ebook img

A Condensation-Coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Condensation-Coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

DraftversionJanuary5,2017 PreprinttypesetusingLATEXstyleAASTeX6v.1.0 ACONDENSATION–COALESCENCECLOUDMODELFOREXOPLANETARYATMOSPHERES:FORMULATION ANDTESTAPPLICATIONSTOTERRESTRIALANDJOVIANCLOUDS KazumasaOhnoandSatoshiOkuzumi DepartmentofEarthandPlanetarySciences,TokyoInstituteofTechnology,Meguro,Tokyo,152-8551,Japan 7 1 ABSTRACT 0 A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of 2 cloudsathighaltitudes. Arealisticcloudmodelisnecessarytounderstandtheatmosphericconditionsunder n whichsuchhigh-altitudecloudscanform. Inthisstudy,wepresentanewcloudmodelthattakesintoaccount a J the microphysicsof bothcondensationand coalescence. Our modelprovidesthe verticalprofilesof the size 4 anddensityofcloudandrainparticlesinanupdraftforagivensetofphysicalparameters,includingtheupdraft velocityandthe numberdensity of cloudcondensationnuclei(CCN). We testour modelby comparingwith ] observations of trade-wind cumuli on the Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, P E themodelincludingbothcondensationandcoalescencegivespredictionsthatareconsistentwithobservations, . whilethemodelincludingonlycondensationoverestimatesthemassdensityofclouddropletsbyuptoanorder h of magnitude. For Jovian ammonia clouds, the condensation–coalescencemodel simultaneously reproduces p - the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager o observations if the updraft velocity and CCN number density are taken to be consistent with the results of r t moist convection simulations and Galileo probe measurements, respectively. These results suggest that the s a coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice [ clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes 1 inexoplanetaryatmospheresaffectstheverticalextentandopticalthicknessofexoplanetarycloudsviacloud v microphysics. 7 Keywords:Earth–planetsandsatellites: atmospheres–planetsandsatellites: individual(Jupiter) 1 9 0 1. INTRODUCTION A realistic cloud model that predicts the size and spatial 0 1. Recent observations of the transmission spectra of exo- distributions of condensation particles for arbitrary atmo- sphericconditionsisnecessarytounderstandtheatmospheric 0 planets revealed that some hot Jupiters (e.g., Pontetal. 7 2013; Singetal. 2015, 2016), hot Neptunes (e.g., propertiesofbothexoplanetsandbrowndwarfs. 1 The microphysicsthat governsthe formationof cloudsis Crossfieldetal. 2013; Ehrenreichetal. 2014; Knutsonetal. : v 2014a; Dragomiretal. 2015; Stevensonetal. 2016), and highlycomplex,andthereareatleasttwoprocessesbywhich i cloud particlescangrow. The firstprocessis the condensa- X super-Earth (e.g., Beanetal. 2010; Kreidbergetal. 2014; tion of vapor onto particles in an adiabatically cooling up- Knutsonetal. 2014b) have featureless spectra. One inter- r a pretation of the featureless spectra is that these exoplanets draft. In terrestrialwater clouds and Jovian ice clouds, this processisresponsibleforthegrowthofsmallparticlesto10 have dust clouds that block starlight at high altitudes (e.g., µminradius(e.g.,Rossow1978). Furthergrowthofthepar- Seager&Sasselov 2000; Fortney 2005). Dust clouds are ticles proceedsthroughthe second process, the coalescence also believed to have the crucial impacts on the observed drivenbythedifferentialsettlingundergravity. Thissecond spectra of brown dwarfs whose effective temperature fall process is essential for the initiation of precipitation in ter- into the same range of exoplanets (e.g., Saumon&Marley restrialwaterclouds(Pruppacher&Klett1997). 2008). For example, the observations of brown dwarfs However,previousmodelsofcloudsinexoplanetsaswell showabluewardshiftofspectralenergydistributionsduring asinbrowndwarfsneglectedoratleastparametrizedcoales- L/T transition that might suggest the sinking of condensate cence. TheconvectivecloudmodelbyAckerman&Marley particles (Ackerman&Marley 2001; Burgasseretal. 2002; (2001), which has been used by Morleyetal. (2013, 2015) Marleyetal. 2002; Saumon&Marley 2008). Observations for modeling the transmission spectrum of super-Earth GJ also suggest spectral variability that might imply the effect 1214b,encapsulatestheeffectsofparticlegrowthduetocon- ofcloudspatialdistributions(Buenzlietal.2012;Yangetal. densation and coalescence in a single free parameter f . 2015,2016). sed This parameter is given by the ratio of the particle termi- 2 Ohno&Okuzumi nal velocityto the atmosphericconvectivevelocity, and de- pendsontheparticlesizethroughtheterminalvelocity. Itis commonlyassumed that f is constantthroughouta cloud sed (Ackerman&Marley 2001; Morleyetal. 2013, 2015), but at w–v(r) =0, t thereisnoguaranteethatitmustbeforarbitraryconvective Cloud to Rain Conversion clouds. The recent cloud model for Earth-like exoplanets by Zsometal. (2012) treats the microphysics of condensa- Cloud Particle Rain Particle tion, butgreatly simplifies the coalescence processes by in- troducingtheefficiencyofprecipitationasafreeparameter. w–v(r) >0 w–v(r) <0 t t ThedustcloudmodeldevelopedbyWoitke&Helling(2003, Coalescence Coalescence 2004), Helling&Woitke (2006), and Hellingetal. (2008), which has recently been applied to clouds in hot Jupiters HD209458bandHD189733b(Leeetal.2015;Hellingetal. Condensation Sweepout 2016), takes into accountcondensationand evaporationbut not coalescence. Woitke&Helling (2003) neglected coa- lescencebecause,accordingto Cooperetal.(2003), coales- cence takes place much slower than condensationin brown dwarfs. However,asnotedbyWoitke&Helling(2003),co- Updraft Velocity w alescencebecomestheonlyparticlegrowthmechanismeven inbrowndwarfsifthesupersaturations,definedbythefrac- tionalexcessofthepartialpressurefromsaturation,issignif- icantlylow, e.g., s 1%. WhileCooperetal.