ebook img

A Connection between Obscuration and Star Formation in Luminous Quasars PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Connection between Obscuration and Star Formation in Luminous Quasars

ACCEPTEDFORPUBLICATIONINAPJ PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 ACONNECTIONBETWEENOBSCURATIONANDSTARFORMATIONINLUMINOUSQUASARS CHIEN-TINGJ.CHEN1,RYANC.HICKOX1,STACEYALBERTS2,3,CHRISM.HARRISON4,DAVIDM.ALEXANDER4,ROBERTOASSEF 5,MICHAELJ.I.BROWN6,AGNESEDELMORO4,WILLIAMR.FORMAN7,VAROUJANGORJIAN8,ANDREWD.GOULDING7,9,KEVIN N.HAINLINE1,CHRISTINEJONES7,CHRISTOPHERS.KOCHANEK10,STEPHENS.MURRAY11,ALEXANDRAPOPE2,EMMANOUEL ROVILOS4,ANDDANIELSTERN8 AcceptedforpublicationinApJ 5 1 ABSTRACT 0 Wepresentameasurementofthestarformationpropertiesofauniformsampleofmid-IRselected,optically 2 unobscuredandobscuredquasars(QSO1sandQSO2s)intheBoötessurveyregion. Weuseaspectralenergy distribution(SED)analysisforphotometricdataspanningopticaltofar-IRwavelengthstoseparatetheAGN n a andhostgalaxycomponents. We findthatwhencomparedto a matchedsampleof QSO1s, the QSO2shave J roughlytwicethehigherfar-IRdetectionfractions,far-IRfluxesandinfraredstarformationluminosities(LSF). 0 Correspondingly,weshowthattheAGNobscuredfractionrisesfrom0.3to0.7between(4- 40)×1011L⊙.IWRe 2 alsofindevidenceassociatingX-rayabsorptionwiththepresenceoffar-IRemittingdust.Overall,theseresults areconsistentwithgalaxyevolutionmodelsinwhichquasarobscurationisassociatedwithadust-enshrouded ] starburstgalaxies. A Subjectheadings:galaxies: active— quasars:general— galaxies: starburst— infrared: galaxies— X-rays: G galaxies . h p 1. INTRODUCTION adusty“torus”surroundingtheSMBH(e.g.Urry&Padovani - 1995; Antonucci 1993). This model predicts no difference o Quasars, the most luminous active galactic nuclei (AGNs r 12), have been linked to galaxies with active star formation in host galaxy properties between obscured and unobscured t AGNs. To date, it is still a matter of debate whether the s (SF) ever since the discovery of their observationalconnec- a tion to ultra-luminous infrared galaxies (ULIRGs, galaxies obscuration in luminous quasars can be explained solely by [ the orientation-based unification model or if it is also en- more luminous than 1012L⊙, e.g. Sandersetal. 1988). One hancedduetodustonlargerscalesthroughoutthehostgalaxy. 1 well-studiedscenarioformassivegalaxyevolutionpositsthat Severalstudieshaveshownresultssupportinga scenariode- v gas-rich galaxy major mergers trigger both rapid supermas- parting from the unification model, such as the enhanced 9 sive black hole (SMBH) accretion and intense SF. This sce- SFactivity(e.g.Canalizo&Stockton2001;Pageetal.2004; 5 narioassociatesthedust-enshroudedstarburstwithstrongnu- Hineretal. 2009;Brusaetal. 2008;Shan&Chen2012) and 9 clearobscurationthatislaterexpelledbythepowerfulAGN, the more disturbed structure (e.g. Lacyetal. 2007b) of the 4 implying an evolutionary link between unobscured (type 1) hostgalaxiesofdust-obscuredquasarswhencomparedtoun- 0 and obscured (type 2) quasars (e.g. DiMatteoetal. 2005; 1. Hopkinsetal.2006;Gillietal. 2007;Somervilleetal. 2008; oalbssocushreodwqnutahsaatrso.bCscluusrteedrinAgGoNfsdiafrfeermenotrteypstersonogflAyGcNlussthearevde 0 Treisteretal.2009). thanunobscuredAGNs(e.g.Hickoxetal.2011;Donosoetal. 5 On the other hand, the “unification model” of AGN as- 2014; DiPompeoetal. 2014). However, other studies have 1 cribesobscurationofAGNstodifferentlinesofsightthrough foundno significant difference between obscured and unob- : v scuredAGNpopulationsintheirmorphologicalandSFprop- 1Department of Physics and Astronomy, Dartmouth College, 6127 i erties (e.g. Sturmetal. 2006; Zakamskaetal. 2006, 2008; X WilderLaboratory,Hanover,NH03755,USA;[email protected]. 2Department of Astronomy, Amherst, University of Massachusetts, Mainierietal. 2011; Schawinskietal. 2012; Merlonietal. r Amherst,MA01003,USA 2014), and the host galaxy star formation rate (SFR) does a 3StewardObservatory,UniversityofArizona,Tucson,AZ85721,USA not distinguish X-ray selected AGNs with different obscur- 4Department of Physics, Durham University, South Road, Durham, ing column densities (e.g. Rovilosetal. 2012; Rosarioetal. DH13LE,UnitedKingdom 2012;Merlonietal.2014). 5NúcleodeAstronomíadelaFacultaddeIngeniería,UniversidadDiego Portales,Av.EjércitoLibertador441,Santiago,Chile Nonetheless,themeasurementsofSFpropertiesforquasar 6SchoolofPhysics,MonashUniversity,Clayton3800,Victoria, Aus- host galaxies still suffer from selection biases that are often tralia. differentamongvariousquasarpopulations.Inparticular,op- 7Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, ticalandX-rayselectedquasarsamplesmighthavedifferent Cambridge,MA02138. completenessinobscuredandunobscuredsourcesduetothe 8Jet Propulsion Laboratory, California Institute of Technology, 4800 OakGroveDr.,Pasadena,CA91109,USA attenuationofopticalandX-rayradiationbydustandgas. In 9Princeton University, Department of Astrophysical Sciences, Ivy fact, some studieshave suggestedthat opticalsurveysmight Lane,Princeton,NJ08544,USA miss∼50%oftheAGNpopulationduetoboththeobscura- 10DepartmentofAstronomy,OhioStateUniversity,140West18thAv- tionandhostgalaxycontaminationin low-luminosityAGNs enue,Columbus,OH43210 11DepartmentofPhysics&Astronomy,TheJohnsHopkinsUniversity, (e.g. Goulding&Alexander 2009; Gouldingetal. 2010). 3400N.CharlesStreet,Baltimore,MD21218. While current X-ray observations probing photons with en- 12 Inthiswork,weuseAGNsasageneralnomenclatureforallenerget- ergyat∼10keVarebelievedtobelessaffectedbymoderate i∼ca1ll0y45reelregvasn- t1,SwMeBreHfes.rtoFothreAmGaNssquwaistharsbo(QloSmOestr)i.c luminositylarger than levelsofobscuringmaterials(NH <1024cm- 2 ),asignificant 2 CHENETAL. fractionofX-rayAGNs(∼20- 50%,e.g.Donleyetal.2005; relation between star formation and AGN accretion for the Guainazzietal.2005;Parketal.2010;Alexanderetal.2011; mid-IR QSOs. In galaxy evolution models which suggest Georgantopoulosetal. 2013; Wilkesetal. 2013) might still that the concurrent growth of AGN and host galaxy occurs be missed due to obscuration that is Compton-thick (N ∼ during the dust enshrouded galaxy merger phase, different H 1024cm- 2). AlthoughveryhardX-rayphotonscan penetrate types of quasars represent different stages of galaxy evolu- Compton-thick obscuration, the previous high energy X-ray tion. To date, observational studies on the connection be- surveys are limited to local sources due to the shallow flux tweenSFRandAGNaccretionratehavenotyetshowndefini- limits (e.g. Swift/BAT, Burlonetal. 2011 and INTEGRAL, tive conclusions. Positive, strong correlations have been Sazonovetal. 2012). While the NuSTAR (Harrisonetal. found in studies of optically selected type I quasars (e.g. 2013) mission opened a new window of high energy X-ray Serjeant&Hatziminaoglou 2009) and type II quasars (e.g. upto80keV,therecentstudiesthatusedNuSTARtoobserve Netzer2009);whiledifferentconclusionshavebeenfoundin heavily obscured AGNs have found that obscuration is still X-rayselectedquasarsathigherredshift(e.g.Silvermanetal. a non-negligible effect even for X-ray photons at such high 2009;Mullaneyetal. 