238 Graduate Texts in Mathematics Editorial Board S. Axler K.A. Ribet Graduate Texts in Mathematics 1 TAKEUTI/ZARING. Introduction to 34 SPITZER. Principles of Random Walk. Axiomatic Set Theory. 2nd ed. 2nd ed. 2 OXTOBY. Measure and Category. 2nd ed. 35 ALEXANDER/WERMER. Several Complex 3 SCHAEFER. Topological Vector Spaces. Variables and Banach Algebras. 3rd ed. 2nd ed. 36 KELLEY/NAMIOKA et al. Linear 4 HILTON/STAMMBACH. A Course in Topological Spaces. Homological Algebra. 2nd ed. 37 MONK. Mathematical Logic. 5 MAC LANE. Categories for the Working 38 GRAUERT/FRITZSCHE. Several Complex Mathematician. 2nd ed. Variables. 6 HUGHES/PIPER. Projective Planes. 39 ARVESON. An Invitation to C*-Algebras. 7 J.-P. SERRE. A Course in Arithmetic. 40 KEMENY/SNELL/KNAPP. Denumerable 8 TAKEUTI/ZARING. Axiomatic Set Theory. Markov Chains. 2nd ed. 9 HUMPHREYS. Introduction to Lie Algebras 41 APOSTOL. Modular Functions and and Representation Theory. Dirichlet Series in Number Theory. 10 COHEN. A Course in Simple Homotopy 2nd ed. Theory. 42 J.-P. SERRE. Linear Representations of 11 CONWAY. Functions of One Complex Finite Groups. Variable I. 2nd ed. 43 GILLMAN/JERISON. Rings of Continuous 12 BEALS. Advanced Mathematical Analysis. Functions. 13 ANDERSON/FULLER. Rings and Categories of 44 KENDIG. Elementary Algebraic Geometry. Modules. 2nd ed. 45 LOÈVE. Probability Theory I. 4th ed. 14 GOLUBITSKY/GUILLEMIN. Stable Mappings 46 LOÈVE. Probability Theory II. 4th ed. and Their Singularities. 47 MOISE. Geometric Topology in 15 BERBERIAN. Lectures in Functional Analysis Dimensions 2 and 3. and Operator Theory. 48 SACHS/WU. General Relativity for 16 WINTER. The Structure of Fields. Mathematicians. 17 ROSENBLATT. Random Processes. 2nd ed. 49 GRUENBERG/WEIR. Linear Geometry. 18 HALMOS. Measure Theory. 2nd ed. 19 HALMOS. A Hilbert Space Problem Book. 50 EDWARDS. Fermat’s Last Theorem. 2nd ed. 51 KLINGENBERG. A Course in Differential 20 HUSEMOLLER. Fibre Bundles. 3rd ed. Geometry. 21 HUMPHREYS. Linear Algebraic Groups. 52 HARTSHORNE. Algebraic Geometry. 22 BARNES/MACK. An Algebraic Introduction 53 MANIN. A Course in Mathematical Logic. to Mathematical Logic. 54 GRAVER/WATKINS. Combinatorics with 23 GREUB. Linear Algebra. 4th ed. Emphasis on the Theory of Graphs. 24 HOLMES. Geometric Functional Analysis 55 BROWN/PEARCY. Introduction to Operator and Its Applications. Theory I: Elements of Functional Analysis. 25 HEWITT/STROMBERG. Real and Abstract 56 MASSEY. Algebraic Topology: An Analysis. Introduction. 26 MANES. Algebraic Theories. 57 CROWELL/FOX. Introduction to Knot 27 KELLEY. General Topology. Theory. 28 ZARISKI/SAMUEL. Commutative Algebra. 58 KOBLITZ. p-adic Numbers, p-adic Analysis, Vol.I. and Zeta-Functions. 2nd ed. 29 ZARISKI/SAMUEL. Commutative Algebra. 59 LANG. Cyclotomic Fields. Vol.II. 60 ARNOLD. Mathematical Methods in 30 JACOBSON. Lectures in Abstract Algebra I. Classical Mechanics. 2nd ed. Basic Concepts. 61 WHITEHEAD. Elements of Homotopy 31 JACOBSON. Lectures in Abstract Algebra II. Theory. Linear Algebra. 62 KARGAPOLOV/MERLZJAKOV. Fundamentals 32 JACOBSON. Lectures in Abstract Algebra III. of the Theory of Groups. Theory of Fields and Galois Theory. 63 BOLLOBAS. Graph Theory. 33 HIRSCH. Differential Topology. (continued after index) Martin Aigner A Course in Enumeration With 55 Figures and 11 Tables 123 Martin Aigner Freie Universität Berlin Fachbereich Mathematik und Informatik Institut für Mathematik II Arnimallee 3 14195 Berlin, Germany [email protected] Editorial Board S. Axler K.A. Ribet Mathematics Department Mathematics Department San Francisco State University University of California, Berkeley San Francisco, CA 94132 Berkeley, CA 94720-3840 USA USA [email protected] [email protected] Library of Congress Control Number: 2007928344 Mathematics Subject Classification (2000): 05-01 ISSN 0072-5285 ISBN 978-3-540-39032-4 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting by the author Cover design: WMX Design GmbH, Heidelberg Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig Printed on acid-free paper 46/3180/YL - 5 4 3 2 1 0 Preface Counting things is probably mankind’s earliest mathematical ex- perience, and so, not surprisingly, combinatorial enumeration oc- cupies an important place in virtually every mathematical field. Yet apart from such time-honored notions as binomial coefficients, inclusion-exclusion, and generating functions, combinatorial enu- meration is a young discipline. Its main principles, methods, and fields of application evolved into maturity only in the last century, and there has been an enormous growth in recent years. The aim of this book is to give a broad introduction to combinatorial enu- meration at a leisurely pace, covering the most important subjects andleadingthereaderinsomeinstancestotheforefrontofcurrent research. The text is divided into three parts: Basics, Methods, and Topics. This should enable the reader to understand what combinatorial enumeration is all about, to apply the basic tools to