(2003)fixed CCN Condensing Gas ≪ the supersaturation to 1%, the actual supersaturation in an updraftdepends on the number density of initial condensa- Figure1. Schematic illustration of our condensation–coalescence tionnuclei,whichishighlyuncertainforexoplanetsaswell cloud model. We consider small “cloud particles” (light blue asforbrowndwarfs. spheres) and large“rain particles”(dark blue spheres) whose ver- In this paper, we presenta simple one-dimensionalcloud tical velocity relative to the ground, w−vt, is positive and nega- tive, respectively. Themodel includesparticlegrowthduetocon- modelthatissimplebuttakesintoaccountthemicrophysics densation, coalescence, and sweepout (for the definitions of these of coalescenceas well as of condensation. We describe the processes,seeSection2.1),andalsoverticaltransportduetogravi- basicequationsandcloudmicrophysicsinourmodelinSec- tationalsettlingandtheupdraftmotionofthegas. tion 2. We test our model by comparing with the observa- tionsofthecloudsontheEarthandJupiterinSection3. We We denote the total number density and mass density of discussthethresholdvelocityofstickingandtheoutlookon thecloud(rain)particlesbyN (N)andρ (ρ),respectively. c r c r applicationto exoplanetarycloudsinSection4. We present Weassumethatthecloudandrainparticleshavecharacteris- asummaryinSection5. ticradiir andr andcharacteristicmassesm =(4π/3)ρ r3 c r c int c andm = (4π/3)ρ r3,respectively,whereρ istheinternal r int r int density of the particles. For liquid particles, ρ is equalto 2. MODELDESCRIPTION int thematerialdensityofthecondensate,ρ ,whileforsolidpar- p 2.1. Outline ticles,ρ canbelowerthanρ becauseanaggregateofsolid int p Our modelprovidesthe vertical distributions of the mass particlescanbeporous.Theporosityofcondensateparticles andnumberdensitiesofcondensateparticles(Figure1). We canpotentiallyaffectthegrowthandmotionoftheparticles adopt a one-dimensional Eulerian framework in which the as demonstrated by theoretical studies on dust evolution in gasascendsataverticalvelocityw. Eachcondensateparticle protoplanetarydisks(e.g.,Ormeletal.2007;Okuzumietal. isassumedtofallrelativethetheupwellinggasataterminal 2009).Wehereneglectthiseffectbyassumingconstantbulk speed v, which is given by the balance between gas drag density,ρ =ρ ,butweplantotakeitintoaccountinfuture t int s andgravityandisthereforeafunctionofthe particleradius work. r (seeEquation(A5)fortheexpressionofv adoptedinthis Our model determines the vertical distribution of N , ρ , t c c study).Thus,eachparticlehasanetverticalvelocityw v(r). N,ρ, andthecondensatevapormassdensityρ bynumer- t r r v − We divide the populationof condensate particles into small icallysolvingthesetofverticallyone-dimensionaltransport “cloud particles” whose net vertical motion is upward, w equationswith terms representingcondensationand coales- − v >0,andlarge“rainparticles”whosenetverticalmotionis cence (Sections 2.2 and 2.4–2.6). Condensation refers to t downward,w v < 0. Inthispaper,we assumethatinitial particle growth through the accretion of supersaturated va- t − cloud particles form through heterogeneousnucleation (see por,whilecoalescencereferstothegrowththroughcollisions Section2.3fordetails). with othercondensateparticlesundergravity. In this study, Acondensation–coalescencecloudmodelforexoplanets 3 werefertothecoalescencebetweencloudandrainparticles 2.3. Nucleation as sweepout, in order to distinguish the coalescence of two We assume that cloud particles form at the cloud base cloudparticlesoroftworainparticles.1 Weneglectthecon- through the condensation of vapor onto small refractory densationof vaporontorain particlesbecausethe timescale grains that already exist in the atmosphere. This process ofcondensationgrowthislongerthanthetimescaleofsedi- is known as heterogeneous nucleation, and such refractory mentationfortheselargeparticles. Thecharacteristicmasses grains are termed cloud condensation nuclei (CCN). On andradiioftwoparticlespecies(cloudandrain)areautomat- EarthCCNincludeseasalt,ash,anddustfromtheland(e.g., ically determinedby the mass and numberdensities via the Rogers&Yau 1989; Seinfeld&Pandis 2006). Lacking in- relations m = ρ /N and r = (3m /4πρ )1/3, respectively, j j j j j p formationaboutCCN inotherplanetsincludingexoplanets, where j = c for cloudparticles and j = r for rain particles. weparametrizethemwiththeirnumberdensityN andra- CCN Such a framework is called a double-moment bulk scheme diusr . TheCCNnumberdensityisaparticularlyimpor- CCN in meteorology (e.g., Ziegler 1985; Ferrier 1994), and a tantparameterbecauseitdeterminesthenumberdensityand characteristic size method in the planet formation commu- maximumreachablesizeofcloudparticlesgrowingthrough nity(e.g.,Birnstieletal.2012;Ormeletal.2014;Satoetal. condensation. 2016). Thischaracteristicsizemethodallowsustosimulate Inprinciple,cloudparticlesmayalsoformthroughhomo- the growth of particles with much less computational time geneous nucleation, where molecules in supersaturated va- than that required with spectral bin schemes where the full por spontaneously collide to form initial nuclei. Although sizedistributionofparticlesisevolved(Birnstieletal.2012; homogeneousnucleationis the simplestnucleationprocess, Satoetal.2016).Ourmethodisparticularlyusefulforstudy- this occurs only at a supersaturation ratio much larger than ingcloudformationoverawideparameterspace. unitybecauseofthefreeenergybarrierarisingfromthesur- Because the terminal velocity of particles generally in- face tension (e.g., Rogers&Yau 1989; Marleyetal. 