2012;Rosarioetal. 2012). The differ- energy(Sternetal.2014;Lansburyetal.2014). ence between observed correlations could be driven by var- In contrast, mid-IR observations of the reprocessed emis- ious limitations and observational constraints such as sam- sion from the obscuring dust can detect heavily obscured ple size (Pageetal. 2012; Harrisonetal. 2012) or AGN in- AGNs. A number of studies have shown that large pop- trinsic variability(e.g. Chenetal. 2013; Hickoxetal. 2014). ulations of AGNs can be selected using the power-law In addition, it is also important to note that AGNs selected SED shapeof AGNs at mid-IRwavelengths(e.g.Lacyetal. withdifferentcriteriaarehostedbyverydifferenthostgalaxy 2004; Sternetal. 2005; Hickoxetal. 2007; Donleyetal. populations (e.g. Hickoxetal. 2009; Griffith&Stern 2010; 2012; Assefetal. 2010b). Although these mid-IR color Gouldingetal. 2014) in which the galaxyand SMBH might selection criteria cannot avoid some star forming galaxy followdifferentevolutionarypaths. Thesampleinthiswork interlopers and might miss AGNs accreting at lower ac- consistsofalargenumberofluminousQSOsincludingboth cretion rates (e.g. Hickoxetal. 2009; Donleyetal. 2012; the unobscured and heavily obscured populations, thus bi- Mateosetal.2013;Hainlineetal.2014;Chungetal.2014)or asesduetosmallnumberstatisticsandtheexclusionofdust- AGNswithcomplicatedsilicatefeaturesintheirmid-IRSED enshroudedAGNsare small. The biasinthe observedSFR- (Kirkpatricketal. 2013), they are effective in selecting both AGN accretion rate relation in AGN host galaxies due to obscuredandunobscuredAGNswithsimilarcompletenessin short-termAGNaccretionratestochasticitymayalsobeless mid-IRwavelengths. Recentstudieshaveshownthatmid-IR significantin luminousquasars (Hickoxetal. 2014). There- selectedAGNscanalsobeseparatedintoobscuredandunob- fore,the SFR-AGN accretionrate correlationforthe mid-IR scuredpopulationsusingasimpleopticaltomid-IRcolorse- selected quasar populations may shed light on the origin of lectioncriterion(e.g.Hickoxetal.2007;Donosoetal.2014; theconcurrentgrowthofSMBHandgalaxy. DiPompeoetal.2014),whichcaneasilybeexplainedbythe This paper is organizedas follows: in §2 we describe the differentlevel of extinction in the optical emission from the multi-wavelengthdata and the propertiesof the quasar sam- nucleus (e.g. Hickoxetal. 2007, H07 hereafter). Therefore, ple.In§4,wediscusstheSEDfittingproceduresthatweused a direct comparison of the host galaxy SF properties of ob- todisentangletheAGNandthehostgalaxycontributions. In scured and unobscured sources in a mid-IR selected quasar §3, we explore details of the observed far-IR properties of sample can provide insights to the origin of obscurations in QSO1sandQSO2s. A comparisonof the SF luminositybe- rapidlyaccretingSMBHs. tweenQSO1sandQSO2sislaidoutat§5;Thex-rayproper- In this work, we adopt the mid-IR selected quasar sam- tiesfortheQSO2sarediscussedin§6andtheAGNobscured ple from Hickoxetal. (2011, H11 hereafter), which is com- fractionasafunctionofSFluminosityisdiscussedin§7. A prisedofunobscuredandobscuredquasarswithsimilardistri- discussionandasummaryaregivenin§8.Throughoutthepa- butionsinquasarproperties(e.g.redshiftandquasarluminos- per,weusetheVegamagnitudesystemandassumeaΛCDM ity),thusmakingitanexcellentsampletostudytheconnec- cosmologywithΩm=0.3,ΩΛ=0.7andH0=70kms- 1. tion between host galaxy properties and quasar obscuration. 2. THEQUASARSAMPLE Thequasarsamplestudiedinthisworkconsistsof546unob- scured quasars (QSO1s) and 345 obscuredquasars (QSO2s) Inthissection,wediscussthedatafromtheBoötessurvey selectedusingSpitzermid-IRobservationsintheBoötessur- regionaswellasthequasarselectionandclassificationcriteria veyregion.WeutilizetheopticalspectroscopyfromtheAGN weadopted. andGalaxyEvolutionSurvey(AGES,Kochaneketal.2012) 2.1. Data and the XBoötes Chandra X-ray observations(Murrayetal. 2005), along with the 250 µm data from the Spectral and The sample studied in this work comes from the 9 deg2 PhotometricImagingReceiver(SPIRE,Griffinetal.2010)on BoötessurveyregioncoveredbytheNOAODeepWide-Field board the Herschel Space Observatory. With the inclusion Survey (NDWFS, Jannuzi&Dey 1999). Boötes is unique of the far-IR photometry in which AGN contributions have amongextragalacticsurveysbecauseofitslargeareaandthe been shown to be much smaller than that of the host galaxy excellentmulti-wavelengthcoveragefromspace-andground- (e.g. Netzeretal. 2007; Lacyetal. 2007a; Kirkpatricketal. basedtelescopes,whichmakepossiblestatisticalstudyofthe 2012;Mullaneyetal.2012;Chenetal.2013;DelMoroetal. rareluminousAGNs. 2013; Drouartetal. 2014), we can use the wealth of multi- In this work, we use the multiwavelengthphotometrycat- wavelength observationsin the Boötes field to obtain robust alog from Brown et al. (private communication), which the measurements of SFR for luminous quasars and test if they same the one used in Chungetal. (2014). This catalog cov- areassociatedwithobscuration. ers the optical to mid-IR bands including the NDWFS opti- We also take advantage of this sample to study the cor- calobservationsinBw,R,I bands,near-IRphotometryfrom the NOAO NEWFIRM survey (J, H and Ks, Gonzalezetal. 3 1.5 60 40 (a) QSO-1 (b) 20 QSO2 FIR-QSO 0 1.0 QSO1 FIR-QSO QSO2 ) a g 4 e V ) ( a 5] 0.5 eg 4. V 6 ]-[ ]( 6 5 3. 4. [ [ 0.0 R- 8 10 -0.5 0 1 2 3 45.0 45.5 46.0 46.5 47.0 0 25 50 75 [5.8]-[8.0] (Vega) log L (erg/s) AGN FIG.1.—(a)IRACcolor-colordiagramshowingtheselectionofthequasarsamplesusingthecriteriaofSternetal.(2005).Thegray-scaleshowsthedensity ofsourcesdetectedat>5σsignificanceinallfourbandsinSDWFSdata. BluestarsandredcirclesshowtheQSO1andQSO2samples,respectively. The Sternetal.(2005)color-colorselectionregionisshownbythedashedline. Inaddition,theQSOswithfar-IRdetections(FIR-QSO)areenclosedwithorange circles. Someofthemid-IRQSOsfalloutoftheselectionwedgeduetotheupdatedIRACphotometryandaperturecorrections(see§2.3). (b)Illustrationof theoptical-IRcolor-selectioncriteriafordividingtheIR-selectedQSOsampleintounobscured(QSO1)andobscured(QSO2)subsamples. Shownisobserved R- [4.5]colorversusbolometricluminosity,calculatedasdescribedin§4. ContoursshowthedistributionforalltheHickoxetal.(2007)IR-selectedquasars, whilebluestarsandredcirclesshowtheQSO1andQSO2subsamplesat0.7<z<1.8usedinH11andthisanalysisasdescribedin§2.Thedistributioninthe R- [4.5]colorandLAGNarealsoshownashistogramsinthesidepanels.QSO1sareshownasthebluesolidlines,QSO2sareshownasthereddashedlinesand theFIR-QSOsareshownastheorangedash-dottedlines.Thecontoursandcolorhistogramsshowthatasimplecutinoptical-IRcolorclearlyseparatestheQSO samplesintotwopopulations. 2010) and the Spitzer Deep Wide Field Survey (SDWFS, missedbythestandardpipelinereduction.Wealsoconvolved Ashbyetal.2009)ofthe4bandsofmid-IRobservationsfrom the raw maps with a matched filter (see Chapinetal. 