A convex body whose centroid and Santalo´ point are far apart ∗ 0 1 0 Mathieu Meyer, Carsten Schu¨tt and Elisabeth M. Werner † 2 n a J Abstract 5 We give an example of a convex body whose centroid and Santal´o point ] A are “far apart”. F . h t a m [ 1 v 4 1 7 0 . 1 0 0 1 : v i X r a ∗Keywords: Santal´o point, . 2000 Mathematics Subject Classification: 52A20, 53A15 †Partially supported by an NSF grant, a FRG-NSF grant and a BSF grant 1 1 Introduction. The main theorem. Inhissurveypaper[7],Gru¨nbaumintroducedmeasuresofasymmetryforconvexbodies in Rn, i.e. compact, convex sets in Rn with nonempty interior. Measures of asymmetry determine the degree of non-symmetricity of a non symmetric convex body. Recall that a convex set K in Rn is centrally symmetric with respect to the origin if x K implies ∈ x K. More generally, K is centrally symmetric with respect to the point z if x K − ∈ ∈ implies 2z x K. − ∈ Gru¨nbaum argues that a measure of asymmetry should be a function that is 0 for centrallysymmetricconvexbodiesandmaximalforthesimplexandonlyforthesimplex. However, the simplex has enough symmetries to ensure that all affine invariant points are identical. This leads to the question: How far apart can specific affine invariant points be? This distance can be used as a measure for the asymmetry of the convex body. Of particular interest are the centroid g(K) and the Santal´o point s(K) of a convex bodyK inRn. Thesepointsareofmajorimportanceandhavebeenwidelystudied. For the (less well known) Santal´o point see e.g. [4, 12, 14, 13, 20]. Recent developments in this direction include e.g. the works [1, 2, 3, 5, 6, 10, 15]. We show here that the points can be very far apart, namely Theorem 1 There is an absolute constant c > 0 and n N such that for all n n 0 0 there is a convex body C =C in Rn with ∈ ≥ n g(C) s(C) g(C) s(C) c k − k2 = k − k2 . (1) ≤ vol (ℓ C) w (u) 1 C ∩ is the Euclidean norm, l is the line through g =g(C) and s=s(C) and w (u)= 2 C hkC·k(u)+hC(−u) is the width of C in directon of the unit vector u= kgg−−ssk2. The proof actually shows that we can asymptotically determine the constant c of the theorem. g(C) s(C) 2 k − k vol (ℓ C) 1 ∩ is asymptotically with respect to the dimension, greater than or equal to 1 √eπ 2 1 − =0.142673... − e √eπ+ 2 (cid:18) (cid:19) e 1 − and is asymptotically with respect to the dimension, less than or equal to 1 √e 1 1 − =0.18383... − e √e+ 1 (cid:18) (cid:19) e 1 − Throughout the paper we use the following notations. Bn(a,r) is the Euclidean ball in 2 Rn centered at a with radius r. We denote Bn = Bn(0,1). Sn 1 is the boundary ∂Bn 2 2 − 2 2 of the Euclidean unit ball. For x Rn, let x = ( n x p)p1, if 1 p < and x = max x , if p = an∈d let Bn =k kxp Rn :i=1x| i| 1 be th≤e unit∞ball of tkhek∞space ln.1≤i≤n| i| ∞ p { ∈ P k kp ≤ } p For a convex body K in Rn we denote the volume by vol (K) (if we want to emphasize n the dimension) or