2013). creases as they grow, there is a height z = z at which top Bycontrast,heterogeneousnucleationgenerallyoccurswhen thenetupwardvelocityofcloudparticlesreacheszero,i.e., the supersaturationratio is slightly above unity because the w [v(r )] = 0. Atthisheight,whichwecallthecloud − t c z=ztop CCNs lower the free energy barrier (Rogers&Yau 1989). top,weconvertthecloudparticlesintorainparticlesandal- However,ifthereareonlyafewCCNsavailableintheatmo- low them to fall and continue growing (see Figure 1). Our sphere, homogeneous nucleation would dominate over het- implementationofthe cloud-to-rainconversionis described erogeneous nucleation (Woitke&Helling 2004). For sim- inSection2.7. plicity, we ignore homogeneous nucleation in the present study, but we plan to include this effect in our future mod- 2.2. TransportEquations eling. Thetransportequationsusedinourmodelaregivenby Thecloudbaseisdefinedbythelocationabovewhichthe ∂Nc = ∂ [(w v(r ))N ] ∂Nc ∂Nc , (1) saturationvaporpressurePsofcondensinggasunderconsid- ∂t −∂z − t c c − ∂t − ∂t erationexceedsthepartialpressureinthegasphase.Thislo- coal sweep (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) cationismainlydeterminedbytheverticaltemperaturepro- (cid:12) (cid:12) (cid:12) (cid:12) ∂ρc = ∂ [(w v(r ))ρ ]+ ∂ρ(cid:12)(cid:12)c (cid:12)(cid:12) m(cid:12)(cid:12) ∂Nc(cid:12)(cid:12) , (2) file of the atmosphere, and weakly depends on the mixing ∂t −∂z − t c c ∂t !cond− c(cid:12) ∂t (cid:12)sweep ratioofthecondensinggasunderthecloudbase. (cid:12) (cid:12) ∂Nr = ∂ [(w v(r))N] ∂Nr(cid:12)(cid:12)(cid:12) ,(cid:12)(cid:12)(cid:12) (3) 2.4. Condensation ∂t −∂z − t r r − ∂t coal ∂ρ ∂ (cid:12)(cid:12)(cid:12)∂N(cid:12)(cid:12)(cid:12) If the cloud particle size rc is much larger than the mean r = [(w v(r))ρ]+m (cid:12)(cid:12) c(cid:12)(cid:12) , (4) freepathofcondensingvapormolecules,therateofincrease ∂t −∂z − t r r c ∂t (cid:12)(cid:12) (cid:12)(cid:12)sweep inρc duetocondensationisgivenby(Rogers&Yau1989) (cid:12) (cid:12) ∂ρ ∂ ∂ρ (cid:12) (cid:12) ∂tv =−∂z(wρv)− ∂tc (cid:12) ,(cid:12) (5) ∂ρc = 4πrcNcD(ρv−ρs), (6) where (∂ρ /∂t) is the rate of in crea!sceonidn ρ due to con- ∂t !cond RLvT −1 LKDTρs +1 c cond c where Lis the specific late(cid:16)ntheato(cid:17)f vaporization, N isthe densation, ∂N /∂t (∂N/∂t )istherateofdecreasein c c coal r coal | | | | number density of the cloud particles, K is the coefficient N (N)duetothecoalescenceofcloud(rain)particlesthem- c r of thermal conductivity of the atmosphere, and D, R , and selves, and ∂N /∂t isthe rate ofdecrease in N due to v c sweep c | | ρ = ρ (T) are the diffusion coefficient, specific gas con- sweepout. Theexpressionsfor(∂ρ /∂t) , ∂N /∂t ,and s s c cond j coal | | stant,andsaturationvapordensityofthevapor,respectively. ∂N /∂t aregiveninSections2.4–2.6. c sweep | | The saturation vapor density is related to the saturation va- por pressure P by ρ = P /R T. Equation (6) neglects s s s v 1 Sweepoutisoftentermed“accretion”intheliteratureofcloudmicro- the effects of surface tension and nonvolatile solutes on the physicalmodels(e.g.,Ziegler1985). saturation vapor pressure over the particles’ surfaces. This 4 Ohno&Okuzumi is a good approximation for activated condensate particles betweentwoparticlesofradiirandr (r>r ),thecollection ′ ′ (Rogers&Yau1989). efficiencycanbeexpressedintermsoftheStokesnumber The assumption that the particle sizes are larger than the v(r )v(r) v(r ) atmosphericmeanfreepathisjustifiedforthecloudsonthe Stk= t ′ | t − t ′ |, (9) gr Earth and Jupiter we considered in Section 3. The atmo- sphericmeanfreepathintheterrestrialwaterclouds(where which is approximatelythe ratio between the stoppingtime T 300 K and P 1 bar) and in Jovian ammonia clouds =v(r )/gandcrossingtime r/v(r) v(r ) ofthesmaller t ′ t t ′ ≈ ≈ ∼ | − | (whereT 130KandP 0.5bar)is 0.1µm,whichissig- particle. WhenStk 1,thesmallerparticleisstronglycou- ≈ ≈ ∼ ≪ nificantlysmallerthanthetypicalparticleradiusintheclouds pled to the flow around the large particle. To zeroth order, (seeFigures3and5inSection3),However,thisassumption E behaves as E 0 at Stk 1 and as E 1 at Stk 1 ≈ ≪ ≈ ≫ is notnecessarily validforcloudsin exoplanets. For exam- (Rossow1978).Inthisstudy,weevaluateEusingasmoother ple,ZnSandKClcloudsonsuper-EarthGJ1214bcouldform analyticfunction(Guillotetal.2014,theirEquation(99)). at P 0.01 bar (Morleyetal. 2013) , where the mean free ∼ E =max[0,1 0.42Stk 0.75], (10) pathis 100µm. Furthermore,theobservationofGJ1214b − − ∼ suggeststhepresenceofhigh-altitudecloudsatP 10−5bar whichvanishesatStk.0.3andapproachesunityatStk 1 ∼ (Kreidbergetal. 2014; Morleyetal. 2015), where themean ≫ (see Figure 12 of Guillotetal. 2014). This expression as- freepathisaslongasl 1cm. Whenoneappliesourcloud g sumes that flow around the particle is laminar. If the gas ∼ modeltosuchhigh-altitudeclouds,oneshouldreplaceEqua- flowisturbulent,thecollectionefficiencycanbehigherthan tion (6) by the expressionin the free molecular regime (for assumed here (Homannetal. 2016). We approximate Stk details,see Woitke&Helling2003), in E as Stk v(r )ǫv /(gr ). Because Stk generally in- t j j j ≈ ∂ρc =4πr2N C (ρ ρ ), (7) creases with rj, coalescence occurs only after the particle ∂t c c s v− vs size exceeds a threshold above which Stk > 1. Therefore, !cond theproductionofprecipitatingraindropletsthroughcoales- whereC isthemeanvelocityofgasmolecules. s cencerequiresgrowthbeyondthisthresholdbycondensation (Pruppacher&Klett1997). 