ebook img

A Concrete Approach to Abstract Algebra: From the Integers to the Insolvability of the Quintic PDF

721 Pages·2010·3.689 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Concrete Approach to Abstract Algebra: From the Integers to the Insolvability of the Quintic

A Concrete Approach to Abstract Algebra Thispageintentionallyleftblank A Concrete Approach to Abstract Algebra From the Integers to the Insolvability of the Quintic Jeffrey Bergen DePaulUniversity Chicago,Illinois AMSTERDAM•BOSTON•HEIDELBERG•LONDON NEWYORK•OXFORD•PARIS•SANDIEGO SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO AcademicPressisanimprintofElsevier AcademicPressisanimprintofElsevier 30CorporateDrive,Suite400,Burlington,MA01803,USA 525BStreet,Suite1900,SanDiego,California92101-4495,USA 84Theobald’sRoad,LondonWC1X8RR,UK Copyright©2010byElsevier,Inc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData Bergen,Jeffrey,1955. Aconcreteapproachtoabstractalgebra:fromtheintegerstotheinsolvabilityofthequintic/JeffreyBergen. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-12-374941-3(hardcover:alk.paper)1.Algebra,Abstract.I.Title. QA162.B452010 512’.02–dc22 2009035349 BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-12-374941-3 ForinformationonallAcademicPresspublications visitourWebsiteatwww.elsevierdirect.com Typesetby:diacriTech,India PrintedintheUnitedStates 10 11 12 9 8 7 6 5 4 3 2 1 To Donna Thispageintentionallyleftblank Contents Preface...............................................................................xi AUser’sGuide...................................................................... xv Acknowledgments ...................................................................xix Chapter1 WhatThisBookIsaboutandWhoThisBookIsfor.......................1 1.1 Algebra...........................................................................2 1.1.1 FindingRootsofPolynomials...................................................2 1.1.2 ExistenceofRootsofPolynomials..............................................4 1.1.3 SolvingLinearEquations........................................................5 1.2 Geometry ........................................................................6 1.2.1 RulerandCompassConstructions...............................................6 1.3 Trigonometry ....................................................................7 1.3.1 RationalValuesofTrigonometricFunctions....................................7 1.4 Precalculus.......................................................................8 1.4.1 RecognizingPolynomialsUsingData...........................................8 1.5 Calculus.........................................................................10 1.5.1 PartialFractionDecomposition................................................ 10 1.5.2 DetectingMultipleRootsofPolynomials..................................... 12 ExercisesforChapter1 ........................................................14 Chapter2 ProofandIntuition.......................................................19 2.1 TheWellOrderingPrinciple...................................................20 2.2 ProofbyContradiction.........................................................26 2.3 MathematicalInduction........................................................29 MathematicalInduction—FirstVersion.......................................30 MathematicalInduction—FirstVersionRevisited............................32 MathematicalInduction—SecondVersion....................................37 ExercisesforSections2.1,2.2,and2.3 .......................................37 2.4 FunctionsandBinaryOperations..............................................46 ExercisesforSection2.4.......................................................56 vii Contents Chapter3 TheIntegers .............................................................61 3.1 PrimeNumbers.................................................................61 3.2 UniqueFactorization...........................................................64 3.3 DivisionAlgorithm.............................................................67 ExercisesforSections3.1,3.2,and3.3 .......................................71 3.4 GreatestCommonDivisors....................................................76 3.5 EuclideanAlgorithm ...........................................................79 ExercisesforSections3.4and3.5.............................................91 Chapter4 TheRationalNumbersandtheRealNumbers............................97 4.1 RationalNumbers ..............................................................97 4.2 IntermediateValueTheorem................................................. 105 ExercisesforSections4.1and4.2........................................... 113 4.3 EquivalenceRelations........................................................ 118 ExercisesforSection4.3..................................................... 128 Chapter5 TheComplexNumbers................................................. 137 5.1 ComplexNumbers ........................................................... 137 5.2 FieldsandCommutativeRings.............................................. 140 ExercisesforSections5.1and5.2........................................... 148 5.3 ComplexConjugation........................................................ 154 5.4 AutomorphismsandRootsofPolynomials ................................. 163 ExercisesforSections5.3and5.4........................................... 169 5.5 GroupsofAutomorphismsofCommutativeRings......................... 177 ExercisesforSection5.5..................................................... 182 Chapter6 TheFundamentalTheoremofAlgebra ................................. 189 6.1 RepresentingRealNumbersandComplexNumbersGeometrically ...... 189 6.2 RectangularandPolarForm ................................................. 199 ExercisesforSections6.1and6.2........................................... 203 6.3 Demoivre’sTheoremandRootsofComplexNumbers .................... 208 6.4 AProofoftheFundamentalTheoremofAlgebra .......................... 215 ExercisesforSections6.3and6.4........................................... 222 Chapter7 TheIntegersModulon ................................................. 227 7.1 DefinitionsandBasicProperties............................................. 227 7.2 ZeroDivisorsandInvertibleElements...................................... 233 ExercisesforSections7.1and7.2........................................... 241 7.3 TheEulerφ Function......................................................... 248 7.4 PolynomialswithCoefficientsinZ ........................................ 256 n ExercisesforSections7.3and7.4........................................... 260 viii Contents Chapter8 GroupTheory.......................................................... 265 8.1 DefinitionsandExamples.................................................... 265 I.CommutativeRingsandFieldsunderAddition ........................ 266 II.InvertibleElementsinCommutativeRingsunderMultiplication ..... 266 III.BijectionsofSets......................................................... 267 ExercisesforSection8.1..................................................... 288 8.2 TheoremsofLagrangeandSylow........................................... 294 ExercisesforSection8.2..................................................... 318 8.3 SolvableGroups.............................................................. 322 ExercisesforSection8.3..................................................... 342 8.4 SymmetricGroups ........................................................... 347 ExercisesforSection8.4..................................................... 361 Chapter9 PolynomialsovertheIntegersandRationals............................ 365 9.1 IntegralDomainsandHomomorphismsofRings .......................... 365 ExercisesforSection9.1..................................................... 374 9.2 RationalRootTestandIrreduciblePolynomials............................ 379 ExercisesforSection9.2..................................................... 387 9.3 Gauss’LemmaandEisenstein’sCriterion .................................. 390 ExercisesforSection9.3..................................................... 397 9.4 ReductionModulop.......................................................... 398 ExercisesforSection9.4..................................................... 408 Chapter10 RootsofPolynomialsofDegreeLessthan5 .......................... 411 10.1 FindingRootsofPolynomialsofSmallDegree ............................ 411 10.2 ABriefLookatSomeConsequencesofGalois’Work ..................... 418 ExercisesforSections10.1and10.2........................................ 420 Chapter11 RationalValuesofTrigonometricFunctions........................... 423 11.1 ValuesofTrigonometricFunctions.......................................... 424 ExercisesforSection11.1 ................................................... 433 Chapter12 PolynomialsoverArbitraryFields..................................... 437 12.1 SimilaritiesbetweenPolynomialsandIntegers............................. 437 12.2 DivisionAlgorithm........................................................... 444 ExercisesforSections12.1and12.2........................................ 453 12.3 IrreducibleandMinimumPolynomials ..................................... 457 12.4 EuclideanAlgorithmandGreatestCommonDivisors...................... 460 ExercisesforSections12.3and12.4........................................ 470 12.5 FormalDerivativesandMultipleRoots..................................... 474 ExercisesforSection12.5 ................................................... 484 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.