by K . co[A,B] = λa+(1 λ)b : a A,b B,0 λ 1 is the | | { − ∈ ∈ ≤ ≤ } convex hull of A and B. h (u)=max u,x is the supportfunction of K in direction u. K x K For x K, Kx∈=h(Ki x) = y Rn : y,z x 1 for all z K is the polar ◦ ∈ − { ∈ h − i ≤ ∈ } body of K with respect to x. Let ξ Rn with ξ = 1 and s R. Then the (n 1)-dimensional section of K 2 ∈ k k ∈ − orthogonal to ξ through sξ is K(s,ξ)= x K ξ,x =s . { ∈ |h i } We just write K(s) if it is clear which direction ξ is meant. The centroid g(K) of a convex body K in Rn is the point 1 g(K)= xdx. vol (K) n ZK The Santal´o point s(K) of a convex body K is the unique point s(K) for which vol (K)vol (Kx) n n attains its minimum. It is more difficult to compute the Santal´o point as it is defined implicitly. Before we go into the construction of the convex bodies that fulfill the properties of Theorem 1, we discuss an example that shows that a more elaborate construction is necessary to get the statement of Theorem 1. For instance, it is not enough to take one half of a Euclidean ball B = x Rn x 1,x 0 . 2 1 { ∈ |k k ≤ ≥ } We compute the centroid of B. The coordinates of the centroid are g(B)(2) = = ··· g(B)(n)=0 and g(B)(1) = |B22n|Z01tvoln−1(cid:16)p1−t2B2n−1(cid:17)dt= 2v(onln+−11(cid:0))|BB2n2n−|1(cid:1) . NowwecomputetheSantal´opointofB. ThepolarbodyoftheEuclideanballBn(λe ,1) 2 1 with center λe , 0 λ<1, and radius 1 is 1 ≤ λ 2 x Rn (1 λ2)2 x + +(1 λ2)x2+ +(1 λ2)x2 1 . (2) ( ∈ (cid:12)(cid:12) − (cid:18) 1 1−λ2(cid:19) − 2 ··· − n ≤ ) (cid:12) Therefore, the(cid:12) polar body of the half ball B with respect to λe is the convex hull of (cid:12) 1 the vector −eλ1 and the ellipsoid (2). We estimate the volume of (B −λe1)◦. Since (B λe ) contains the ellipsoid (2) 1 ◦ − (1−λ2)−n+21 voln(B2n)≤voln((B−λe1)◦). 3 On the other hand, as (B λe ) is contained in the union of the ellipsoid (2) and a 1 ◦ − cone with height 1 and with a base that is a Euclidean ball with radius (1+λ2) 1, λ − voln((B−λe1)◦)≤ (1volnλ(2B)2nn+2)1 + nvλol(n1−+1(λB22n)−n−1)1 − For λ= 1 we get √n voln((B−λe1)◦)≤ 1− n1 −n+21 voln(B2n)+ √vonln(1−1+(B12n)−n1)1 . (cid:18) (cid:19) n − Since voln 1(B2n−1) πn − vol (Bn) ∼ 2 n 2 r we get 1 π vol ((B λe ) ). √e+ vol (Bn) . n − 1 ◦ e 2 n 2 (cid:18) r (cid:19) On the other hand, for λ= γ √n n+1 γ2 − 2 vol ((B λe ) ) 1 vol (Bn). n − 1 ◦ ≥ − n n 2 (cid:18) (cid:19) With 1 t e t − − ≤ voln((B−λe1)◦)≥eγ2n2+n1 voln(B2n) . Therefore,thereisaγ suchthatforalln Nwehaves(B)(1) γ . Thus kg(B)−s(B)k2 is of order 1 . ∈ ≤ √n vol1(ℓ∩B) √n The next lemma is well known (see [20]). Lemma 2 For any convex body K, an interior point x of K is the Santalo´ point if and only if 0 is the centroid of (K x) . ◦ − This lemma can be rephrased as follows: Let K be a convex body. Then 0 is the Santalo´ point of Kg(K). Indeed, Kg(K) =(K g(K))◦ and(K g(K))◦◦ =K g(K). Since0isthecentroidof − − − (K g(K)) ,itfollowsbyLemma2that0istheSantal´opointof(K