ebook img

A Course In Error-Correcting Codes PDF

228 Pages·2017·2.387 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Course In Error-Correcting Codes

J ø Textbooks in Mathematics r n J u s t e s Jørn Justesen and Tom Høholdt e n Jørn Justesen a A Course In Error-Correcting Codes n d T Tom Høholdt o Second edition m H ø h o This book, updated and enlarged for the second edition, is written l d t as a text for a course aimed at 3rd or 4th year students. Only some familiarity with elementary linear algebra and probability is directly A A Course In Error- assumed, but some maturity is required. The students may specialize C A Course In Error- o in discrete mathematics, computer science, or communication u r engineering. The book is also a suitable introduction to coding s e theory for researchers from related fields or for professionals who In CCoorrrreeccttiinngg CCooddeess E want to supplement their theoretical basis. The book gives the r r o coding basics for working on projects in any of the above areas, but r - C material specific to one of these fields has not been included. The o r chapters cover the codes and decoding methods that are currently r e c Second edition of most interest in research, development, and application. They t i n give a relatively brief presentation of the essential results, g C emphasizing the interrelations between different methods and o d proofs of all important results. A sequence of problems at the end e s of each chapter serves to review the results and give the student an appreciation of the concepts. In addition, some problems and S e suggestions for projects indicate direction for further work. The c o presentation encourages the use of programming tools for studying n d codes, implementing decoding methods, and simulating e d i performance. Specific examples of programming exercises are t i o provided on the book’s home page. n ISBN 978-3-03719-179-8 www.ems-ph.org Justesen 2nd | FONT: Rotis, WiesbadenSwing, Times, Helvetica | 4 colors (Euroscala) RB: 21 mm EMS Textbooks in Mathematics EMS Textbooks in Mathematics is a series of books aimed at students or professional mathemati- cians seeking an introduction into a particular field. The individual volumes are intended not only to provide relevant techniques, results, and applications, but also to afford insight into the motivations and ideas behind the theory. Suitably designed exercises help to master the subject and prepare the reader for the study of more advanced and specialized literature. Jørn Justesen and Tom Høholdt, A Course In Error-Correcting Codes Markus Stroppel, Locally Compact Groups Peter Kunkel and Volker Mehrmann, Differential-Algebraic Equations Dorothee D. Haroske and Hans Triebel, Distributions, Sobolev Spaces, Elliptic Equations Thomas Timmermann, An Invitation to Quantum Groups and Duality Oleg Bogopolski, Introduction to Group Theory Marek Jarnicki and Peter Pflug, First Steps in Several Complex Variables: Reinhardt Domains Tammo tom Dieck, Algebraic Topology Mauro C. Beltrametti et al., Lectures on Curves, Surfaces and Projective Varieties Wolfgang Woess, Denumerable Markov Chains Eduard Zehnder, Lectures on Dynamical Systems. Hamiltonian Vector Fields and Symplectic Capacities Andrzej Skowron´ski and Kunio Yamagata, Frobenius Algebras I. Basic Representation Theory Piotr W. Nowak and Guoliang Yu, Large Scale Geometry Joaquim Bruna and Juliá Cufí, Complex Analysis Eduardo Casas-Alvero, Analytic Projective Geometry Fabrice Baudoin, Diffusion Processes and Stochastic Calculus Olivier Lablée, Spectral Theory in Riemannian Geometry Dietmar A. Salamon, Measure and Integration Andrzej Skowron´ski and Kunio Yamagata, Frobenius Algebras II. Tilted and Hochschild Extension Algebras Jørn Justesen Tom Høholdt A Course In Error- Correcting Codes Second edition Authors: Jørn Justesen Tom Høholdt Department of Photonics Engineering Department of Applied Mathematics and Computer Science Technical University of Denmark Technical University of Denmark 2800 Kgs. Lyngby 2800 Kgs. Lyngby Denmark Denmark E-mail: [email protected] E-mail: [email protected] 2010 Mathematics Subject Classification: 94-01;12-01 Key words: Error-correcting codes, Reed–Solomon codes, convolutional codes, product codes, graph codes, algebraic