2011), theSpitzerInfraredArrayCamera(IRAC)at3.6,4.5,5.8and whichaidedinsourceextractionbyloweringtheoverallnoise 8µm. In addition, the mid-IR photometry from the Spitzer andde-blendingsources. Fromthis,wegeneratedamatched Multi-bandImagingPhotometer(MIPS)at24µmisalsoin- filtercatalogwitha5σdetectionthreshold.Inthiscatalog,we cluded(IRSGTOteam,J.Houck(PI),andM.Rieke). Inthis considerSPIREsourceswithfluxeslargerthan20mJyasun- catalog,theopticaltonear-IRphotometrywasextractedfrom ambiguously detected. Completeness simulations show that a matched aperture for each band. For Bw, R, I, H and Ks thesecatalogsare95%completeintheinnerregionand69% bands,thephotometrywasmeasuredfromimagessmoothed complete in the outer regions above a flux of 20 mJy. We to a common point spread function (PSF) with a 1.′′35 full also find minimal flux boosting for low SNR sources above widthhalfmaximum(FWHM);whileforJband,thephotom- thisfluxcutoff(seeS2.2inAlbertsetal.2013,forthedetails etrywasmeasuredfromimagessmoothedtoacommonPSF of the completeness simulation). We match the positions of with a 1.′′60FWHM. To ensure consistencyin the photome- the SPIRE catalog to the I-band positions with a matching try,weuse6′′aperturephotometryfromopticalbandsthrough radiusof5′′. Wetestedtherateofspuriousmatchesbyoffset- theIRACbandsinthemid-IRtoaccountforthelargeIRAC ting the SPIRE source positionsby 1′ in a randomdirection beam size. For the MIPS data, we use PSF photometry in- andmatchingtherandomlyshiftedcatalogtotheBoötescata- steadofaperturephotometryduetothestilllargerbeamsize log.Wefoundthatwitharadiusof5′′,ourmatchingbetween of MIPS. The 5σ flux limits ofthe opticalto near-IRbroad- the SPIRE and Boötes catalog only yielded <2% spurious bandphotometryare25.2,23.9,22.9,21.1,20.1,18.9(Vega matches. magnitudes)fortheBw,R,IJ,H,Ksbands,respectively. For Inaddition,wealsomatchthepositionsoftheBrownetal. themid-IRwavelengths,the5σfluxlimitsare6.4,8.8,51,50 (2007) catalog to the publicly available Wide-field Infrared and170µJyforthe3.6,4.5,5.8,8.0and24µmbands,respec- SurveyExplorer(WISE)All-skycatalog(Wrightetal.2010) tively. A extensive description of the multiband photometry and obtain the profile-fit photometrymagnitudes in the W1, extractioncanbefoundinBrownetal.(2007). W2,W3andW4bands(3.4,4.6,12and22µm). We also make use of the far-IR observations from the As a complementary measurement of the AGN accretion publiclyavailableHerschelMulti-tieredExtragalacticSurvey rate and absorption by gas, we utilize X-ray data from the (HerMES, Oliveretal. 2012). We re-reduced and mosaiced XBoötessurvey,whichisamosaicof126short(5ks)Chan- the Boötes SPIRE observations (Albertsetal. 2013), which dra ACIS-I images (Murrayetal. 2005; Kenteretal. 2005) include a deep ∼2 deg2 inner region near the center of the covering the entire NDWFS. XBoötes contains 3,293 X-ray fieldandashallower∼8.5deg2outerregion.Wespecifically point sources with at least four counts in the AGES survey focusedonremovingstriping,astrometryoffsets,andglitches region. The conversion factors from count rates (in counts 4 CHENETAL. s- 1)toflux(inergs- 1)fortheXBoötesare6.0×1012ergs- 1 the later SDWFS survey. While the Sternetal. (2005) AGN count- 1inthe0.5–2keVbandand1.9×1011ergs- 1 count- 1 selectioncanbecontaminatedbySFgalaxiesindeepmid-IR inthe2–7keVband,whicharederivedfora5kson-axisob- surveys(e.g.Donleyetal. 2012), thecontaminationisnegli- servation and assuming a canonicalunabsorbedAGN X-ray gibleattheshallowfluxlimitsofISS(seeHickoxetal.2007; spectrum(see§3.3ofKenteretal.2005). Assefetal.2010a,2011). Forthisstudy,weusespectroscopicredshifts(spec-zs)from H07 also showed that the distribution of the optical (R) AGES when possible. For the sources without a spec-z, we band to mid-IR (4.5µm) colors is bimodal for the luminous adopt the photometric redshifts (photo-zs) calculated using mid-IR quasars. This bimodality can be easily explained techniquescombining artificial neural network and template by the difference between the SEDs of unobscured and ob- fitting algorithms (Brodwinetal. 2006). The uncertainty of scuredquasars. Formid-IRselectedquasars,theAGNdom- this set of photo-z is σ = 0.06(1+z) for galaxies and σ = inates the mid-IR wavelengths, while for obscured quasars, 0.12(1+z)forAGNs. WenotethattheuncertaintyforAGNs the nuclear emission at optical wavelengths is heavily ab- are dominatedby the differencebetween photo-zsand spec- sorbed. Thusthe SED inthe R bandforobscuredquasarsis zsforthetypeIAGNs. Theuncertaintiesinthephoto-zsfor similar to those of normalgalaxies (e.g. Pollettaetal. 2006; QSO2sare difficultto estimate accuratelyasonly9%of the Hickoxetal. 2007, and Hickox et al. 2014, in preparation). QSO2shavespec-zmeasurements. Forthese32QSO2s, the H07hasshownthatthemid-IRselectedquasarscanbesepa- uncertaintyofthephoto-zsisσ=0.06(1+z),whichisconsis- ratedintotwodistinctpopulationsofquasarswithanempiri- tentwiththeuncertaintyforthegalaxypopulation. Recently calcolorcutatR- [4.5]=6.1. Most(∼80%)ofthequasars spectroscopic follow-up of 35 WISE-selected, optically ob- inH07withR- [4.5]<6.1arespectroscopicallyconfirmedas scuredquasarsbyHainlineetal.(2014)alsofoundthatphoto- type1quasars,thereforeinthisworkwerefertotheseunob- zsderivedfromtemplate-basedalgorithm(Assefetal.2010a) scuredquasarswithR- [4.5]<6.1asQSO1s. Asforquasars haveasimilaraccuracy. Thisisnotsurprisingsincetheopti- withR- [4.5]>6.1,duetothelimiteddepthofAGES,only calSEDfortheheavilyobscuredAGNsisdominatedbythe ∼5%havespectroscopicmeasurementsandcanbeclassified hostgalaxywhichhasmorespectralfeaturesandshouldallow as type 2 quasarsspectroscopically. However,H07 have ex- foramoreaccuratephoto-zmeasurement. tensively studied the quasars with R- [4.5]>6.1 and have An upper limit for the QSO2 photo-zuncertaintiescan be shownthatthesequasarsareconsistentwithbright,obscured estimatedbasedondifferentapproaches.H07obtainedanun- X-rayAGNswithN >1022cm- 2andwithAGNbolometric H certaintyofσz =0.25(1+z)bycomparingthe Brodwinetal. luminositiesLAGN>1045 ergs- 1 . Therefore,werefertothe (2006)photo-zstothephoto-zsestimatedbyfitting3different obscuredquasarswithR- [4.5]>6.1asQSO2s. galaxytemplatestotheBw,R,Iphotometry. Sincetheaccu- Thisempiricalclassificationbasedonthequasarmid-IRto racyofthephoto-zsbasedonfitting3galaxytemplateto3op- optical color has been shown to be broadly consistent with ticalphotometricobservationsis limited, theσz =0.25(1+z) both the spectroscopically classified sources (Donosoetal. uncertaintyisaveryconservativeupperlimit. Forthisstudy, 2014)andX-rayhardnessratio(definedasHR=(H- S)/(H+ weadoptthephoto-zuncertaintyupperlimitofσz=0.25(1+z) S) where H and S are the photon counts in the 2- 7 keV from H07. However, this is a very conservative estimate band and 0.5–2 keV band, respectively) classification crite- sincethephoto-zuncertaintiesfortheQSO2swithhostgalaxy ria (Hickoxetal. 2007; Usmanetal. 