g(K)) =Kg(K). ◦◦ ◦ − − For convex bodies K and L in Rn and natural numbers k, 0 k n, the coefficients ≤ ≤ V (K,L)=V(K,...,K,L,...,L) n k,k − n k k − | {z } | {z } 4 in the expansion n n voln(λ1K+λ2L)= k λ1n−kλk2Vn−k,k(K,L) (3) k=0(cid:18) (cid:19) X are the mixed volumes of K and L (see [20]). Now we introduce the convex bodies which will serve as candidates for Theorem 1. For convex bodies K and L in Rn and real numbers a > 0 and b > 0, we construct a convex body M in Rn+1 n M =co[(K, a),(L,b)]= t(x, a)+(1 t)(y,b)x K,y L,0 t 1 . (4) n − { − − | ∈ ∈ ≤ ≤ } The bodies we are using in Theorem 1 will be the polar bodies to M . The polar of M n n can be described as follows: For 1 s 1, the sections of M orthogonal to e −a ≤ ≤ b n◦ n+1 and containing se are n+1 M (s)=M (s,e )=(1+s a)K (1 s b)L . (5) n◦ n◦ n+1 ◦∩ − ◦ We show this. M = (z,s) Rn R x K :<z,x> sa 1and y L:<z,y >+sb 1 n◦ { ∈ × |∀ ∈ − ≤ ∀ ∈ ≤ } = (z,s) Rn Rz (1+sa)K (1 bs)L ◦ ◦ { ∈ × | ∈ ∩ − } ThebodyM istheconvexhulloftwon-dimensionalfacesK andL. Inthefollowing n proposition we choose specific bodies for those faces. We choose them in such a way that their volume product differs greatly, which has as effect that the centroid and the Santal´o point of Mg(Mn) are “far apart”. One face is the Euclidean ball and the other n the unit ball of ℓn . We normalize both balls so that their volume is 1. ∞ Proposition 3 Let Bn 1 K = 2 L= Bn . |B2n|n1 2 ∞ and a=1 and b= 1 . Let M be the convex body in Rn+1 defined in (4). Then e 1 n − (i) lim g(M )=0. n n →∞ (ii) Let √e 1 2 √eπ s = − = 0.290815... s = − = 0.225705... 0 −√e+ 1 − 1 √eπ+ 2 − e 1 e 1 − − Then for every ε>0 there is n such that for all n n the n+1-st coordinate of the 0 0 ≥ centroid g(M ) of M satisfies n◦ n◦ s ε g(M )(n+1) s +ε. 0− ≤ n◦ ≤ 1 5 The Santalo´ point of Mg(Mn), s = s(Mg(Mn)) = 0 and therefore the centroid g and n ∗n n n∗ the Santalo´ point s of Mg(Mn) satisfy ∗n n √e 1 2 √eπ √e+−e−11 ≥linm→s∞up|gn∗ −s∗n|≥linm→i∞nf|gn∗ −s∗n|=linm→i∞nf|gn∗|≥ √e−π+ e−21 . As for the proof of Proposition 3, it follows from Lemma 2 that s(Mg(Mn))=0. For the n centroid g we actually estimate the coordinates of g(M ) and not g(Mg(Mn)). Since n∗ n◦ n limg(M ) = 0 it suffices to use a perturbation argument. The remaining part of the n proof of the proposition is in the next section. Proof of Theorem 1. The proof follows immediately from Proposition 3: For every n, let C =M . n n◦ 2 Proof of Proposition 3 This section is devoted to the proof of Proposition 3. We will need several lemmas and then give the proof of the proposition at the end of the section. Lemma 4 Let K and L be convex bodies in Rn such that their centroid are at 0. Let c>0 and let M be the convex body in Rn+1 n M =co[(K,0),(L,c)]. n Then the (n+1)-coordinate of the centroid g(M )(n+1) of M satisfies n n c n (k+1)V (K,L) g(Mn)(n+1)=hg(Mn),en+1i= n+2 k=0n V n−(kK,k,L) . P k=0 n−k,k P Proof. By definition cw