geometry codes First edition published in 2004 by the European Mathematical Society ISBN 978-3-03719-179-8 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2017 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A21 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: le-tex publishing services GmbH, Leipzig, Germany Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 Preface to the second edition The new edition of the book reflects the fact that both the theory and the appli- cationshaveevolvedoverthelasttwelveyears. Sometopicshavebeenremoved, othersexpanded,andnewcodeswereadded. We want to thank Shorijo Sakata, Knud J. Larsen, and Johan S. Rosenkilde Nielsenfortheirhelpinimprovingthetext. Wehavenotincludedreferencestoscientificliterature,industrystandards,or internet resources. As both theory and applications have diversified, we can no longerpoint to a few useful starting points for further studies, but the interested readershouldhavenodifficultyinsearchingforadditionalinformationaboutspe- cificsubjects. WashingtonD.C.,Virum,December2016 JørnJustesen,TomHøholdt Contents 1 BlockCodesforErrorCorrection . . . . . . . . . . . . . . . . . . . 1 1.1 Linearcodesandvectorspaces . . . . . . . . . . . . . . . . . . . 1 1.2 Minimumdistanceandminimumweight . . . . . . . . . . . . . . 4 1.3 SyndromedecodingandtheHammingbound . . . . . . . . . . . 8 1.4 Weightdistributions . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 FiniteFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Fundamentalpropertiesoffinitefields . . . . . . . . . . . . . . . 21 2.2 Polynomialsoverfinitefields . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Reed–SolomoncodesoverF . . . . . . . . . . . . . . . . 26 p 2.3 ThefinitefieldF2m . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 QuadraticpolynomialsoverF2m . . . . . . . . . . . . . . 29 2.4 Minimalpolynomialsandfactorizationofxn(cid:2)1 . . . . . . . . . 30 2.5 Geometriesoverfinitefields . . . . . . . . . . . . . . . . . . . . 35 2.5.1 Affineplanes . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.2 Projectiveplanes . . . . . . . . . . . . . . . . . . . . . . . 36 2.6 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 CommunicationChannelsandErrorProbability . . . . . . . . . . . 41 3.1 Probabilityandentropy . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.1 Probabilitydistributions . . . . . . . . . . . . . . . . . . . 41 3.1.2 Discretemessagesandentropy . . . . . . . . . . . . . . . 42 3.2 Mutualinformationandcapacityofdiscretechannels . . . . . . . 43 3.2.1 Discretememorylesschannels . . . . . . . . . . . . . . . 43 3.2.2 Approximationsforlongsequences . . . . . . . . . . . . . 46 3.3 Errorprobabilitiesforspecificcodes . . . . . . . . . . . . . . . . 47 3.3.1 Theprobabilityoffailureanderror forboundeddistancedecoding . . . . . . . . . . . . . . . 47 3.3.2 Boundsformaximumlikelihooddecoding ofbinaryblockcodes . . . . . . . . . . . . . . . . . . . . 50 3.4 Longcodesandchannelcapacity . . . . . . . . . . . . . . . . . . 53 3.5 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Reed–SolomonCodesandTheirDecoding . . . . . . . . . . . . . . 61 4.1 Basicdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 DecodingReed–Solomoncodes . . . . . . . . . . . . . . . . . . 63 4.3 Alistdecodingalgorithm . . . . . . . . . . . . . . . . . . . . . . 66 viii Contents 4.4 Anotherdecodingalgorithm . . . . . . . . . . . . . . . . . . . . 69 4.5 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 CyclicCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1 Introductiontocycliccodes . . . . . . . . . . . . . . . . . . . . . 77 5.2 Generatorandparitycheckmatricesofcycliccodes . . . . . . . . 79 5.3 CyclicReed–SolomoncodesandBCHcodes . . . . . . . . . . . 80 5.3.1 CyclicReed–Solomoncodes . . . . . . . . . . . . . . . . 81 5.3.2 BCHcodes . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4 CycliccodesfromPG.2;F2m/ . . . . . . . . . . . . . . . . . . . 83 5.5 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1 Definitionsofframesandtheirefficiency . . . . . . . . . . . . . . 93 6.2 Framequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2.1 Measuresofquality . . . . . . . . . . . . . . . . . . . . . 95 6.2.2 Paritychecksonframes . . . . . . . . . . . . . . . . . . . 