almost any problemheorshemayencounter,andtoproceedtomoreadvanced methods and some attractive and lively fields of research. As prerequisites, only the usual courses in linear algebra and cal- culus and the basic notions of algebra and probability theory are needed.Sincegraphsareoftenusedto illustrate a particularresult, it may also be a good thing to have a text on graph theory at hand. For terminology and notation not listed in the index the books by R. Diestel, Graph Theory, Springer 2006, and D.B. West, Introduc- tion to Graph Theory, Prentice Hall 1996, are good sources. Given these prerequisites, the book is best suited for a senior undergrad- uate or first-year graduate course. It is commonplace to stress the importance of exercises. To learn enumerative combinatorics one simply must do as many exercises aspossible. Exercisesappearthroughout the textto illustrate some points and entice the reader to complete proofs or find generali- zations. There are 666 exercises altogether. Many of them contain hints, and for those marked with (cid:2) you will find a solution in the appendix. In each section, the exercises appear in two groups, di- vided by a horizontal line. Those in the first part should be doable with modest effort, while those in the second half require a little VI Preface more work. Each chapter closes with a special highlight, usually a famous and attractive problem illustrating the foregoing material, and a short list of references for further reading. I am grateful to many colleagues, friends, and students for all kindsofcontributions.MyspecialthanksgotoMarkdeLongueville, Jürgen Schütz, and Richard Weiss, who read all or part of the book in its initial stages; to Margrit Barrett and Christoph Eyrich for the superb technical work and layout; and to David Kramer for his meticulous copyediting. It is my hope that by the choice of topics, examples, and exer- cisesthebookwillconveysomeoftheintrinsicbeautyandintuitive mathematical pleasure of the subject. Berlin, Spring 2007 Martin Aigner Contents Introduction................................................. 1 Part I: Basics 1 Fundamental Coefficients ............................... 5 1.1 Elementary Counting Principles ..................... 5 Exercises ........................................... 9 1.2 Subsets and Binomial Coefficients................... 10 Exercises ........................................... 18 1.3 Set-partitions and Stirling Numbers S ............ 20 n,k Exercises ........................................... 23 1.4 Permutations and Stirling Numbers s ............. 24 n,k Exercises ........................................... 29 1.5 Number-Partitions .................................. 31 Exercises ........................................... 35 1.6 Lattice Paths and Gaussian Coefficients ............. 36 Exercises ........................................... 42 Highlight: Aztec Diamonds............................... 44 Notes and References.................................... 51 2 Formal Series and Infinite Matrices...................... 53 2.1 Algebra of Formal Series............................ 53 Exercises ........................................... 59 2.2 Types of Formal Series.............................. 60 Exercises ........................................... 65 2.3 Infinite Sums and Products ......................... 66 Exercises ........................................... 70 2.4 Infinite Matrices and Inversion of Sequences ........ 71 Exercises ........................................... 76 2.5 Probability Generating Functions.................... 77 Exercises ........................................... 84 Highlight: The Point of (No) Return....................... 85 Notes and References.................................... 90 VIII Contents Part II: Methods 3 Generating Functions ................................... 93 3.1 Solving Recurrences ................................ 93 Exercises ........................................... 102 3.2 Evaluating Sums .................................... 105 Exercises ........................................... 110 3.3 The Exponential Formula ........................... 112 Exercises ........................................... 122 3.4 Number-Partitions and Infinite Products ............ 124 Exercises ........................................... 132 Highlight: Ramanujan’s Most Beautiful Formula .......... 136 Notes and References.................................... 141 4 Hypergeometric Summation ............................ 143 4.1 Summation by Elimination.......................... 143 Exercises ........................................... 148 4.2 Indefinite Sums and Closed Forms .................. 148 Exercises ........................................... 155 4.3 Recurrences for Hypergeometric Sums .............. 155 Exercises ........................................... 161 4.4 Hypergeometric Series.............................. 162 Exercises ........................................... 