2014). Since we lack dominatedopticalSEDsarelikelytobemuchsmaller. Afull spectroscopicconfirmationforthe majorityofthe QSO2s, it discussionofthephoto-zuncertaintiesisgivenin§8. ispossiblethattheQSO2saredifferentthantheopticaltype 2quasars. Recently, Lacyetal.(2013) havealso studiedthe 2.2. AGNidentificationandclassification optical and near-IR spectroscopy of mid-IR AGNs selected TheAGNsinthisworkisdrawnfromthequasarsampleof usingtheDonleyetal.(2012)IRACcolorcriteria,andfound H11,whichisasubsetofquasarsfromtheH07mid-IRAGN thatasignificantfraction(∼33%)oftheAGNswithevident sample. The H07 AGNs were identified based on the IRAC mid-IR power-law continuum have no significant emission color-colorselection criterion of Sternetal. (2005). For the linesconsistentwiththeopticalemissionlinediagnostics(e.g. redshiftrangeoftheH07sample(0.7<z.3.0),theIRACfil- Baldwinetal. 1981), suggesting that these mid-IR obscured tersprobewavelengthsatwhichthecharacteristicpower-law AGNs are more deeply obscured than the optically selected continuumfromthereprocessedAGNradiationstartstodom- type 2 AGNs. This has also been suggested by the recent inate. Atthesewavelengths,thelightfromoldstellarpopula- studyofHainlineetal.(2014). tionsischaracterizedbyaRayleigh-Jeanstailofablackbody radiation with temperature higher than 2500K, which peaks 2.3. Thefinalsample at wavelengths different than both the AGN accretion disk and the reprocessed AGN emission. In addition, dust emis- Tominimizetheuncertaintyinthemeasurementsofquasar sion at near-sublimation temperature heated by the AGN is andhostgalaxypropertiesduetothescatteringinthephoto- significantly strongerthan that heated by massive stars, thus zs, we focus on the H11 quasar sample, which is a subsam- AGNs can be easily identified with their mid-IR color (e.g. ple from H07. The H11 quasar sample focuses on the red- Lacyetal.2004;Sternetal.2005;Donleyetal.2012).These shiftrange0.7<z<1.8andlimitstheQSO1stothosewith reprocessedphotonsatmid-IRwavelengthsare less affected broadopticalemissionlinesandrobustspec-zmeasurements byobscurationthantheopticalandtheX-rayphotonsdueto from AGES. For the QSOs in this redshift range, all of the theirmuchsmallerabsorptioncrosssection. Therefore,even sources have I <18, and the spectroscopic QSO1 sample is heavilyobscuredAGNscanbeidentifiedusingmid-IRselec- highlycomplete.FortheQSO2sinthisredshiftrange,only32 tioncriteria. (∼9%)oftheQSO2shavespec-zmeasurements.Fortherest An important feature of the H07 catalog is that the ofQSO2s,weadoptthephoto-zsfromBrodwinetal.(2006). AGNs were selected from the IRAC Shallow Survey (ISS, ThissubsetofQSOshavebeenusedinthestudyofclustering Eisenhardtetal. 2004), which has shallower flux limits than propertiesofQSO1sandQSO2sin H11, which showedthat 5 intheredshiftrange0.7<z<1.8,thesampleishighlycom- 100 pleteattheshallowfluxlimitsofISS.Themid-IRselectionof thisparticularsampleisshowntosufferlessthan<20%con- 80 tamination from star-forming galaxies (Hickoxetal. 2011). y) J Sincethe purposeofthisworkisto comparethestar forma- m 60 ( tsiuornepthroaptearntyiesdiofffeQreSnOce1sinanSdFQpSroOp2esr,tiietsisisimnoptodrtraivnetntobmyathkee S 250 40 presenceofstarburstgalaxyinterlopers.Also,evenforbright mid-IRquasarsthestarburstcontributionintheMIRmaybe 20 non-negligible.Therefore,werelyonSEDdecompositionsto 60 disentangle the AGN and starburst components. The details oftheSEDdecompositionarelaidoutat§3. OurSEDfitting 40 resultsshowthatall ofthe H11QSOs havea non-negligible (>20%)AGNcomponent. BasedontheSEDfittingresults, ∼3%oftheH11QSOswouldhaveL lessthantheQSO 20 AGN criterion(L >1045ergs- 1). Wethereforelimitourfocus AGN to thesampleof 546QSO1sand345QSO2swhichsatisfies 0 theQSOluminositycriterionandcomprise∼97%oftheH11 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 sample. z As a demonstration of the sample used in this work, we showthedistributionoftheIRAC[3.6]- [4.5]to[5.8]- [8.0] FIG.2.— Top:The250µmdistributionsforQSO1sandQSO2swithdirect colors and the R- [4.5] to L distributions of the quasar SPIREdetections. QSO1sareshownasthebluestars.The5far-IRdetected AGN QSO2swithspec-zmeasurements areshownasthefilledcircles. Therest sampleinFig.1. We notethatinFig.1a, asmallnumberof ofthefar-IRdetectedQSO2swithphoto-zsareshownasopencircles. Bot- the H07 sourceshave [3.6]- 4.5and [5.8]- [8.0]colorsthat tom: TheredshiftdistributionsofQSO1sandQSO2sareshowninblueand lieoutsidetheSternetal.(2005)AGNselectionwedge. The redsolidlines. AlsoshownaretheredshiftdistributionsoftheQSO1sand Sternetal. (2005) AGN selection wedge and the H07 sam- QSO2sdetectedat250µm. Thehistogramsforfar-IRdetectedQSO1sand QSO2sareshownastheblueandreddash-dottedlinesandfilledinorange. ple were definedusing the originalISS catalog in which the ThisplotshowsthattheredshiftdistributionsofQSO1sandQSO2saresim- mid-IR photometry was derived using the standard aperture ilarandQSO2shavemore250µmdetectionsthanQSO1s. correction,whichisdifferentthanthePSFprofilefittingcor- icallyderivedtemplatestocreateAGNandhostgalaxytem- rectionsforindividualsourcesintheBrownetal.(2007)cat- platescoveringthewavelengthrangefromopticaltofar-IRin alog. Moreover, the updated IRAC photometry comes from ourdata(see§3.1). SDWFS,whichis2timesdeeperthantheISS.Thus,itisnot surprising that a small fraction (∼4%) of the original H07 3.1. SEDtemplates sampledoesnotmeettheoriginalSternetal.(2005)criterion. However,theQSOsampleinFig.1ashowsatight[5.8]- [8.0] OurSEDfittingproceduresutilizethefourempiricalSED to [3.6]- [4.5] distribution, which is not seen in the similar templates spanning 0.03- 30 µm described in Assefetal. Fig. 1a ofH11whichuse theoriginalISSphotometry. This (2010a, A10 hereafter). A10 have shown that the non- suggests that the majority of our sample does have power- negativecombinationsofthreedifferentgalaxytemplatesand law like mid-IR SED with the high-precisionphotometryof a single AGN template, with the addition of extinction to SDWFS(e.g. see Fig. 22in H07). Forthe purposeofcom- the AGN component only, can robustly describe the opti- pletenesswedonotexcludethesourcesoutsideoftheupdated cal to mid-IR SEDs of a wide variety of AGNs selected us- AGN selectionwedge, sincethese sourcesmightstill havea ing Spitzer IRAC color (Assefetal. 2010a) or WISE color non-negligible AGN component which can be identified by (Assefetal.2010b;Chungetal.2014). However,thesetem- the SED fits. However, we note the exclusion of this small plates do not include the far-IR wavelengths that are crucial fraction of sources has little effecton the average properties forthiswork. oftheQSOs. Wealsoshowtheredshiftandfluxdistributions To extend the A10 AGN template to the far-IR, we create of the sample in Fig. 2, which shows thatthe redshiftdistri- adhoc AGN templatesby replacingthe hot-dustcomponent butionsoftheQSO1sandQSO2saresimilar. of the A10 AGN template with the average infrared quasar templatefromNetzeretal.