course In Robust Control Theory PDF

379 Pages·2010·5.69 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Course In Robust Control Theory

1 Robust Controol Theory Volker Wagner This is page i Printer: Opaque this A Course in Robust Control Theory a convex approach Geir E. Dullerud Fernando G. Paganini University of Illinois University of California Urbana-Champaign Los Angeles 2 Robust Controol Theory Volker Wagner This is page i Printer: Opaque this Contents 0 Introduction 1 0.1 System representations . . . . . . . . . . . . . . . . . . . 2 0.1.1 Block diagrams . . . . . . . . . . . . . . . . . . . 2 0.1.2 Nonlinear equations and linear decompositions . . 4 0.2 Robust control problems and uncertainty . . . . . . . . . 9 0.2.1 Stabilization . . . . . . . . . . . . . . . . . . . . . 9 0.2.2 Disturbances and commands . . . . . . . . . . . . 12 0.2.3 Unmodeled dynamics . . . . . . . . . . . . . . . . 15 1 Preliminaries in Finite Dimensional Space 18 1.1 Linear spaces and mappings . . . . . . . . . . . . . . . . 18 1.1.1 Vector spaces . . . . . . . . . . . . . . . . . . . . 19 1.1.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . 21 1.1.3 Bases, spans, and linear independence . . . . . . 22 1.1.4 Mappings and matrix representations . . . . . . 24 1.1.5 Change of basis and invariance . . . . . . . . . . 28 1.2 Subsets and Convexity . . . . . . . . . . . . . . . . . . . 30 1.2.1 Some basic topology . . . . . . . . . . . . . . . . 31 1.2.2 Convex sets . . . . . . . . . . . . . . . . . . . . . 32 1.3 Matrix Theory . . . . . . . . . . . . . . . . . . . . . . . . 38 1.3.1 Eigenvalues and Jordan form . . . . . . . . . . . 39 1.3.2 Self-adjoint, unitary and positive de(cid:12)nite matrices 41 1.3.3 Singular value decomposition . . . . . . . . . . . 45 1.4 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . 47 3 Robust Controol Theory Volker Wagner ii Contents 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2 State Space System Theory 57 2.1 The autonomous system . . . . . . . . . . . . . . . . . . 58 2.2 Controllability . . . . . . . . . . . . . . . . . . . . . . . . 61 2.2.1 Reachability . . . . . . . . . . . . . . . . . . . . . 61 2.2.2 Properties of controllability . . . . . . . . . . . . 66 2.2.3 Stabilizability and the PBH test . . . . . . . . . . 69 2.2.4 Controllability from a single input . . . . . . . . . 72 2.3 Eigenvalue assignment . . . . . . . . . . . . . . . . . . . 74 2.3.1 Single input case . . . . . . . . . . . . . . . . . . 74 2.3.2 Multi input case . . . . . . . . . . . . . . . . . . . 75 2.4 Observability . . . . . . . . . . . . . . . . . . . . . . . . 77 2.4.1 The unobservable subspace. . . . . . . . . . . . . 78 2.4.2 Observers . . . . . . . . . . . . . . . . . . . . . . 81 2.4.3 Observer-BasedControllers . . . . . . . . . . . . 83 2.5 Minimal realizations . . . . . . . . . . . . . . . . . . . . 84 2.6 Transfer functions and state space . . . . . . . . . . . . . 87 2.6.1 Real-rational matrices and state space realizations 89 2.6.2 Minimality . . . . . . . . . . . . . . . . . . . . . . 92 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3 Linear Analysis 97 3.1 Normed and inner product spaces. . . . . . . . . . . . . 98 3.1.1 Complete spaces . . . . . . . . . . . . . . . . . . 101 3.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2.1 Banach algebras . . . . . . . . . . . . . . . . . . . 107 3.2.2 Some elements of spectral theory . . . . . . . . . 110 3.3 Frequency domain spaces: signals . . . . . . . . . . . . . 113 3.3.1 The space L^2 and the Fourier transform . . . . . 113 3.3.2 The spaces H2 and H2? and the Laplace transform 115 3.3.3 Summarizing the big picture . . . . . . . . . . . . 119 3.4 Frequency domain spaces: operators . . . . . . . . . . . . 120 3.4.1 Time invariance and multiplication operators . . 121 3.4.2 Causality with time invariance . . . . . . . . . . . 122 3.4.3 Causality andH . . . . . . . . . . . . . . . . . 124 1 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4 Model realizations and reduction 131 4.1 Lyapunov equations and inequalities . . . . . . . . . . . 131 4.2 Observability operator and gramian . . . . . . . . . . . . 134 4.3 Controllability operator and gramian . . . . . . . . . . . 137 4.4 Balanced realizations . . . . . . . . . . . . . . . . . . . . 140 4.5 Hankel operators . . . . . . . . . . . . . . . . . . . . . . 143 4.6 Model reduction . . . . . . . . . . . . . . . . . . . . . . . 147 4 Robust Controol Theory Volker Wagner Contents iii 4.