2.5. Coalescence Equation(10)applieswhenthebackgroundgasbehavesas Undertheassumptionthatthecloudandrainparticlesize a fluid,i.e.,theparticleradiusismuchlargerthanthemean distributionsarenarrow,therateofdecreasein N (j =cor j free path of the gas molecules. In the opposite case where r’)duetocoalescenceisapproximatelygivenby the gas behaves as a free molecular flow, one may assume E =1. Thefree-molecularflowregimeisexpectedtogovern ∂Nj 1π(r +r )2N2∆v(r )E thecollisionalgrowthofparticlesathighaltitudeswherethe ∂t ≈2 j j j j gasdensityislow. (cid:12) (cid:12)coal (cid:12) (cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) =2πr2jN2j∆v(rj)E, (8) (cid:12) (cid:12) 2.6. Sweepout where ∆v is the relative velocity between the particles in- Similar to Equation(8), the rate of decrease in N due to ducedbygravitationalsettling, E isthecollectionefficiency c sweepoutisgivenby definedby theratioof theeffectivecollisionalcrosssection to the geometric one (see below). The factor 1/2 prevents dN c =π(r +r )2v(r) v(r )NN E. (11) doublecountingofthecollisions. Wehaveusedthatthege- dt r c | t r − t c | r c sweep (cid:12) (cid:12) ometric collisional cross section between two similar-sized (cid:12) (cid:12) particles is approximatelygiven by π(rj +rj)2. We express where(cid:12)(cid:12)(cid:12)the c(cid:12)(cid:12)(cid:12)ollection efficiency E is given by Equation (10) withStk=v(r )v(r) v(r )/(gr)(seeEquation(9)). the differential settling velocity as ∆v = ǫvt(rj), where the t c | t r − t c | r factorǫ(<1)encapsulatestheeffectofnon-zeroparticlesize 2.7. Cloud-to-RainConversion dispersion.Satoetal.(2016)andKrijtetal.(2016)showthat whenthedifferentialdriftvelocityisproportionaltothepar- Cloud-to-rain conversion occurs at the height z = z top ticle size, bulkschemeswith ǫ 0.5bestreproducethe re- where the terminal velocity of cloud particles v(r ) equals t c ≈ sults of spectral bin schemes that take into account the full the updraftvelocityw. Once the terminalvelocity of cloud sizedistribution.Inthisstudy,weadoptǫ =0.5forarbitrary particles exceeds the updraft velocity, we numerically fix valuesofr . the net vertical velocity, w v(r ), to zero, and let the j t c − The collection efficiency E accounts for the effect of the cloud particles evolve into rain particles at the rate given gasflowaroundalargeparticlemovingrelativetotheback- by t 1 = β(t 1 + t 1 ), where t 1 (∂ρ /∂t)/ρ and c−onv c−ond c−oal c−ond ≡ c c groundgas:thegasflowsweepsasideparticlesthatareaero- t 1 ∂N /∂t/N are theratesof growthdueto condensa- c−oal ≡ | c | c dynamically well coupled to the gas (see, e.g., Slinn 1974, tionandcoalescence,respectively,andβisanumericalfactor Pruppacher&Klett1997, their Chapter14). Fora collision (see also below). The equations that describe the cloud-to- Acondensation–coalescencecloudmodelforexoplanets 5 rainconversionarethengivenby (10 m for terrestrial water clouds and 20 m for Jovian am- moniaclouds),andintegratetheequationsintimeusingthe ∂N N c = c , (12) first-orderexplicitscheme. (cid:12) ∂t (cid:12)z=ztop −tconv (cid:12) (cid:12) (cid:12)(cid:12)(cid:12)∂ρc(cid:12)(cid:12)(cid:12) = ρc , (13) 3.1. WaterCloudsontheEarth (cid:12) ∂t (cid:12)z=ztop −tconv Wefocusontrade-windcumuli,whicharerelativelyshal- (cid:12)(cid:12) (cid:12)(cid:12) lowwatercloudsbutareyetdeepenoughtodevelopprecip- (cid:12)(cid:12) ∂Nr(cid:12)(cid:12) = Nc , (14) itation. vanZantenetal.(2011)conductedcomparativestud- ∂t t (cid:12) (cid:12)z=ztop conv ies of terrestrial cloud models using the data of trade-wind (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12)∂ρr(cid:12)(cid:12) = ρc . (15) cumuliinthenorthwesternAtlanticoceanobtainedfromthe ∂t t Rain in Cumulus over the Ocean (RICO) Field Campaign (cid:12) (cid:12)z=ztop conv (cid:12) (cid:12) (Rauberetal. 2007). FollowingvanZantenetal. (2011), we Strictly speaking, o(cid:12)(cid:12)ur c(cid:12)(cid:12)loud–rain two-population model (cid:12) (cid:12) examinehowaccuratelyourcloudmodelreproducesthever- breaks down near the cloud top, where the true size distri- ticalclouddistributionfromtheRICOcampaign. butionof condensateparticles (whichis notresolvedin our Following Weidenscilling&Lewis (1973), we construct model)cannotbeapproximatedwithtwopeaksthatarewell the vertical temperature profile by using the dry adiabatic separatedfromeachother. Thenumericalfactorβweintro- lapserate(g/c =9.8Kkm 1,wherec isthespecificheatat duced above arises from the lack of information about the p − p constantpressure)belowthecloudbaseandthewetadiabatic continuousparticle size distribution from cloud to rain par- lapserate(e.g.,theEquation(7)ofAtreyaetal.2005)above ticles. We findthatβ & 1–100causesanoscillatingmotion thecloudbase. Theverticalpressureprofileiscalculatedby ofthecloudtopthatpreventsusfromobtainingasteadyso- assuminghydrostaticequilibrium(whichisagoodapproxi- lution. Bycontrast,β . 1providesastablesteadysolution, mationaslongastheupdraftmotionisslow). Inaccordance and we find that the vertical distribution of cloud and rain withvanZantenetal.(2011),wefixthesurfacetemperature wellbelowthe cloudtop is insensitiveto the choiceofβ as andCCNnumberdensityto298Kand70cm 3,respectively, longasβ.1(seeSection3.1,3.2). Wewilladoptβ=0.1in − and adjust the water vapor mixing ratio (or the specific hu- thetestsimulationspresentedinthefollowingsection. midity)belowthecloudbasesothatthecloudbaseislocated at 500 m from the ground. The updraftvelocity is taken to 2.8. BoundaryConditions be either 0.9 ms 1 or 2.0 ms 1, which represent the typ- − − Thelowerboundaryofthecomputationaldomainissetto ical updraft velocities in the dense and diffuse parts of the the cloud base, which refers to the height above which the clouds, respectively, in the simulations by vanZantenetal. saturation ratio S ρ /ρ exceedsunity. To determine the v s (2011,theirFigure5). ≡ locationof thecouldbase, we introducethemixingratioof We approximate the vapor pressure for liquid water with the cloud-forming vapor below the cloud base as an input theArrheniusfunction parameter. Atthecloudbase,wesetthenumberdensityand L 1 1 radiusofcloudparticlestobeequaltothoseofCCN, NCCN ps,H2O =611exp R 273K − T Pa, (16) and rCCN, respectively. For rain particles, we simply allow " v !