(2007)andthethreeinfraredAGN 3. SEDDECOMPOSITION templates(forlow-,mean-,andhigh-luminosityAGNs)from Although it is now well-established that far-IR fluxes Mullaneyetal. (2011), which cover a wide range of AGNs at wavelengths longer than 60 µm in AGN host galaxies with different mid-IR to far-IR properties. This is based on are mostly dominated by the emission related to SF (e.g. theassumptionthattheSEDofthehotaccretiondiskaround Netzeretal.2007;Mullaneyetal.2011;Rosarioetal.2012), theSMBHisthesameforalltheradiativelyefficientAGNs, cautionisstillrequiredwhenestimatingtheSFpropertiesof andthatthedifferencesareduetovariableextinctionanddif- powerfulquasars.HereweuseSEDdecompositionstoensure ferentspectralshapesinthemid-andfar-IRwavelengthsdue thatwehavereliableestimatesoftheintrinsicAGNluminos- to different distributions of dust. To account for the extinc- ity(L )andstarformationluminosity(LIR13.) tionattheAGNtemplates,we usetheDraine(2003)extinc- AGN SF To properlydisentanglethe emission fromstars and AGN tion law with RV =3.1, which mainly attenuates the SED at accretion,wefitalloftheavailablebroadbandphotometryin λ≤30µmandalsoproducesthesilicateabsorptionfeatures ourdatasetswithSEDtemplates. Wecombineseveralempir- atmid-IRwavelengthsthatarecommonamongAGN.Theex- tinctionstrengthistreatedasafreeparameterwitharangeof 13 Defined as the integrated 8- 1000µmluminosity ofthe hostgalaxy 0<Av<48. componentonly. For the host galaxy templates, we consider two different 6 CHENETAL. components: the contribution from the stellar population of thanthe20mJy. SinceoursampleisselectedtohaveAGN- the galaxy, which accounts for the optical to near-IR emis- dominatedmid-IRSED,thefar-IRphotometryisessentialto sion; and a starburst component, which represents the mid- constraintheaverageSFproperties. Forthesourceswithdi- to far-IR dust emission from re-processed stellar light. For rectfar-IRdetections,wefittheirmultiwavelengthphotome- the stellar population component, we follow the approach trywiththeSEDtemplatesdescribedintheprevioussection. described in A10 by assuming that the stellar population in Forthe731sourceswithoutdirectfar-IRdetections,weusea any galaxyis comprised of the non-negativecombinationof stackinganalysistoconstraintheiraveragefar-IRflux. thethreeempiricalgalaxytemplateswithpopulationsofstar- WestacktheQSOswithoutdirectfar-IRdetectionsinbins burst (Im), continuous star-forming (Sbc) and old stars (el- ofR- [4.5](see§4.2)andbinsofL (derivedinH11from AGN liptical), respectively (Assefetal. 2008, 2010a). Unlike the interpolations between the IRAC photometry and the MIPS ellipticaltemplate,theSbcandImtemplatesbothcontainhot 24µm photometry). The uncertainty of the stacked flux is dust components in addition to the stellar population SEDs. determinedbybootstrapresampling. Wecreated10,000ran- Sincethedustcomponentdoesnotextendtothefar-IRwave- dom samples by drawing objects from the original samples lengthswerequireandwillbetakenintoaccountinthestar- withreplacementuntilthenumberofobjectsineachrandom bursttemplateswhichwewillchooselateron,wereplacethe sampleisthesameasthenumberintheoriginalsample. The dustemission(λ>4.9µm)intheSbcandImtemplateswith uncertaintyofthe stackedfluxis thevariationinthe stacked the SED identicalto the elliptical galaxy to create empirical fluxesoftherandomsamples.Thedetailsofthefar-IRstack- stellar populationtemplateswith no dustemission. Atthese ing analysis can be found in §3.1.1 of Albertsetal. (2013). wavelengthsthestellarSEDsaredominatedbylowmassstars TheresultsofthestackinganalysisaregiveninTable1. similar to the elliptical template. For our mid-IR selected To estimate the average SF luminosity of the far-IR non- quasar sample, the star light contributionis negligibleat the detected QSOs, we assume that their 250 µm fluxes and wavelengthswherehotdustemissiondominates. 250 µm flux uncertainties are equal to the averages found Forthestarburstcomponent,weusethe105starbursttem- fromthestackinganalysisforthesourceswithsimilarvalues plates from Chary&Elbaz (2001) and the 64 starburst tem- ofbothR- [4.5]andL .Wefindthatforthemajorityofthe AGN platesfromDale&Helou(2002). TheChary&Elbaz(2001) SPIRE-nondetectedsample,thebest-fittingSEDreproduces and Dale&Helou (2002) starburst templates cover a wide theobservedaveragefar-IRfluxwell. range of SEDs for various prototypical local star forming FromSEDfittingresultswithfar-IRfluxesstackedinbins galaxies, with LIR in the rangebetween108- 1013.5L⊙ . For if R- [4.5] and LAGN, we find that ∼ 85% of the quasars SFgalaxiesat z>1, these templateshavebeenshownto be haveaprominentAGNhotdustcomponent(AGNcomponent reliablewhenusedtoestimateSF-relatedL withmonochro- >50%) atmid-IRwavelengthscoveredby the IRACbands. IR maticSPIREobservations(e.g.Elbazetal.2011). However, Allofthequasarshaveanon-negligible(>20%)AGNcom- aspointedoutbyKirkpatricketal.(2012),thestarburstgalax- ponent, confirming that the H11 sample consists of power- ies at higher redshift have different dust temperatures and ful quasars. However, the AGN dominates the quasar SED SEDshapes.Althoughtheeffectofthedifferentdusttemper- evenat24µmformorethanahalfofoursample. SotheSF atureontheestimationofLSF issmallwhenthewavelengths propertiesofthesepowerfulquasarsisprimarilyconstrained IR oftheSPIREbandsprobethepeakofthecolddustemission, bytheirfar-IRphotometry. Forindividualsourceswithonly itisstillimportanttoincludehighredshiftstarbursttemplates the stacked SPIRE flux to anchor the starburst component, to accommodate the possibly different SED shapes of high this approach of using stacked far-IR flux can lead to inac- redshiftstarbursts. Therefore,we also includethe z∼1 and curate LSF. However, the main purpose of this work is not IR z∼2averagestarburstSEDtemplatesfromKirkpatricketal. to determine the LSF for individual QSOs. Instead, we take IR (2012) in our SED fitting analysis. We thus adopta total of thisapproachtoconstraintheAGNcontaminationintheav- 171starbursttemplatesinourSEDfittinganalysis. eragefar-IRSF luminositywith the well-fittedmid-IRAGN GiventheseSEDtemplatesdescribedabove,wefittheob- SED, which can robustly determine the average LSF for dif- IR served photometry with an iterative χ2 minimization algo- ferentQSOpopulations. We notethatwhenwecomparethe rithm(Levenberg-Marquardt)tominimizethefunction. stacked fluxes from either the R- [4.5] bin or the L bin AGN with the best-fitting AGN component, we find that the aver- nfilters ageAGNcontributionat250µmisonly5%;andnoneofthe χ2=X QSOsinoursamplehaveanAGNcomponentthatcontributes morethan40%at250µm. SincetheaverageintrinsicSEDs i=0 (1) F - aF - bext(E(B- V))F - cF forAGNsareexpectedtofallmorerapidlyinmoreluminous obs,i star,i AGN,i starburst,i. systems (Mullaneyetal. 