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . 148 4.6.2 Balanced truncation . . . . . . . . . . . . . . . . 151 4.6.3 Inner transfer functions . . . . . . . . . . . . . . . 154 4.6.4 Bound for the balanced truncation error . . . . . 155 4.7 Generalized gramians and truncations . . . . . . . . . . . 160 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5 Stabilizing Controllers 167 5.1 System Stability . . . . . . . . . . . . . . . . . . . . . . . 169 5.2 Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.2.1 Static state feedback stabilization via LMIs . . . 173 5.2.2 An LMI characterization of the stabilization prob- lem . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.3 Parametrizationof stabilizing controllers . . . . . . . . . 175 5.3.1 Coprime factorization . . . . . . . . . . . . . . . . 176 5.3.2 Controller Parametrization . . . . . . . . . . . . . 179 5.3.3 Closed-loop maps for the general system . . . . . 183 5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6 H2 Optimal Control 188 6.1 Motivation for H2 control . . . . . . . . . . . . . . . . . 190 6.2 Riccati equation and Hamiltonian matrix . . . . . . . . . 192 6.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 6.4 State feedback H2 synthesis via LMIs . . . . . . . . . . . 202 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 7 H Synthesis 208 1 7.1 Two important matrix inequalities . . . . . . . . . . . . 209 7.1.1 The KYP Lemma . . . . . . . . . . . . . . . . . . 212 7.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.3 Controller reconstruction . . . . . . . . . . . . . . . . . . 222 7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 8 Uncertain Systems 227 8.1 Uncertainty modeling and well-connectedness . . . . . . 229 8.2 Arbitrary block-structured uncertainty . . . . . . . . . . 234 8.2.1 A scaled small-gain test and its su(cid:14)ciency . . . . 236 8.2.2 Necessity of the scaled small-gain test. . . . . . . 239 8.3 The Structured Singular Value . . . . . . . . . . . . . . . 245 8.4 Time invariant uncertainty . . . . . . . . . . . . . . . . . 248 8.4.1 Analysis of time invariant uncertainty. . . . . . . 249 8.4.2 The matrix structured singular value and its upper bound . . . . . . . . . . . . . . . . . . . . . . . . 257 8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 5 Robust Controol Theory Volker Wagner iv Contents 9 Feedback Control of Uncertain Systems 270 9.1 Stability of feedback loops . . . . . . . . . . . . . . . . . 273 9.1.1 L2-extended and stability guarantees . . . . . . . 274 9.1.2 Causality and maps on L2-extended . . . . . . . . 277 9.2 Robust stability and performance . . . . . . . . . . . . . 280 9.2.1 Robust stability under arbitrary structured uncer- tainty. . . . . . . . . . . . . . . . . . . . . . . . . 281 9.2.2 Robust stability under LTI uncertainty . . . . . . 281 9.2.3 Robust Performance Analysis . . . . . . . . . . . 282 9.3 Robust Controller Synthesis . . . . . . . . . . . . . . . . 284 9.3.1 Robust synthesis against (cid:1)a;c . . . . . . . . . . 285 9.3.2 Robust synthesis against (cid:1)TI . . . . . . . . . . . 289 9.3.3 D-K iteration: a synthesis heuristic . . . . . . . . 293 9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 10 Further Topics: Analysis 298 10.1 Analysis via Integral Quadratic Constraints . . . . . . . 298 10.1.1 Analysis results . . . . . . . . . . . . . . . . . . . 303 10.1.2 The search for an appropriateIQC . . . . . . . . 308 10.2 Robust H2 Performance Analysis . . . . . . . . . . . . . 310 10.2.1 Frequencydomainmethodsandtheirinterpretation 311 10.2.2 State-Space Bounds Involving Causality . . . . . 316 10.2.3 Comparisons . . . . . . . . . . . . . . . . . . . . 320 10.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 321 11 Further Topics: Synthesis 323 11.1 Linear parameter varying and multidimensional systems 324 11.1.1 LPV synthesis . . . . . . . . . . . . . . . . . . . . 327 11.1.2 Realization theory for multidimensional systems . 333 11.2 A Framework for Time Varying Systems: Synthesis and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 11.2.1 Block-diagonaloperators . . . . . . . . . . . . . 338 11.2.2 The system function . . . . . . . . . . . . . . . . 340 11.2.3 Evaluating the ‘2 induced norm . . . . . . . . . . 344 11.2.4 LTV synthesis . . . . . . . . . . . . . . . . . . . . 347 11.2.5 Periodic systems and (cid:12)nite dimensional conditions 349 A Some Basic Measure Theory 352 A.1 Sets of zero measure . . . . . . . . . . . . . . . . . . . . 352 A.