# themtoleavethecomputationaldomainwiththe(downward) where the temperature is in K and L = 2.5 106 Jkg 1 − × fluxdeterminedjustabovethecloudbase. (Rogers&Yau 1989). The thermal conductivity K and dy- The upper boundary is taken to be the cloud top, and namicviscosityηofairaresetto2.4 10 2Wm 1K 1and − − − the boundaryconditionsat that locationare givenby Equa- 1.7 10 5 Pas, respectively,andthe×diffusioncoefficientD − × tions(12)–(15). Neithercloudparticlesnorrainparticlesare ofwatervaporinairissetto2.2 10 5m2s 1. Thesearethe − − × allowedtogoabovethecloudtopbecause,bydefinition,the values at 273.0 K and 100 kPa (Rogers&Yau 1989). The netverticalvelocitiesoftheparticlesvanishatthecloudtop. CCN radius r is assumed to be 0.5 µm; the results pre- CCN sentedbelowareinsensitivetothechoiceofr aslongas CCN 3. TESTAPPLICATIONS itistakentobesmallerthan1µm. Now we test our cloud modelby comparingthe observa- Figures2and3presenttheresultsofourtestcalculations. tionaldataofwatercloudsontheEarthandofammoniaice InFigures2,weshowthesteady-stateverticalprofilesofthe cloudsonJupiter. Forsimplicity,weassumethatthevertical number and mass densities of the cloud and rain particles, structureand updraftmotionof the backgroundatmosphere for w = 0.9 and 2.0 ms 1. To highlight the effects of co- − is independent of the presence of clouds. We numerically alescence, we also show the results of simulations without solveEquations(1)–(5)withEquations(12)–(15),underthe the coagulation and sweepout terms (see the dotted lines). fixedboundaryconditionsatthecloudbase,untilsteadypro- Thesizesofthecloudandrainparticlesasafunctionofthe filesofN ,ρ ,N,andρ areobtained.Todoso,wediscretize height z from the ground are shown in Figure 3. In these c c r r theverticalcoordinatezintolinearlyspacedbinsofwidth∆z simulations, the size of the cloud particles reach 100 µm ∼ 6 Ohno&Okuzumi 2500 2000 m] 1500 ht [ g ei H 1000 500 0 0 20 40 60 80 100 0 1.0 2.0 3.0 4.0 5.0 10-5 10-4 10-3 10-2 10-1 100 10-3 10-2 10-1 100 101 N [cm-3] ρ [g/m3] N [cm-3] ρ [g/m3] c c r r Figure2. VerticalstructureoftradecumuluscloudsontheEarthderivedfromourmodelcalculationsaswellasfromtheRICOobservations. Thefourpanelsshow, fromlefttoright, thenumber andmassdensitiesofcloudparticles, N ,ρ , andthoseofrainparticles, N, andρ, as c c r r afunctionoftheheightzfromtheground. Theblueandredsolidlinesshowthesteady-statedistributionsobtainedfromourcondensation– coalescence model for w = 0.9and 2.0ms 1, respectively. Thedottedlinesshow theresultsfromthemodel neglecting coalescence. The − lightanddarkgray-shadedareasspanthe5to95%and25to75%rangesoftheRICOobservationdata,respectively,takenfromFigure8of vanZantenetal.(2011). 3000 andraindensitiesfallwithinthe5–95%rangeoftheobserva- tions,exceptathighaltitudesz&1700mwheretheresultfor 2500 w = 0.9 ms 1 considerablyunderestimatesthe cloud num- − ] berdensity.Bycontrast,themodelneglectingcoalescenceis m 2000 t [ foundtooverestimatethemassdensityofcloudparticlesby h g uptoanorderofmagnitude.Furthermore,thiscondensation- Hei 1500 onlymodelfailstoreproduceprecipitationbecausethemax- imumparticlesizereachablewithcondensationistoosmall 1000 to fall against an updraft of w 1 ms 1 (see the dashed − ∼ linesinFigure3). Withcoalescence,cloudparticlesdogrow 500 100 101 102 103 104 large enough to start falling as rain particles as we already Particle Radius [μm] describedabove. Althoughcoalescenceresolvestheorder-of-magnitudedis- Figure3. Vertical distributions of the cloud particle radius rc crepancy between the model predictions and observations, (solid lines) and rain particle radius r (dotted line) from our c condensation–coalescence cloud calculations shown in Figure 2. the cloud and rain mass densities are still systematically Theblueandredlinesshowtheresultsforw = 0.9and2.0ms−1, higher than the averagesof the observedvalues. This indi- respectively. Thedashedlinesshowtheverticaldistributionofthe cates that the updraftsthatproducethe observedcloudsen- cloudparticleradiusneglectingcoalescence. train dry ambient air (e.g., Pruppacher&Klett 1997). En- trainmentreducesthetemperatureandhumiditytheupdraft, both of which act to suppress the condensation growth of at z 1500 m for w = 0.9 ms 1 and at z 2200 m for − ≈ ≈ cloud particles. The suppressed growth in turn leads to a w = 2.0 ms 1. At these heights, the net vertical velocity − slowerdecreaseinthecloudnumberdensitywithheight,be- w v(r )ofthecloudparticlesbecomeszero,andweconvert t c − cause coalescence takes place only after the particles grow themintorainparticlesthatareallowedtocontinuegrowing sufficiently large (see Section 2.5). Therefore, a model in- astheyfalltowardtheground. cludingentrainmentmightbetterreproduceboththenumber Now we compare our simulation results with the RICO and mass density of cloud particles. However, the model- flight observations. The light and dark gray-shaded ar- ing of entrainment within a 1D framework necessarily in- eas in Figure 2 indicate the 5–95% and 25–75% ranges troduces additional poorly constrained free parameters (see of the observed values, respectively, taken from Figure e.g., Pruppacher&Klett 1997, Chapter 12.7, 12.8), which 8 of vanZantenetal. (2011). Overall, we find that our weavoidinthisstudy. condensation–coalescence model reproduces the observa- Figures 2 and 3 show that there is a jump in the cloud tionstoorderofmagnitude.Thepredictedvaluesofthecloud Acondensation–coalescencecloudmodelforexoplanets 7 3000 1000 β=0.1 β=1.0 CCN=107 m-3 