2011), a starburst componentis es- σi2 sentialtoreproducetoaveragefluxat250µm. With the best-fitting SEDs, we calculate the total infrared Here F is the observed flux in the ith band and σ is its obs,i i luminosityforeachQSO(Ltot )byintegratingthebest-fitting uncertainty. Fgalaxy,i,FAGN,i andFstarburst,i arethefluxesofthe SEDsfrom8- 1000µm. FoIRreachsourceinoursample, we stellar(optical),AGN(opticaltofar-IR)andstarburst(far-IR) alsocalculatetheL ofthestarburstcomponentbyintegrat- templates for filter i. The function ext gives the extinction IR ing the host galaxy component of the best-fitting SED over oftheAGNfluxinbandigiventhecolorexcessE(B-V).We optimizea,b,candE(B-V)tominimizetheχ2. the same wavelength range (LSIRF hereafter) 14. We find that for our sample, the average ratio between LSF and Ltot is IR IR 3.2. Results While uniform NUV to mid-IR photometric coverage is 14Forclarification,weuseLIRasageneralterminologyforanyintegrated available for all of the sources in our sample, only ∼18% 8- 1000µmluminosity.LtIoRt istheintegratedLIRofthebest-fittingSEDand of them have a SPIRE 250µm detection with a flux larger LSIRFistheLIRofthehostgalaxycomponentonly. 7 QSO1 QSO2 1046 E( Bc-2V=1)=108..2009 1046 E( Bc-2V=1)=711..0608 z=1.31 1045 z=1.05 1045 1044 1043 1046 E(B-V)=0.19 1046 E(B-V)=1.34 c 2=15.55 1045 c 2=84.35 z=1.46 z=0.70 1045 1044 1043 1044 1046 1047 E(B-V)=0.24 E(B-V)=0.81 -1s) c 2=137.72 -1s) 1046 c 2=134.04 g z=1.57 g z=1.07 (er 1045 (er 1045 Ln Ln 1044 n n 1046 E(B-V)=0.09 E(B-V)=0.72 1046 c 2= z1=218..4502 1045 c 2 =z=111..6475 1045 1044 E(B-V)=0.06 E(B-V)=0.58 1046 c 2=88.49 1046 c 2=73.61 z=1.79 1045 z=1.23 1045 1044 1044 0.1 1.0 10.0 100.0 1000.0 0.1 1.0 10.0 100.0 1000.0 Wavelength (m m) Wavelength (m m) FIG.3.—Examplesofthebest-fittingSEDs(solidline)intherest-frameofeachsource. ThesesourcesarefittedusinganAGNcomponentwithaDraine (2003)extinctionlaw(dottedcurve),anempiricalstellarcomponent(dash-dotted)andempiricalstarbursttemplates(dashed). Wefindthatalmostallsources haveanSEDdominatedbythestarburstcomponentinthefar-IR,see§3fordetails. ∼55%, indicative of a non-negligible AGN contribution to 13.2 Ltot inthesemid-IRluminousquasars. Thisisalsoconsistent IR withtheKirkpatricketal.(2012)resultsofthestudycombin- 12.5 ingSpitzerIRSspectraandmulti-bandHerschelphotometry ]LO • 12.0 forz∼1andz∼2ULIRGs. However,thefar-IRfluxprobed [R bytheSPIRE250µmbandisdominated(>70%)bythestar- LI 11.5 burstcomponentfor ∼90%of our sample. This result con- 11.0 firmsthatquasarSEDsarestilldominatedbyastarburstcom- ponent at rest-frame wavelengths longer than 100µm (e.g. 47.8 Netzeretal.2007; Mullaneyetal. 2011;Rosarioetal. 2012; s) mDeidl-MIRorqouaestaarls.2c0an13s)t.ilTlhbeerreofobures,tltyhemaevaesruargeedLwSIRFitohftphoewinecrlfuu-l (erg/N 47.0 G 46.0 sionoffar-IRphotometry. LA We nextderivethe bolometricAGNluminosity(L ) by g AGN lo 45.0 directly integrating the de-absorbed AGN component. We comparetheL fromourSEDfittingwiththeL derived 0.8 1.0 1.2 1.4 1.6 AGN AGN z inH11,andfoundthatourL ishigherthantheH11L AGN AGN byan averageof∼0.1dex. Since the derivationofL in H11didnotcorrectfortheweakbutnon-negligibleduAsGtNob- FIG.4.—Theredshiftdistributionsofthe(8- 1000µm)LtIoRtalandtheAGN bolometricluminosityderivedfromSEDfittingandfar-IRstackingfornon- scurationandSFgalaxycontaminationinthemid-IR,itisnot detectedsourcesdescribedin§3.2.Thesymbolsandlinesrepresentthesame surprisingthatourL isdifferent. However,thedifference subsetsofobjectsshowninFig.1,wherebluestarsandredcirclesareQSO1s AGN is small due to the fact thatmost of the quasarsin this sam- andQSO2s,respectively.Individuallyfar-IRdetectedsources(FIR-QSO)are enclosedwithorangecircles. plearedominatedbytheAGNandthedustobscurationonly weaklyattenuatestheSEDatmid-IRwavelengths. Weshow theredshiftdistributionsofLtot andL inFig.4. inated by the cold dust emission heated by young stars IR AGN (e.g. Netzeretal. 2007; Lacyetal. 2007a; Kirkpatricketal. 2012;Mullaneyetal.2012). Althoughalternativecaseshave 4. FAR-IROBSERVATIONSANDQUASAROBSCURATION been reported in some recent studies (e.g. Hineretal. 2009; Several studies have pointed out that even for AGNs with Daietal. 2012), the cold temperatureof the far-IR emission quasar-like luminosites, their far-IR SEDs are often dom- stillrequirestheAGN-heateddusttoresideatalargedistance 8 CHENETAL. 0.4 DuetothefluxlimitoftheSPIREcatalog, f onlyreflects 250 QSO1-average (a) the fractionof QSOs hosted by galaxieswith very luminous QSO2-average far-IRemission. Toextendthisanalysis,weestimatetheav- on 0.3 erage250µmfluxinbinsofR- [4.5]totestifthefar-IRflux acti ofourquasarsamplealsoevolveswithR- [4.5].Themeasure r n f the average 250µm flux (S250) for all QSOs, we first esti- ectio 0.2 mSPaItReEthoebasveerrvaagtieo2n5s0usµimngflthuexsftoarckthinegsoaunracleyssiws idtihsocuutssdeidreicnt det §3.2. Next, the stacked fluxes is combine with the sources m 0.1 individually detected in far-IR to calculate the average S250 m0 forallQSOs. Weshowtheaverage250µmflux(S )inthe 5 250 2 same R- [4.5] bins used for Figure 5, with results given in 0.0 Table1. 4 5 6 7 8 Fromthestackinganalysis,wefindthatforQSOswithout R-[4.5] (Vega) directfar-IRdetections,thereisnosignificantdependenceof theaverageS onR- [4.5]. However,themeanS ofthe FIG.5.— The250µmdetection fraction(f250)asafunction oftheR- individuallyd2e5t0ectedfar-IRsourcesshowsaR- [4.525]0depen- [4.5]color. The f250 forallQSO1sisshownasthebluestar,andthe f250 dencesimilartothatof f . Therefore,drivenbytheincreas- forallQSO2s(weightedtohavearedshiftandAGNbolometricluminosity 250 distributionsimilartothatofQSO1s)isshownastheredcircles.Thisfigure ing fraction of far-IR luminous sources, the average S250 of showsthatQSO2sare2.4timesmorelikelytohaveafar-IRdetection. theentireQSOsampleiscorrelatedwithR- [4.5]. This result shows that for powerful mid-IR quasars with from the central SMBH (Sandersetal. 1988). In addition, moredustattenuationatopticalwavelengths,theaveragefar- powerful molecular outflows might also produce strong far- IRemissionis stronger. Thisimpliesthatatleastpartofthe IR emission (e.g. Sunetal. 2014). However, the number of obscuration seen in the obscured QSOs might be due to the AGNsandstarburstgalaxieswithconfirmedwarmmolecular far-IRemittingdust. outflowsfromhigh-resolutionfar-IRorsub-mmobservations is limited. Nonetheless, strong far-IR emission for quasars 5. THEAVERAGELSIRFOFQSO1SANDQSO2S implies the existence of dust extending to a large distance In§3,wefoundthatQSO2shavehigher f andS than 250 250 well beyond the putative obscuring torus, and a comparison QSO1s.Inthissection,weexaminewhethertheobserveddif- of far-IR properties between QSO1s and QSO2s could de- ferenceintheaveragefar-IRfluxesofQSO1sandQSO2scan termine that whether the quasar obscurationis related to the beassociatedwiththedifferenceinthestarformationproper- large-scaledust. tiesoftheirhostgalaxies,aspredictedbythegalaxyevolution modelswithaconnectionbetweenquasarobscurationandstar 4.1. SPIREdetectionfraction formation. We first calculate the median star formation luminosity We begin with a very simple test by measuring the far-IR by averaging the LSF derived from SED fitting (§4). We detection fraction above a flux limit of 20 mJy in the Her- IR