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 355 A.3 Comments on norms and Lp spaces . . . . . . . . . . . . 357 B Proofs of Strict Separation 359 C (cid:22)-Simple Structures 365 6 Robust Controol Theory Volker Wagner This is page 1 Printer: Opaque this 0 Introduction In this course we will explore and study a mathematical approach aimed directlyatdealingwith complexphysicalsystemsthat arecoupledinfeed- back. The general methodology we study has analytical applications to both human-engineered systems and systems that arise in nature, and the context of our course will be its use for feedback control. The direction we will take is based on two related observations about models for complex physical systems. The (cid:12)rst is that analytical or com- putational models which closely describe physical systems are di(cid:14)cult or impossible to precisely characterize and simulate. The second is that a model, no matter how detailed, is never a completely accurate represen- tation of a real physical system. The (cid:12)rst observation means that we are forced to use simpli(cid:12)ed system models for reasons of tractability; the lat- ter simply states that models are innately inaccurate. In this course both aspects will be termed system uncertainty, and our main objective is to developsystematic techniquesand tools forthe designand analysis of sys- tems which are uncertain. The predominant idea that is used to contend with such uncertainty or unpredictability isfeedback compensation. There are several ways in which systems can be uncertain, and in this course we will target the main three: The initial conditions of a system may not be accuratelyspeci(cid:12)ed or (cid:15) completely known. Systemsexperiencedisturbancesfromtheirenvironment,andsystem (cid:15) commands are typically not known a priori. 7 Robust Controol Theory Volker Wagner 2 0. Introduction Uncertainty in the accuracy of a system model itself is a central (cid:15) source. Any dynamical model of a system will neglect some physi- cal phenomena, and this means that any analyticalcontrolapproach based solely on this model will neglect some regimes of operation. Inshort: the majorobjectiveoffeedbackcontrolistominimizethe e(cid:11)ects of unknown initial conditions and external in(cid:13)uences on system behavior, subjecttotheconstraintofnothavingacompleterepresentationofthesys- tem.Thisisaformidablechallengeinthatpredictablebehaviorisexpected from a controlled system, and yet the strategies used to achieve this must do so using an inexact system model. The term robust in the title of this course refers to the fact that the methods we pursue will be expected to operatein anuncertainenvironmentwith respecttothe systemdynamics. The mathematical tools and models we use will be primarily linear, moti- vatedmainlybytherequirementofcomputabilityofourmethods;however thetheorywedevelopisdirectlyaimedatthecontrolofcomplexnonlinear systems.Inthisintroductorychapterwewilldevotesomespacetodiscuss, at an informal level, the interplay between linear and nonlinear aspects in this approach. The purpose of this chapter is to provide some context and motivation for the mathematical work and problems we will encounter in the course. For this reason we do not provide many technical details here, however it might be informative to refer back to this chapter periodically during the course. 0.1 System representations We will now introduce the diagrams and models used in this course. 0.1.1 Block diagrams We will often view physical or mathematical systems a mappings. From this perspective a system maps an input to an output; for dynamical sys- tems these are regarded as functions of time. This is not the only or most primitive way to view systems, although we will (cid:12)nd this viewpoint to be veryattractivebothmathematicallyandforguidingandbuildingintuition. In this section we introduce the notion of ablock diagramforrepresenting systems, and most importantly for specifying their interconnections. We use the symbol P to denote a system that maps an input function u(t) to an output function y(t). This relationship is denoted by y=P(u): Figure 1 illustrates this relationship. The direction of the arrows indicate whether a function is an input or an output of the system P. The details 8 Robust Controol Theory Volker Wagner 0.1. Systemrepresentations 3 y u P Figure 1. Basic blockdiagram of how P constructs y from the input u is not depicted in the diagram, insteadthebene(cid:12)tofusingsuchblockdiagramsisthatinterconnectionsof