β=10.0 CCN=106 m-3 2500 ] m CCN=105 m-3 µ ght [m]2000 dius [ ei1500 a100 H R e 1000 tiv c e 500 ff 10-2 10-1 100 101 100 101 102 103 104 E Mass Density [g m-3] Particle Radius [µm] 10 Figure4. Influencesofnumericalfactorβontheverticaldistribu- 1 tionsofthecloudparticleradiusr andmassdensityρ (solidlines), c c andtherainparticleradiusrrandmassdensityρr(dashedline).The ht red,blue, andgreenlinesshow thesimulationresultsforβ = 0.1, g ei 1.0,and10.0,respectively. TheCCNnumberdensitiesandupdraft H velocityaresettoNCCN =100cm−3andw=2.0m/s. ale Sc 0.1 particle radius and a peak in the cloud mass density at the s / cloud top. This is an artifact arising from our treatment of s e thecloud–rainconversionatthislocation. Asemphasizedin n k c Section 2.7, our cloud–rain two-population model does not hi T perfectlytreatthecloudtopwherethetwopopulationsinre- 0.01 alitymergeintoasingledistributionofparticles. Infact,we 100 findthatthe jumpandpeakfeaturesinr andρ , aswellas c c theheightofthe cloudtop, weaklydependson thevalueof the numericalfactor β introducedin ourcloud–rainconver- th 10 sioncalculations. Thisis shownin Figure4, wherewe plot p e the vertical distributions of the sizes and mass densities of D al cloudandrainparticlesforβ= 0.1,1.0,and10.0. However, c we confirm that this artifact has little effect on the vertical pti 1 O distributionswellbelowthecloudtop. 3.2. AmmoniaIceCloudsonJupiter 0.1 0.1 1 10 Wealsoattempttoreproducetheobservationsofammonia Updraft Velocity [m/s] clouds on Jupiter. Following Ackerman&Marley (2001), we focus on ammonia ice clouds that cover Jupter’s upper Figure5. Effective radius reff (top panel), cloud geometric thick- ness H normalized by pressure scale height H , (middle panel), troposphere where P 0.7 bar and T 130–140 K (e.g., andclopudopticaldepthτatvisiblewavelengths(gbottompanel)for ∼ ∼ Westetal. 1986). In accordancewith the measurementsby Jovianammoniaclouds. Thesolidlinesshowthepredictionsfrom the Galileo probe, we model the vertical temperature pro- ourcondensation–coalescencemodelfordifferentvaluesoftheup- draft velocity w (x-axis) and CCN density N (dashed lines for file as T = 166 K + Γ(z z ), where Γ = 2 Kkm 1 is CCN − 0 − − 107m−3,solidlinesfor106m−3,anddottedlinesfor105m−3).The the lapse rate and z0 is the height at which P = 1.0 bar orangehorizontalbarsindicatetheretrievalsfromtheVoyagerIRIS (Seiffetal. 1998), and set the mixingratio of ammonia gas observations by Carlsonetal.(1994), whilethevertical bars indi- underthecloudbasetobe6.64 10 4 kgkg 1 (Wongetal. cate the updraft velocity inferred from the 2D simulations of Jo- × − − vian moist convection by Sugiyamaetal. (2014, their Section3.1 2004). Theverticalpressureprofileisdeterminedunderthe andFigure9). Thepredictionfromthecondensation–coalescence assumptionof hydrostaticequilibrium. We take the updraft modelsatisfiesalltheseconstraintswhenwand N aretakento CCN velocity and CCN number density as free parameters rang- be2–3ms−1andNCCN ≈106m−3,respectively. ingfrom0.1ms 1to10ms 1andfrom103m 3to108m 3, − − − − respectively. Forthethevaporpressureofammoniaice,we use the expression by Ackerman&Marley (2001, see also which is the value for Jovian atmosphere at T = 134.3 K Ackerman&Marley2013), (Hansen1979). Thedynamicviscosityoftheatmosphereis givenbyη=6.7 10 6Pasbasedontheformulaforthemix- − 2161.0 86596.0 × ps,NH3 =exp 10.53− T − T2 bar, (17) turegasofH2andHe(Woitke&Helling2003)togetherwith ! theassumptionT 130K. Thediffusioncoefficientofam- ≈ where the temperatureis in K. The thermal conductivityof moniagasisgivenbytheformulaD =2η/(3ρf),whereρis the atmosphere is taken to be K = 9.0 10 2 Wm 1K 1, theatmosphericdensityand f =5forammoniavapor(Equa- − − − × 8 Ohno&Okuzumi 1000 tion (14)of Rossow 1978). Following Ackerman&Marley β=0.1 (2001), we take the bulk density of ammonia ice ρp to be m] ββ==11.00 0.84gcm 3. Asintheprevioussubsection,theCCNradius µ − [ r isassumedtobe0.5µm. s CCN u We comparethesteady-stateverticalprofilesofthecloud di a 100 andrainparticlesobtainedfromourmodelwiththeretrievals R by Carlsonetal. (1994) based on the infrared observations e v ofJovianammoniacloudsintheEquatorialZoneandNorth ti c TropicalZonefromVoyagerinstrumentIRIS. Carlsonetal. e f (1994) retrieved the effective particle radius reff, geomet- Ef 10 ric thickness H , and optical depth τ at the wavelength of p 0.5µm,wheretheeffectiveradiusreferstothearea-weighted ht 1 g averageoftheradiusofvisiblecondensateparticles(see,e.g., ei Kokhanovsky2004). Weevaluatetheeffectiveradiusinour H simulatedcloudsas e al reff = R((rrcc32NNcc++rrrr32NNrr))eexxpp((−−ττzz))ddzz. (18) ss / Sc 0.1 e whereτz is the optiRcalthicknessaboveheightz. Thefactor n k exp( τz)accountsforthefactthatonecanonlyobservepar- c ticles−residing at τ . 1. In the calculation of τ and τ , we hi z z T0.01 apply the geometric optics approximation to the extinction 100 crosssectionatvisiblewavelengths.Thegeometricthickness ofthesimulatedcloudistakentobethedistancebetweenthe h cloudbaseandcloudtopinthisstudy. t p The results are summarized in Figure 5. Here, the e 10 D solid lines show the values of reff, Hp, and τ from our al condensation–coalescencemodelfordifferentsetsoftheup- c ti draft velocity w and CCN density N . The orange hor- p 1 CCN O izontal bars indicate the retrievals by Carlsonetal. (1994): r = 70–100 µm, H 0.3H , and τ = 1.2–2.0, where eff p g ≤ Hg = 20 km is the pressure scale height and the range for 0.1 r is based on the interpretation by Ackerman&Marley 0.1 1.0 10 eff Updraft Velocity [m/s] (2001). Wefindthatthepredictionsfromthecondensation– coalescence model satisfies all these observational con- Figure6. Influence of β on the results for Jovian ammonia ice straints when the updraftvelocity w and CCN numberden- clouds. The value of N is fixed to 106 m 3. The dotted red CCN − sityN areassumedtobe 2–3ms 1and 106m 3(see lines show the simulations for β = 0.1, the solid blue lines show CCN ≈ − ≈ − for β = 1.0, and the dashed dark-green lines show for β = 10.0, thesolid blacklines), respectively. If N & 107 m 3 (see CCN − respectively. thedashedlines),thepredictedopticaldepthfallswithinthe retrievedrangeonlywhenw 0.2–0.5ms 1; however,for − ≈ thisrangeofw, thepredictedeffectiveradiusistoosmallto inglengththeoryformulatedby(Ackerman&Marley2001) beconsistentwiththeretrieval. If N . 