96 6.2.3 Headerprotectioncodes . . . . . . . . . . . . . . . . . . . 97 6.3 Shortblockcodesinframes . . . . . . . . . . . . . . . . . . . . . 97 6.3.1 ReedSolomoncodesandlongBCHcodes . . . . . . . . . 99 6.4 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 MaximumLikelihoodDecodingandConvolutionalCodes . . . . . . 103 7.1 Definitionsofconvolutionalcodes . . . . . . . . . . . . . . . . . 103 7.2 Codewordsandminimumweights . . . . . . . . . . . . . . . . . 107 7.3 Maximumlikelihooddecoding . . . . . . . . . . . . . . . . . . . 111 7.4 Maximumlikelihooddecodingofblockcodes andtail-bitingcodes . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.5 Puncturedcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.6 Correctableerrorpatternsandunitmemorycodes . . . . . . . . . 118 7.7 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 8 CombinationsofSeveralCodes . . . . . . . . . . . . . . . . . . . . . 125 8.1 Productcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.2 ProductsofReed–Solomonandbinarycodes (concatenatedcodes) . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2.1 Parametersofconcatenatedcodes . . . . . . . . . . . . . . 129 8.2.2 Innerconvolutionalcodes . . . . . . . . . . . . . . . . . . 131 8.3 Graphcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.3.1 Graphsandtheiradjacencymatrices . . . . . . . . . . . . 133 8.3.2 Codesongraphs . . . . . . . . . . . . . . . . . . . . . . . 134 8.3.3 RScodesonplanes . . . . . . . . . . . . . . . . . . . . . 136 8.4 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Contents ix 9 DecodingReed–SolomonandBCHCodes . . . . . . . . . . . . . . . 141 9.1 Syndromecalculation . . . . . . . . . . . . . . . . . . . . . . . . 141 9.2 TheEuclideanalgorithm . . . . . . . . . . . . . . . . . . . . . . 144 9.3 Reed–SolomonandBCHdecodingwiththeEuclidianalgorithm . 146 9.4 Findingtheerrorpositions . . . . . . . . . . . . . . . . . . . . . 148 9.5 Calculationoferrorvalues . . . . . . . . . . . . . . . . . . . . . 149 9.6 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10 IterativeDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.1 Lowdensityparitycheckcodes . . . . . . . . . . . . . . . . . . . 153 10.2 Bitflipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.2.1 Generalizedsyndromes . . . . . . . . . . . . . . . . . . . 155 10.2.2 Abit-flippingalgorithm . . . . . . . . . . . . . . . . . . . 155 10.2.3 Decodingofprojectivegeometrycodes . . . . . . . . . . . 156 10.3 Decodingbymessagepassing. . . . . . . . . . . . . . . . . . . . 157 10.4 Decodingproductcodesbyiterated(serial)decoding . . . . . . . 162 10.5 Decodingofgraphcodes . . . . . . . . . . . . . . . . . . . . . . 165 10.6 Paralleldecoding . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.6.1 Messagepassingingraphcodes . . . . . . . . . . . . . . . 166 10.6.2 Parallelencodinganddecodingofproductcodes . . . . . . 167 10.6.3 Parallelencodinganddecodingofconvolutionalcodes. . . 168 10.7 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11 AlgebraicGeometryCodes . . . . . . . . . . . . . . . . . . . . . . . 173 11.1 Hermitiancodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.2 DecodingHermitiancodes . . . . . . . . . . . . . . . . . . . . . 178 11.3 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 A SomeResultsfromLinearAlgebra . . . . . . . . . . . . . . . . . . . 181 A.1 Vandermondematrices . . . . . . . . . . . . . . . . . . . . . . . 181 A.2 Ausefultheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 184 B CommunicationChannels . . . . . . . . . . . . . . . . . . . . . . . . 185 B.1 Gaussianchannels . . . . . . . . . . . . . . . . . . . . . . . . . . 185 B.2 Gaussianchannelswithquantizedinputandoutput . . . . . . . . 186 B.3 MLDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 C Tablesofminimalpolynomials . . . . . . . . . . . . . . . . . . . . . 189 D SolutionstoSelectedProblems . . . . . . . . . . . . . . . . . . . . . 193 D.1 SolutionstoproblemsinChapter1 . . . . . . . . . . . . . . . . . 193 D.2 SolutionstoproblemsinChapter2 . . . . . . . . . . . . . . . . . 196 D.3 SolutionstoproblemsinChapter3 . . . . . . . . . . . . . . . . . 198 D.4 SolutionstoproblemsinChapter4 . . . . . . . . . . . . . . . . . 200

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.