systems can be readily visualized. Consider the so-called cascade interconnection of the two subsystems. This interconnection represents the equations v y u P2 P1 v =P1(u) y =P2(v): We see that this interconnection takes the two subsystems P1 and P2 to form a system P de(cid:12)ned by P(u)=P2(P1(u)). Thus this diagram simply depicts a composition of maps. Notice that the input to P2 is the output of P1. z w P u y Q Another type of interconnection involves feedback. In the (cid:12)gure above wehavesuchanarrangement.HereP hasinputsgivenby theorderedpair (w; u) and the outputs (z; y). The system Q has input y and output u. This block diagram therefore pictorially represents the equations (z; y)=P (w; u) y=Q(y): Since part of the output of P is an input to Q, and conversely the output of Q is an input to P, these systems are coupled in feedback. 9 Robust Controol Theory Volker Wagner 4 0. Introduction We will now move on to discussing the basic modeling concept of this course and in doing so will immediately make use of block diagrams. 0.1.2 Nonlinear equations and linear decompositions We have just introduced the idea of representing a system as an input- output mapping, and did not concern ourselves with how such a mapping might be de(cid:12)ned. We will now outline the main idea behind the modeling framework used in this course, which is to represent a complex system as a combination of a perturbation and a simpler system. We will illustrate this by studying two important cases. Isolating nonlinearities The(cid:12)rstcaseconsideredisthedecompositionofasystemintoalinearpart and a static nonlinearity. The motivation for this is so that later we can replace the nonlinearity using objects more amenable to analysis. To start consider the nonlinear system described by the equations x_ =f(x;u) (1) y=h(x;u); with the initial condition x(0). Here x(t), y(t) and u(t) are vector valued functions, and f and h are smooth vector valued functions. The (cid:12)rst of theseequationsisadi(cid:11)erentialequationandthesecondispurelyalgebraic. Givenaninitialconditionandsomeadditionaltechnicalassumptions,these equationsde(cid:12)neamappingfromutoy.Ourgoalisnowtodecomposethis system into a linear part and a nonlinear part around a speci(cid:12)ed point; to reduce clutter in the notation we assume this point is zero. De(cid:12)ne the following equivalent system x_ =Ax+Bu+g(x; u) (2) y=Cx+Du+r(x; u); whereA,B,C andD providealinearapproximationtothedynamics,and g(x; u)=f (x; u) Ax Bu (cid:0) (cid:0) r(x; u)=h(x; u) h(0; 0) Cx Du: (cid:0) (cid:0) (cid:0) For instance one could take the Jacobian linearization A=d1f(0; 0); B =d2f(0; 0); C =d1h(0; 0); and D=d2h(0; 0); whered1 andd2 denotevectordi(cid:11)erentiationbythe(cid:12)rstandsecondvector variables respectively. The following discussion, however, does not require this assumption. The system in (2) consists of linear functions and the possibly nonlinear functions g and r. It is clear that the solutions to this 10 Robust Controol Theory Volker Wagner 0.1. Systemrepresentations 5 systemhaveaone-to-onecorrespondencewiththesolutionsof(1),sincewe have simply rewritten the functions. Further let us write these equations in the equivalent form x_ =Ax+Bu+w1 (3) y =Cx+Du+w2 (4) (w1; w2)=(g(x; u); r(x; u)): (5) Now let G be the mapping described by (3) and (4) which satis(cid:12)es G:(w1; w2; u) (x; u; y); 7! given an initial condition x(0). Further let Q be the mapping which takes (x; u) (w1; w2)asdescribedby(5).Thusthesystemofequationsde(cid:12)ned 7! by (3 - 5) has the block diagram below. The system G is totally described Q G y u Figure 2. Systemdecomposition by linear di(cid:11)erential equations, and Q is a static nonlinear mapping. By static we mean that the output of Q at any point in time depends only on the input at that particular time, or equivalently that Q has no memory. Thus all of the nonlinear behavior of the initial system (1) is captured in Q and the feedback interconnection. We will almost exclusively work with the case where the point (0; 0), around which this decomposition is taken, is an equilibrium point of (1). Namely f(0; 0)=0: In this case the functions g and r satisfy g(0; 0) =0 and r(0; 0)= 0, and therefore Q(0; 0)=0. Also the linear system described by x_ =Ax+Bu y =Cx+Du is the linearization of (1) around the equilibrium point. The linear system G is thus an augmented version of the linearization.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.