105 m 3 (seethe suggestedtheupdraftvelocityatammoniacloudregionisap- CCN − dottedlines),ourpredictionreproducestheretrievedoptical proximately1–3ms 1,whichcorrespondstotheeddydiffu- − depthonlywhenw 3–7ms 1, butthenoverestimatesthe sioncoefficientK =2–6 108cm2s 1andthemixinglength − z − ≈ × effectiveradiusfromtheretrieval. equal to H = 20 km. Furthermore, the 2D simulations of g TheresultspresentedinFigure5are little affectedbythe theJovianmoistconvectionshowthattheupdraftvelocityat choiceofthe βparameterintroducedin ourcloud-toptreat- ammoniacloudregionis0.5–3ms 1(Sugiyamaetal.2014) − ment,asshowninFigure6. Onecanseethatthepredictions shownintheverticalorangebarofFigure5. Therefore,our convergeforβ & 1. Forβ = 0.1, thepredictedeffectivera- bestfitvalueofupdraftvelocityof2–3ms 1 isarealistic − dius and optical depth at w & 0.5 m/s are higher than the valuefortheJovianammoniacloudregion. convergedvalues,butthedeviationfromtheconvergedvalue Unfortunately, there is no direct observational constraint isassmallasafactoroflessthan2. on the CCN number density for Jovian ammonia clouds. We comparethe updraftvelocityof 2–3 ms 1 with other However,animportanthintforthe CCN densitycan beob- − calculations to validate our best fit value. First, the mix- tainedfromthein-situobservationoftheJovianatmosphere Acondensation–coalescencecloudmodelforexoplanets 9 inarelativelyparticle-freehotspotbytheGalileoprobe.The interrestrialwatercloudsbutalsoinJovianiceclouds. observationshowedthataconcentrationofsmallparticlesof Equation (8) assumes that two particles stick whenever ameanradiusof0.5–5µmandanumberdensityof1.9 105– they collide. However, this assumption breaks down if the × 7.5 106m 3waspresentataheightwhereammoniaclouds collisionvelocityissohighthatthecollisionresultsinbounc- − × form(Ragentetal.1998).Itisunlikelythattheobservedpar- ingorfragmentationoftheparticles. Inprinciple,solidpar- ticleshadexperiencedcoalescence,becausetheparticlesare ticles are less sticky than liquid particles because a harder toosmalltocollidewitheachother(i.e.,forparticlessmaller particlehasasmallercontactareaandhenceasmallbinding thanamicroninradius,Stk < 0.5andhenceE < 0.3inthe energyassociatedwithintermolecularforces(Rossow1978). ammoniacloudformingregion).Therefore,wecaninferthat Our future modeling will take into account the potentially thenumberdensityofCCN,whichisapproximatelyequalto lowstickingefficiencyofsoliddustparticles. thenumberdensityofsmallparticlesbeforecoalescencesets We have also assumed that the internal density of con- in,was 105–107 m 3 inthehotspottheGalileoprobeen- densate particles is constant. However, the internal den- − ∼ tered. Interestingly,thisvalueisconsistentwith ourpredic- sity can decrease as the particles grow into porous aggre- tion for the CCN density in the Equatorial Zone and North gates through coalescence (e.g., Blum&Wurm 2000). Be- TropicalZone(seeabove).Wedonotthinkthatthiscompar- cause porous aggregates have a larger aerodynamical cross ison justifies our cloud model, because the CCN density in sectionthancompactparticlesofthesamemass,porousag- relativelycloud-freehotspotsisnotnecessarilyequaltothat gregatesmightascendtohigheraltitudesthancompactones incloudyEquatorialZoneandNorthTropicalZone. Rather, and provide featureless transmission spectra of exoplane- thiscomparisonsuggeststhattheCCNconcentrationsinthe tary atmospheres. On the other hand, the coalescence of tworegionscouldbesimilar. porous aggregates can be faster than that of compact parti- cles(Okuzumietal.2012).Ifthisisthecaseinexoplanetary 4. SUMMARYANDOUTLOOK atmospheres,theporosityevolutionmightpreventtheforma- Wehavedevelopedanewcloudmodelforexoplanetsand tionofhigh-altitudeclouds.Recenttheoreticalstudiesofthe browndwarfsthatissimplebuttakesintoaccountthemicro- graingrowthinprotoplanetarydiskshaveyieldedadetailed physics of both condensation and coalescence. Our model modelfortheporosityevolutionofgrainaggregatesbasedon produces the vertical distributions of the mass and number graincontactmechanics(e.g.,Kataokaetal.2013). Wewill densitiesofcloudandrainparticlesasafunctionofphysical studytheimpactofporosityevolutiononcloudformationby parameters,includingtheupdraftvelocity,themixingratioof usingthesetheoriesinfuturestudies. thecondensinggasatthecloudbase,andthenumberdensity of CCN. Therefore, our model will be useful to understand Theauthorsthanktheanonymousrefereeforusefulcom- how the dynamics, compositions, and nucleation processes ments. We thank Hanii Takahashi and Yuka Fujii for use- in exoplanetaryatmosphereswouldaffecttheverticalstruc- ful discussions about observationsof terrestrial clouds, and tureofexoplanetarycloudsviacloudmicrophysics. Chris Ormelfor manyhelpfulcommentson the manuscript We have tested our model by comparing with the obser- of this paper, and Neal Turner, Shigeru Ida, Masahiro vationsoftheterrestrialwatercloudsandtheJovianammo- Ikoma, Mark Marley, Yasuto Takahashi, and Xi Zhang niaclouds. Forterrestrialwaterclouds,ourmodelplausibly for useful comments and discussions. This work is sup- reproduces the