schel SPIRE 250 µm filter (f250 hereafter) for QSO1s and find that for QSO1s, the mean LSIRF is 1045.29±0.03 erg s- 1 QSO2s separately. In our survey region, the shallowness of (1011.71L⊙); and for QSO2s, the mean LSIRF is 1045.59±0.04 the SPIRE observation implies that any quasars in our sam- ergs- 1 (1012.01L ). We find that similar to f and the av- ⊙ 250 ple with a far-IRdetection are at least as brightas luminous erageS , the medianLSF forQSO2sissignificantlyhigher infraredgalaxies(LIRGs,whicharedefinedasgalaxieswith than tha2t50of QSO1s by 0I.R30 dex. The higher LSF in QSO2s LIR(8- 1000µm)>1011L⊙ ) at the same redshifts. At first confirmstheresults from§3 thatQSO2sare assIoRciatedwith glance,wefindthatamongthe546QSO1s,only68(12%)of host galaxies with more star-forming cold dust which might them are detected in the SPIRE 250µm filter, while 102 of beobscuringthenuclearemission. the345(29%)QSO2shavefar-IRdetections. We nextuse R- [4.5]as a roughproxyof the obscuration 5.1. LSF vs. R- [4.5] IR strengthonthenuclearemissionandstudywhether f isre- 250 TofurtherstudytherelationbetweenAGNobscurationand latedtotheextinctionattheRband. Theprimarygoalofthis LSF, we divide our QSO sample into bins of R- [4.5] as a analysis is to study whether the star formation properties of IR proxyfor AGN obscuration. To be consistent with §3.1 and thequasar-hostinggalaxiesarerelatedtotheobservedobscu- avoid the uncertaintiesby the lack of spec-zs of QSO2s, we ration.Therefore,itisimportanttomakesuretheQSO1sand opttouseR- [4.5]insteadoftheE(B- V)derivedfromSED QSO2sarematchedinkeyproperties,i.e. redshiftandAGN fitting as the proxyfor nuclear obscuration, since the uncer- bolometricluminosity(L ,estimatedfromtheSEDfitting AGN taintiesofthephoto-zlimittheaccuracyofourabilitytomea- analysisdiscussedin§3).Wedivideoursampleintofourbins sureE(B- V). WecalculatethemedianAGNcontributionat ofR- [4.5]andcalculate f foreachbinbyapplyingstatis- 250 observedframeRand[4.5]bandsusingthebest-fittingSEDs ticalweightsto eachquasarso thatthe samplesare matched in each bin. We find that towards redder R- [4.5] colors, in redshift and L in each bin. We find that the weighted AGN theAGNcontributes89%,79%,29%,12%attheRbandand f increasesrapidlywithR- [4.5]forQSO1s. ForQSO2s, 250 74%,59%,43%,60%atthe[4.5]band.Thissuggeststhatthe f250 is only weakly correlated with R- [4.5], but the f250 of empiricalR- [4.5]colorisindeedagoodproxyofAGNob- QSO2sishigherthanthatofQSO1sbyafactorof2.7±0.2. scurationatopticalwavelengths,andthattheQSOclassifica- Weshowthe f250 toR- [4.5]relationinFig.5. tionbasedontheR- [4.5]colorisreliable.Wethencalculate theaverageLSF(hLSFi)inbinsofR- [4.5].Weagainestimate 4.2. TheaverageSPIRE250µmfluxes IR IR theuncertaintyinhLSFiusingbootstrapresampling. IR 9 TABLE1 RESULTSOFFAR-IRSTACKINGANALYSIS Average f250inbinsofR-4.5 R- [4.5](Vega) 4.7 5.4 6.6 7.5 S250(mJy)(ND) 6.58±0.73 7.93±0.59 7.39±0.75 8.57±1.00 S250(mJy)(All) 8.04±0.84 11.4±0.77 16.4±1.50 18.0±0.21 hzi(all) 1.31 1.20 1.19 1.31 Average f250inbinsofLAGN loghLAGNi[ergs- 1] 45.2 45.6 46.1 46.5 S250(QSO1)(mJy) 3.76±0.82 5.49±0.70 5.21±0.75 7.70±0.95 S250(QSO2)(mJy) 3.56±0.94 8.84±1.40 5.18±0.66 8.44±2.70 z(average) 0.98 1.17 1.36 1.49 NOTE. —Resultsfromthefar-IRstackinganalysisdescribedin§4.2. ThetophalfofthetableshowstheresultsforsourcesbinnedinR- [4.5]. Thefirst rowshowstheresultsforthefar-IRnon-detected(ND)sourcesonly,andthesecondrowshowstheresultfortheentireQSOsample.Theaverageredshiftforall QSOsineachbinisalsogiven.ThebottomhalfofthetableshowstheresultsfortheentireQSO1andQSO2samplesbinnedintheirAGNbolometricluminosity. TheaverageredshiftforeachR- [4.5]andLAGNbinisalsolisted;wenotethatthereisonlya<0.02averageredshiftdifferencebetweentheQSO1sandQSO2s. 46.2 46.0 12.6 46.0 QQ SSFSOOItaR12c-k d((iaaenlltglle))cted 45.8 QQASSllOO Q12SO Hickox et al. 2014 12.4 s] 45.8 s] 12.2 g/ g/ 45.6 SF g L [er IR 45.6 SF [erg L IR 45.4 main-sequence galaxy 12.0log LO • o 45.4 o 11.8 l l 45.2 45.2 11.6 45.0 45.0 11.4 4 5 6 7 8 45.5 46.0 46.5 47.0 R-[4.5] (Vega) log L [erg/s] AGN FIG.6.—(a)Left:TherelationshipbetweenLSIRFandR- [4.5]forthemid-IRselectedQSOs.Far-IRdetectedQSOsareshownbytheorange,opensymbolsand thestackingresultsforthefar-IRnon-detectedQSOsareshownbythegray,opensymbols. Inbothcases,thereisonlymarginalincreaseinLSFwithR- [4.5]. IR However,drivenbythemuchhigherfar-IRdetectionfractioninQSO2s,theaverageLSF forQSO2sishigherthantheaverageLSFforQSO1. (b)Right: the IR IR averageLSIRFforQSOsinbinsofLAGN.TheresultsforQSO1sareshownasthefilled,bluestars;whiletheresultsforQSO2sareshownasthefilledredcircles. FortheentireQSOpopulation,wealsoshowtheiraverageLSIRFinfourbinsofLAGNastheopen,greensquares.Forcomparison,weshowtheHickoxetal.(2014) modelevaluatedat0.7<z<1.8astheshadedregion.WenotethattheaverageredshiftineachbinincreaseswithLAGN;andtherelationshipbetweenhLSIRFiand LAGNisconsistentwiththeredshiftevolutionformain-sequenceSFgalaxieswithM⋆=1011M⊙.WeshowtheredshiftevolutionofMSgalaxiesasthedashed line.TheLSFforallQSOscoincideswiththeevolutionofMSgalaxies,suggestingaconnectionbetweenQSOhostgalaxiesandMSstar-forminggalaxies(see IR §5.2). We show the results in Fig. 6a. Even though the LSF dif- slopes,withlogLSF∝0.25logL forQSO1sandlogLSF∝ IR IR AGN IR ferencebetween QSO1s and QSO2s is large, hLSFi doesnot 0.27logL for QSO2s. However, the hLSFi for QSO2s is IR AGN IR showthestrongdependenceonR- [4.5]seenfor f andthe higherthanthatofQSO1sineachL binby0.28,0.25,0.32 250 AGN averageS (Fig.6a.) withinQSO1sandQSO2s. Also, the and0.28dex. 250 LSIRFdifferencebetweenthefar-IRdetectedQSO1sandQSO2s Forcomparison,we also showthe LAGN- LSIRF modelfrom andthefar-IRnon-detectedQSO1sandQSO2sareonly0.14 Hickoxetal.(2014)whichassumesadirect,linearcorrelation dexand0.17dex,whicharenotassignificantasthe0.30dex betweentheaverageLAGNandLSIRFwhiletheobservedLAGNis difference between all QSO1s and QSO2s. Thus the higher modulatedbyrapidvariability.WecalculatetheHickoxetal. hLSFioftheQSO2sampleismainlydrivenbyitshigherfrac- (2014) relation spanning the 0.7<z<1.8 redshift range in IR tionoffar-IRluminousSFgalaxies. Fig. 6 as the shaded region. We find that for all QSO2s be- sidesthoseinthemostluminousL bin,ourresultiscon- AGN sistentwiththeH14model,andtheQSO1shaveLSF slightly 5.2. LSIRF vs. LAGN lowerthanthe modelpredictionsthroughouttheenIRtireLAGN ToexploretheconnectionsbetweenAGNandhostgalaxy range.However,forbothtypesofQSOs,theslopeoftheLSF- IR growthratesindifferentQSOpopulations,we separatelydi- L relation appearsto be shallower than the prediction of AGN vide the QSO1s and QSO2s into bins of L , and mea- the simple modelif we take the differentaverageredshiftin AGN sure the hLSIRFi for each bin. The uncertainties are again eachLAGN binsintoaccount. estimated by bootstrapping as discussed in §5.1. We plot As was shown by the results in Table 1, the average red- the L -LSF relations for QSO1s and QSO2s in Fig. 6b. shiftsformoreluminousQSOsarehigher. Althoughourfar- AGN IR We find that both the QSO1 sample and the QSO2 sample IRstackingapproachcanreliablymeasuretheaveragefar-IR have a positive LSF-L correlation with similarly shallow fluxesandhencethe averageLSF, itis importanttonotethat IR AGN IR 10 CHENETAL. thedifferenceintheaverageredshiftbetweenthelowestand rionofourQSOsample. Wenextcombinethesenormalized the highest L bins is 0.5, and it is possible that the ob- AGN templates with two archetypical starburst galaxy tem- AGN served correlation between LSF and L is partially driven plates,M82andArp220fromPollettaetal.