168 Highlight: New Identities from Old ....................... 171 Notes and References.................................... 178 5 Sieve Methods........................................... 179 5.1 Inclusion–Exclusion................................. 179 Exercises ........................................... 189 5.2 Möbius Inversion ................................... 191 Exercises ........................................... 200 5.3 The Involution Principle ............................ 202 Exercises ........................................... 215 5.4 The Lemma of Gessel–Viennot ...................... 217 Exercises ........................................... 229 Highlight: Tutte’s Matrix–Tree Theorem .................. 231 Notes and References.................................... 237 Contents IX 6 Enumeration of Patterns ................................ 239 6.1 Symmetries and Patterns ........................... 239 Exercises ........................................... 248 6.2 The Theorem of Pólya–Redfield ..................... 249 Exercises ........................................... 260 6.3 Cycle Index......................................... 262 Exercises ........................................... 269 6.4 Symmetries on N and R ............................ 270 Exercises ........................................... 276 Highlight: Patterns of Polyominoes....................... 278 Notes and References.................................... 285 Part III: Topics 7 The Catalan Connection................................. 289 7.1 Catalan Matrices and Orthogonal Polynomials....... 290 Exercises ........................................... 297 7.2 Catalan Numbers and Lattice Paths ................. 300 Exercises ........................................... 305 7.3 Generating Functions and Operator Calculus ........ 306 Exercises ........................................... 320 7.4 Combinatorial Interpretation of Catalan Numbers ... 323 Exercises ........................................... 333 Highlight: Chord Diagrams............................... 337 Notes and References.................................... 344 8 Symmetric Functions.................................... 345 8.1 Symmetric Polynomials and Functions .............. 345 Exercises ........................................... 349 8.2 HomogeneousSymmetric Functions ................ 350 Exercises ........................................... 355 8.3 Schur Functions .................................... 356 Exercises ........................................... 366 8.4 The RSK Algorithm ................................. 367 Exercises ........................................... 378 8.5 Standard Tableaux.................................. 380 Exercises ........................................... 383 Highlight: Hook-Length Formulas ........................ 385 Notes and References.................................... 391 X Contents 9 Counting Polynomials................................... 393 9.1 The Tutte Polynomial of Graphs .................... 393 Exercises ........................................... 405 9.2 Eulerian Cycles and the Interlace Polynomial ........ 407 Exercises ........................................... 419 9.3 Plane Graphs and Transition Polynomials ........... 420 Exercises ........................................... 432 9.4 Knot Polynomials................................... 434 Exercises ........................................... 443 Highlight: The BEST Theorem ............................ 445 Notes and References.................................... 449 10 Models from Statistical Physics ......................... 451 10.1 The Dimer Problem and Perfect Matchings .......... 451 Exercises ........................................... 465 10.2 The Ising Problem and Eulerian Subgraphs .......... 467 Exercises ........................................... 480 10.3 Hard Models........................................ 481 Exercises ........................................... 489 10.4 Square Ice .......................................... 490 Exercises ........................................... 504 Highlight: The Rogers–Ramanujan Identities ............. 506 Notes and References.................................... 517 Solutions to Selected Exercises.............................. 519 Chapter 1................................................ 519 Chapter 2................................................ 521 Chapter 3................................................ 524 Chapter 4................................................ 528 Chapter 5................................................ 529 Chapter 6................................................ 533 Chapter 7................................................ 536 Chapter 8................................................ 540 Chapter 9................................................ 544 Chapter 10 .............................................. 547 Notation..................................................... 553 Index........................................................ 557