observed vertical distributions of the cloud portedbyGrants-in-AidforScientificResearch(#23103005, mass and number densities from in situ observations when 15H02065)fromMEXTofJapan. we assume the terrestrial typical updraft velocity, height of cloud base, and CCN number density. For Jovian ammo- APPENDIX nia clouds, our model simultaneously reproduces the cloud opticaldepth,thegeometricthickness,andtheparticleeffec- A. TERMINALVELOCITY tive radius in the EquatorialZone and North Tropical Zone For particles much larger than the mean free path of the retrievedfrom Voyager measurementswhen we assume the updraftvelocityofw 2–3ms 1andtheCCNnumberden- molecules in air, the terminal velocity of a particle under − sity of N 106≈m 3. Our best-fit updraft velocity is gravitygisgivenby CCN − ≈ consistentwithestimatesfrommixingtheoryandfromcloud 8grρ convectionsimulations. Thebest-fitCCNdensityiscloseto v(r)= p, (A1) thenumberdensityofsmallparticlesinahotspotmeasured t s3CDρa bytheGalileoprobe,suggestingthattheCCNdensityinthe whereρ isthemassdensityoftheatmosphere,andC isthe a D EquatorialZoneandNorthTropicalZoneissimilartothatin dragcoefficientdeterminedbythelocalReynoldsnumberof hotspots. Thegoodagreementbetweenourpredictionsand theparticle, theobservationsindicatesthatthecoalescenceofcondensate 2rv(r)ρ particlesisanimportantprocessofcloudformation,notonly N t a, (A2) Re ≡ η 10 Ohno&Okuzumi whichdoesnotinvolvev, andanalyticallyexpressN asa t Re functionofX. WerequirethefunctiontoreproduceStokes’ and Newton’s drag laws, C = 24/N (N = X/24) and D Re Re C = 0.45 (N = √X/0.45), in the limits of N 1 D Re Re ≪ and N 1000, respectively. To determinethe functional Re ≫ formintheintermediateregime1. N .1000,weusethe Re dataforrigidspheresfromTable10.1ofPruppacher&Klett (1997). Wefindthatthefunction N = X −0.8+ X −0.4 −1/0.8 (A4) Re 24 0.45 "(cid:18) (cid:19) (cid:18) (cid:19) # well reproduces the data points in the intermediate regime and the correct limiting behaviors at N 1 and N Re Re ≪ ≫ 1000(seeFigureA1).SubstitutingthisexpressionandEqua- FigureA1. ParticleReynoldsnumber NRe versusX ≡ CDNR2e. The tion(A3)intoEquation(A2),weobtaintheanalyticexpres- dashedanddottedlinesindicatetheStokesandNewtondraglaws, respectively, and the solid circles show the data for rigid spheres sionforv asafunctionofr, t fromTable10.1ofPruppacher&Klett(1997).Thesolidlineshows ourfit,Equation(A4). 2gr2ρ 0.45gr3ρ ρ 0.4 −1.25 p a p v = 1+ . (A5) t 9η 54η2 whereηisthedynamicviscosityoftheatmosphere.  !  Because NRe depends on vt, one needs to solve Equa- If the particles are small the atmosphericmean free path, tions (A1) and (A2), together with the relation between oneshouldusetheEpsteinlaw C and N , to obtain v as a function of r. Following gρ D Re t p v(r)= r (A6) Ackerman&Marley (2001), we do so by introducing the t 3C ρ s a quantity instead of Equation (A5). This is the case for high-altitude 32gr3ρ ρ X C N2 = a p, (A3) cloudsinexoplanets(seeSection2.4). ≡ D Re 3η2 REFERENCES Ackerman,A.S.,&Marley,M.S.2001,ApJ,556,872 Kreidberg,L.,Bean,J.L.,De´sert,J.-M.,etal.2014,Nature,505,69 Ackerman,A.S.,&Marley,M.S.2013,ApJ,765,75 Krijt,S.,Ormel,C.W.,Dominik,C.,&Tielens,A.G.G.M.2016,A&A, Atreya,S.K.,&Wong,A.-S.2005,SSRv,116,121 586,A20 Bean,J.L.,Miller-RicciKempton,E.,&Homeier,D.2010,Nature,468, Lee,G.,Helling,C.,Dobbs-Dixon,I.,&Juncher,D.2015,A&A,580,A12 669 Marley,M.S.,Seager,S.,Saumon,D.,etal.2002,ApJ,568,335 Birnstiel,T.,Klahr,H.,&Ercolano,B.2012,A&A,539,A148 Marley,M.S.,Ackerman,A.S.,Cuzzi,J.N.,&Kitzmann,D.2013, Blum,J.,&Wurm,G.2000,Icarus,143,138 ComparativeClimatologyofTerrestrialPlanets,367 Buenzli,E.,Apai,D.,Morley,C.V.,etal.2012,ApJL,760,L31 Morley,C.V.,Fortney,J.J.,Kempton,E.M.-R.,etal.2013,ApJ,775,33 Burgasser,A.J.,Marley,M.S.,Ackerman,A.S.,etal.2002,ApJL,571, Morley,C.V.,Fortney,J.J.,Marley,M.S.,etal.2015,ApJ,815,110 L151 Okuzumi,S.,Tanaka,H.,&Sakagami,M.-a.2009,ApJ,707,1247 Carlson,B.E.,Lacis,A.A.,&Rossow,W.B.1994,J.Geophys.Res.,99, Okuzumi,S.,Tanaka,H.,Kobayashi,H.,&Wada,K.2012,ApJ,752,106 14 Ormel,C.W.2014,ApJ,789,L18 Cooper,C.S.,Sudarsky,D.,Milsom,J.A.,Lunine,J.I.,&Burrows,A. Ormel,C.W.,Spaans,M.,&Tielens,A.G.G.M.2007,A&A,461,215 2003,ApJ,586,1320 Pont,F.,Sing,D.K.,Gibson,N.P.,etal.2013,MNRAS,432,2917 Crossfield,I.J.M.,Barman,T.,Hansen,B.M.S.,&Howard,A.W.2013, Pruppacher,H.R.,&Klett,J.D.1997,MicrophysicsofCloudsand A&A,559,A33 Precipitation(Dordrecht:Kluwer) Dragomir,D.,Benneke,B.,Pearson,K.A.,etal.2015,ApJ,814,102 Ragent,B.,Colburn,D.S.,Rages,K.A.,etal.1998,J.Geophys.Res.,103, Ehrenreich,D.,Bonfils,X.,Lovis,C.,etal.2014,A&A,570,A89 22891 Ferrier,B.S.1994,J.Atmos.Sci.,51,249 Rauber,R.M.,Stevens,B.,Ochs,H.T.,etal.2007,Bull.Amer.Meteor. Fortney,J.J.2005,MNRAS,364,649 Soc.,88,1912 Guillot,T.,&Ormel,C.W.2014,A&A,572,A72 Rogers,R.,&Yau,M.1989,AShortCourseinCloudPhysics(3rded.; Hansen,C.F.1979,NASATechnicalMemo78556 Helling,Ch.,&Woitke,P.2006,A&A,455,325 Oxford:Butterworth-Heinemann) Helling,C.,Woitke,P.,&Thi,W.-F.2008,A&A,485,547 Rossow,W.B.1978,Icarus,36,1 Helling,C.,Lee,G.,Dobbs-Dixon,I.,etal.2016,MNRAS,460,855 Sato,T.,Okuzumi,S.,&Ida,S.2016,A&A,589,A15 Homann,H.,Guillot,T.,Bec,J.,etal.2016,A&A,589,A129 Saumon,D.,&Marley,M.S.2008,ApJ,689,1327-1344 Kataoka,A.,Tanaka,H.,Okuzumi,S.,&Wada,K.2013,A&A,554,A4 Seager,S.,&Sasselov,D.D.2000,ApJ,537,916 Kokhanovsky,A.2004,Earth-ScienceReviews,64,189 Seinfeld,J.H.,&Pandis,S.N.2006,AtmosphericChemistryandPhysics: Knutson,H.A.,Benneke,B.,Deming,D.,&Homeier,D.2014,Nature, FromAirPollutiontoClimateChange(2nded.;NewJersey:Wiley) 505,66 Seiff,A.,Kirk,D.B.,Knight,T.C.D.,etal.1998,J.Geophys.Res.,103, Knutson,H.A.,Dragomir,D.,Kreidberg,L.,etal.2014,ApJ,794,155 889,22822

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.