(2007). Wefind IR AGN bythecosmicevolutionofstarformationandAGNaccretion. that to have a star forming galaxy falling out of the AGN Eventhoughrecentstudiesoftheevolutionofcosmicinfrared identification wedge while having an L ∼ 1045 erg s- 1, AGN luminosity density have shown that for the redshift range of its LSF must exceed 1047 erg s- 1. This suggests that an SF IR thefourLAGN binsinFig.6b,thecosmicinfraredluminosity galaxymustbeahyper-luminousinfraredgalaxies(HyLIRG, isonlyweaklycorrelatedwithredshift(ρIR∝(1+z)- 0.3±0.1for LIR >1013L⊙) to be able to hide an underlying quasar-like 1.1<z<2.85,Gruppionietal.2013),thereisstillasubstan- AGN component. According to the far-IR luminosity func- tialevolutioninthespecificSFR (SFRperunitstellarmass) tionofGruppionietal.(2013),therewouldonlybelessthan of“mainsequence(MS)”SFgalaxies(e.g.Elbazetal.2011). 2HyLIRGsintheredshiftrangeofoursamplegiventhesize A simple estimate of the effect of MS galaxy SFR red- oftheBoötessurveyregion. Becauseofthelargenumberof shift evolution can be made by calculating the average LSF sourcesinthelowestL binofoursample,theinclusionof IR AGN for MS galaxies with M =1011M at the redshift range of the2additionalQSOshiddeninHyLIRGswouldonlyaffect ⋆ ⊙ our QSO sample. From the theoretical framework of dark theaverageLSFby0.15dex,whichisstillwithinthe2σrange IR matterhaloabundancematchingmethods(e.g.Behroozietal. oftheoriginalL . SF 2013), 1011M is the typical galaxy stellar mass hosted by We can also estimate biases in LSF due to the sources not ⊙ IR dark matter haloes of mass M = 1013.1[h- 1M ], which selected in the AGN identification wedge by examining the halo ⊙ is the halo mass reported in recent clustering studies of SEDs of the sources not classified as mid-IR QSOs. In the mid-IR QSOs (e.g. Hickoxetal. 2011; Donosoetal. 2014; redshift range of our sample, there are 77 SPIRE-detected DiPompeoetal. 2014). At the redshift of each QSO in our sourcesoutsidetheSternetal.(2005)wedge.Whenwefitthe sample, the LSF for a 1011M MS galaxy can therefore be SEDsofthesesourceswefindthatmostofthesepowerfulSF evaluatedusinIgRtheredshift-de⊙pendentSFR-M relationfrom galaxieshavenosignificantAGNcontributioninthemid-IR. ⋆ Whitakeretal.(2012)andaKennicuttrelation,SFR=1.09× For the sources without a mid-IR AGN component, we as- fLuSIRnFc/tLio⊙n()K. Wenenificnudttt1h9a9t8th,emaovdeirfiaegdefLoSrFafCorhMabSriegrailnaxitiieaslmevaasls- smuamtiectlhuamtiAnoGsNitycoatnt6riµbmuteass<an1u0p%petorltihmeitm.iOd-nIlRy4moofnothcehr7o7- IR haveL satisfyingtheL >1045ergs- 1 criterion. Ifwe uated using this approach is consistent with the average LSF AGN AGN IR addthese foursourcesinto the lowestL bin, the average in each L bin. This implies that for mid-IR quasars in AGN AGN LSFwouldonlyincreaseby0.05dex.Therefore,weconclude thisredshiftrange,theLSF andinstantaneousL mightnot IR IR AGN that the L - L correlation observed in Fig. 6 is not bi- be directly connected but still follow similar redshift evolu- SF AGN ased by the exclusionof heavily obscuredquasarshiddenin tion. Thissuggeststhatacommonphysicalparameter(e.g. a powerfulSFgalaxies. common gas supply) might be driving the evolution of both SMBHsandgalaxies. Thisisalso consistentwiththerecent 6. X-RAYPROPERTIESOFMID-IRQSOS study of Rosarioetal. (2013), which showed that the LSF- IR In §5, we have shown that for mid-IR selected QSOs, the L correlationfor broad emission line QSOs is consistent AGN AGNobscurationatopticalwavelengthsandtheAGNmid-IR with a scenario in which quasars are hosted by normal star- luminositycanbothbeconnectedtothestarformationoftheir forminggalaxies. hostgalaxies. HereweuseanalternativeAGNaccretionrate For mid-IR selected AGNs, contamination from star- indicator,theX-rayemission,tostudytheinterplaybetween forming galaxy interlopers is also an issue that might intro- thefar-IRemittingdustandtheX-rayemission. ducebiasestothe measurementsofAGNandstar formation Wefirstcountthenumberofdetectionsinthefar-IRandthe luminosities. While our SED fitting results show that 95% X-rayobservations. We note thatthe countsof X-raydetec- ofthesourcesinoursampleareindeedpowerfulQSOswith tionscan be affected by the varyingsensitivity of the Chan- AGN-dominatedmid-IRSED,itisstillveryimportanttover- ifythattheobservedLSF- L relationinFig.6isnotcaused dra observations across the field (e.g. Mendezetal. 2013). IR AGN However,theXBoötesobservationsarerelativelyuniformin by the incompleteness of our AGN selection criterion. In depth (∼4- 8×10- 15 ergs- 1 , Kenteretal. 2005) and this particular, a very powerful SF galaxy can harbor a heavily effectshould be equivalentfor both QSO types. The results obscured AGN and still have starburst-like mid-IR SED. In of the detection fractions are summarized in Table 2. First, suchcase,theIRACcoloroftheSFgalaxywouldfalloutof QSO1s have an X-ray detection fraction of 65%, which is theSternetal.(2005)selectionwedge(e.g.Kirkpatricketal. muchhigherthanthe12%far-IRdetectionfractionforQSO1s 2012;Assefetal.2010b;Chungetal.2014), andthesample (see §3). For QSO2s, the X-ray detection fraction is only selectedwiththeSternetal.(2005)wedgewouldshowabi- asedLSF- L relation. 34%whilethefar-IRdetectionfractionis27%. Wealsofind IR AGN thatthepresenceoffar-IRemissionisassociatedwith lower By happenstance,themid-IRcoloroftypicalstar-forming X-ray detection fractions in both QSO1s and QSO2s. For galaxy templates occupies the lower-left corner of the QSO1s, 91% of the X-ray detected AGNs are not detected Sternetal. (2005) wedge at the redshift range of this sam- inthefar-IR;whileforQSO2s,73%oftheX-rayAGNshave ple (e.g. Donleyetal. 2012, Fig. 17). Therefore, any AGN no detectable far-IR emission. These number counts imply contributioninadditiontotheSFgalaxytemplateswouldeas- thatlargescale dustmightalso playan importantroleinthe ily promotea SF galaxyinto the AGN identification wedge. absorptionofX-rays. Thisis particularlytrue for oursample of luminousquasars. Sincealargefraction(∼76%)ofthefar-IRdetectedQSO2s We test this effect by first normalizing the 6µm luminosity have no direct X-ray detection, these far-IR bright QSO2s for AGN templates we used in the SED fitting described in §4 to L =1045 ergs- 1 to meet the minimum L crite- might not be included in an X-ray selected AGN sample. AGN AGN However, since both the far-IR and the X-ray observations

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.