vol (M (w))dw g(M ),e = 0 n n . h n n+1i cvol (M (w))dw R 0 n n Note that R w w co[(K,0),(L,c)]= (1 )K+ L,w 0 w c . − c c ≤ ≤ n(cid:16) (cid:17)(cid:12) o Therefore (cid:12) (cid:12) cw vol ((1 w)K+ wL)dw g(M ),e = 0 n − c c h n n+1i cvol ((1 w)K+ wL)dw R 0 n − c c = cR01t voln((1−t)K+tL)dt. R 01voln((1−t)K+tL)dt R 6 Now we use the mixed volume formula (3). Thus 1 n n tk+1 (1 t)n k V (K,L) dt 0 k=0 k − − n−k,k g(M ),e = c (cid:18) (cid:19) h n n+1i R 1P n (cid:0) (cid:1)n tk (1 t)n k V (K,L) dt 0 k=0 k − − n−k,k (cid:18) (cid:19) cR Pn (k(cid:0)+(cid:1)1)V (K,L) = n+2 k=0n V n−(kK,k,L) , P k=0 n−k,k where we have also used the BetafunctPion 1 Γ(k)Γ(l) B(k,l)= tk 1(1 t)l 1dt= , k,l>0. − − − Γ(k+l) Z0 (cid:3) The next lemma is well known ([8], p. 216, formula 54). Lemma 5 For all n N and t 0 ∈ ≥ n n voln(B2n+tB∞n )= k 2kvoln−k B2n−k tk, k=0(cid:18) (cid:19) X (cid:0) (cid:1) with the convention that vol (B0)=1. Therefore, for 0 k n, 0 2 ≤ ≤ Vn k,k(B2n,Bn )=2k voln k B2n−k . − ∞ − (cid:0) (cid:1) Lemma 6 The following formula holds n k+1 1 k=0 Γ(1+n)nkΓ(1+n−k) 1 lim 2 2 =1 . n n+2 Pn 1 − e →∞ k=0 Γ(1+n)nkΓ(1+n−k) 2 2 P Proof. One has n k+1 n n k+1 1 k=0 Γ(1+n)nkΓ(1+n−k) 1 k=0 Γ(1+n)−n−nkΓ(1+k) 2 2 = 2 2 n+2 Pn 1 n+2 Pn 1 k=0 Γ(1+n2)nkΓ(1+n−2k) k=0 Γ(1+n2)n−nkΓ(1+k2) P P 1 nk=0 (n−k+Γ(11)+Γ(k1+) n2)nk n+1 1 nk=0kΓΓ(1(1++n2k))nk = 2 = 2 . n+2P n Γ(1+n)nk n+2 − n+2Pn Γ(1+n)nk 2 2 k=0 Γ(1+k) k=0 Γ(1+k) 2 2 It is thus needed to proPve that P n kΓ(1+n2)nk 1 k=0 Γ(1+k) 1 lim 2 = . (6) n→∞nPn Γ(1+n2)nk e k=0 Γ(1+k) 2 P 7 For every x 0, ≥ n kxk n kxk n xk 1 = =2x − Γ(1+ k) kΓ(k) Γ(k) k=0 2 k=1 2 2 k=1 2 X X X = 2x 1 + n xk−1 =2x 1 +xn−2 xk . Γ(1) Γ(k) Γ(1) Γ(1+ k) (cid:16) 2 kX=2 2 (cid:17) (cid:16) 2 kX=0 2 (cid:17) Thus for x=Γ(1+ n)n1 2 n kΓ(1+ n2)nk =2Γ 1+ n n1 1 +Γ 1+ n n1 n−2Γ(1+ n2)nk . (7) Γ(1+ k) 2 Γ(1) 2 Γ(1+ k) ! kX=0 2 (cid:16) (cid:17) 2 (cid:16) (cid:17) kX=0 2 Let n Γ(1+ n)nk n Γ(1+ n)nk A = k 2 and B = 2 . n Γ(1+ k) n Γ(1+ k) k=0 2 k=0 2 X X (6) is equivalent to A 1 lim n = . n→∞nBn e By Stirling’s formula n n n n n 2 e−n2√πn Γ 1+ 2 e−n2√πne6n−112 2 ≤ 2 ≤ 2 (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) and thus n n 1 n (πn)21n Γ 1+ n (πn)21nen(6n1−12) 2e ≤ 2 ≤ 2e r r (cid:16) (cid:17) Moreover, Γ(1+ n)n2 n B 2 . n ≥ Γ(2) ≥ 2e (In fact, it can be proved that Bn 2ec2n 2e2ne, where we write a(n) b(n), to mean ∼ ∼ ∼ that there are absolute constants c ,c >0 such that c a(n) b(n) c a(n). But for 1 2 1 2 ≤ ≤ our purposes the above estimate is enough.) Also, for n 3 ≥ Γ(1+ n)nn−1 Γ(1+ n) 2 = 2 Γ(1+ n−21) Γ(1+ n2)n1Γ(1+ n−21) (n2)n2e−n2√πn e6n−112 ≤ (πn)21n 2ne(n−21)n−21e−n−21 π(n−1) p(n)n2√n ep 21n ≤ √n(n 1)n−21 (n 1) πn − − (cid:16) (cid:17) n n = e 21n np 2 e21n 1+ 1 2 exp n+1 e. πn n 1 ≤ n 1 ≤ 2(n 1) ≤ (cid:16) (cid:17) (cid:18) − (cid:19) (cid:18) − (cid:19) (cid:18) − (cid:19) 8 1 Therefore, by (7) and with c = Γ(1+ n) n, n 2 (cid:0) (cid:1) Γ(1+n2)n−n1 + Γ(1+n2)nn lim An = lim 2cn 1 +c 1 Γ(1+n−21) Γ(1+n2) n→∞nBn n→∞ n Γ(12)Bn n − Bn 2c2 2 n 2 1 = lim n = lim = . n n n n 2e e →∞ →∞ (cid:18)r (cid:19) (cid:3) Lemma 7 Let a,b R, a>0, b>0 and ∈ Bn Bn K = voln(B22n)n1 L= 2∞. Let M = co[(K, a),(L,b)] be defined as in (4). Then the center of gravity g(M ) n n − satisfies 1 1 lim g(M )= ( a)+ 1 b. n n e − − e →∞ (cid:18) (cid:19) Proof. By symmetry, the centroid of M is an element of the (n+1)-axis. Therefore n we only need to compute its (n+1)-th coordinate. Instead of M = co[(K, a),(L,b)], we consider M˜ = co[(K,0),(L,a+b)] with n n − centroid g˜=g˜ . The centroid g of M is then given by g =g˜ a. n n n n n − We use Lemma 4 with c=a+b to get a+b n (k+1)V (K,L) hg˜(M˜n),en+1i= n+2 k=0n V n−(kK,k,L) . P k=0 n−k,k By Lemma 5 and the linearity of the mixedPvolumes in each component, we get hg˜(M˜n),en+1i = na++b2 Pnk=0(nkk=0+v1o)lnv(oBln2n()Bnk2nv)onklnvokln−Bk2n(cid:0)−Bk2n−k(cid:1) − n k+1 a+b k=P0 k (cid:0) (cid:1) = (Γ(1+n/2)n Γ(1+(n−k)/2). (8) n+2 Pn 1 k=0 k (Γ(1+n/2)n Γ(1+(n k)/2) − P Now we apply Lemma 6. (cid:3) Eventually we will have to investigate expressions of the form Bn Bn vol 2 t 1 , t 0. n voln(B2n)n1 ∩ voln(B1n)n1 ! ≥ 9 Schechtman, Schmuckenschl¨ager and Zinn established asymptotic formulas for large n forthevolumesofBn tBn [17,18,19]. Todoso, theyconsideredindependentrandom variables hp,...,hp pwi∩th dqensity 1 n p e tp (9) 2Γ(1) −| | p Here, we need uniform estimates instead of asymptotic ones. Lemma 8 Let 0<p,q < and let hp be a random variable with density (9). Then ∞ Ehp q = p ∞ tqe tpdt= p ∞tqe tpdt= 1 Γ q+1 (10) | | 2Γ(1) | | −| | Γ(1) − Γ(1) p p Z−∞ p Z0 p (cid:18) (cid:19) In particular, for p=1 and q =1 respectively q =2 we get Eh1 =1 respectively Eh1 2 =2. (11) | | | | For p=2 and q =2 we get 1 Eh2 2 = . | | 2 The next lemma treats the Gaußian case of a more general statement which we will prove below. Lemma 9 Let (Ω,P) be a probability space. Let g :Ω R, 1 i n, be independent i → ≤ ≤ N(0,1)-random variables. Then, for all γ >0 there is n such that for all n n 0 0 ≥ 1 n g (ω) 2 1 P ω n i=1| i | γ (12) (cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12) n1 Pni=1|gi(ω)|2 21 −rπ(cid:12)(cid:12)(cid:12)≤ ≥ 2 (cid:12)(cid:12) (cid:12) (cid:12)(cid:12)(cid:12)(cid:12)(cid:0) P (cid:1) (cid:12)(cid:12) Proof. By Chebyshev’s inequality. (cid:3) Lemma 10 Let (Ω,P) be a probability space. Let h1 : Ω Rn, 1 i n, be indepen- i → ≤ ≤ dent random variables with density e t. Then for all γ >0 there is n such that for all −| | 0 n n 0 ≥ P ω √2 γ (n1 ni=1|h1i(ω)|2)12 √2+γ 1 (13) ( (cid:12)(cid:12) − ≤ n1P ni=1|h1i(ω)| ≤ )≥ 2 (cid:12) (cid:12) P (cid:12) Proof. Again, by Chebyshev’s inequality. (cid:3) Lemma 11 Let (Ω,P) be a probability space. Let g :Ω R, 1 i n, be independent i → ≤ ≤ N(0,1)-random variables. Then 1 n g t voln(B2n∩t B1n)=n voln(B2n)Z0 rn−1P ( Pni=i=11|g|i|i2|)21 ≤ r! dr (14) P 10