ebook img

A comparative analysis of virial black-hole mass estimates of moderate-luminosity active galactic nuclei using Subaru/FMOS PDF

0.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A comparative analysis of virial black-hole mass estimates of moderate-luminosity active galactic nuclei using Subaru/FMOS

DRAFTVERSIONJANUARY14,2013 PreprinttypesetusingLATEXstyleemulateapjv.02/07/07 ACOMPARATIVEANALYSISOFVIRIALBLACK-HOLEMASSESTIMATESOFMODERATE-LUMINOSITYACTIVE GALACTICNUCLEIUSINGSUBARU/FMOS K.MATSUOKA1,2,J.D.SILVERMAN3,M.SCHRAMM3,C.L.STEINHARDT3,T.NAGAO4,5,J.KARTALTEPE6,D.B.SANDERS7, E.TREISTER8,G.HASINGER7,M.AKIYAMA9,K.OHTA5,Y.UEDA5,A.BONGIORNO10,11,W.N.BRANDT12,M.BRUSA13,14,15, P.CAPAK16,F.CIVANO17,A.COMASTRI15,M.ELVIS17,L.C.HO18,S.J.LILLY19,V.MAINIERI20,D.MASTERS18,M.MIGNOLI15, M.SALVATO13,J.R.TRUMP21,Y.TANIGUCHI2,G.ZAMORANI15,D.M.ALEXANDER22,ANDY.T.LIN23 DraftversionJanuary14,2013 3 1 ABSTRACT 0 We present an analysis of broad emission lines observed in moderate-luminosity active galactic nuclei 2 (AGNs), typical of those found in X-ray surveys of deep fields, with the aim to test the validity of single- n epochvirialblackholemassestimates. Wehaveacquirednear-infrared(NIR;1.0- 1.8µm)spectraofAGNs a uptoz∼1.8intheCOSMOSandExtendedChandraDeepField-SouthSurvey,withtheFiberMulti-Object J Spectrograph(FMOS)mountedontheSubaruTelescope.Theselow-resolution(R∼600)NIRspectraprovide 0 asignificantdetectionofthebroadHαemissionlinethathasbeenshowntobeareliableprobeofblackhole 1 mass at low redshift. Our sample has existing optical spectroscopy (through programs such as zCOSMOS) which providesa detection of MgII, a broad emission line typically used for black hole mass estimation at ] z&1. We carryoutaspectral-linefittingprocedureusingbothHαandMgIItodeterminethevirialvelocity O of gas in the broad line region, the monochromatic continuum luminosity at 3000 Å, and the total Hα line C luminosity.Withasampleof43AGNsspanningarangeoftwodecadesinluminosity(i.e.,λLλ∼1044- 46ergs . s- 1), wefind atightcorrelationbetweentherest-frameultravioletandemission-lineluminositywith a distri- h p butioncharacterizedby hlog(λL3000/LHα)i=1.52andadispersionσ=0.16. Thereisalsoacloseone-to-one - relationshipbetweentheFWHMofHαandofMgIIupto10000kms- 1 withadispersionof0.14inthedis- o tributionofthelogarithmoftheirratios. Bothofthesethenleadtotherebeingverygoodagreementbetween tr Hα-andMgII-basedmassesoverawiderangeinblackholemass(i.e.,MBH∼107- 9M⊙). Wedofindasmall s offsetinMgII-basedmasses,relativetothosebasedonHα,of+0.17dexandadispersionσ=0.32.Ingeneral, a theseresultsdemonstratethatlocalscalingrelations,usingMgIIorHα, areapplicableforAGNatmoderate [ luminositiesanduptoz∼2. 1 Subjectheadings:blackholephysics—galaxies:active—quasars:emissionlines v 2 3 1. INTRODUCTION 3 Electronicaddress:[email protected] 2 1DepartmentofPhysicsandAstronomy,SeoulNationalUniversity,599 While the study of galaxy evolution has made important . Gwanak-ro,Gwanak-gu,Seoul151-742,RepublicofKorea stridesinrecentyearsbybeingabletoweighindividualgalax- 1 2ResearchCenterforSpaceandCosmicEvolution,EhimeUniversity,2-5 ies (i.e., determine a mass), the field of quasar research is 0 Bunkyo-cho,Matsuyama790-8577,Japan grappling with the issue of how to measure accurately the 3 3KavliInstituteforthePhysicsandMathematicsoftheUniverse(Kavli masses of a supermassive black holes (SMBHs) for the dis- 1 IPMU),TheUniversity ofTokyo,5-1-5Kashiwanoha, Kashiwa277-8583, tant quasar population. Here the challenge is greater due to : Japan v 4TheHakubiCenterforAdvancedResearch,KyotoUniversity,Yoshida- the fact thatthe sphere of influenceof a SMBH can onlybe i Ushinomiya-cho,Sakyo-ku,Kyoto606-8302,Japan resolvedforalimitedsampleofnearbygalaxieswhereasthe X 5Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake- dynamicalmassofagalaxycaneasilybemeasuredduetoits r cho,Sakyo-ku,Kyoto606-8502,Japan large spatial extent. A significant leap forward in our abil- a 6NationalOpticalAstronomyObservatory,950NorthCherryAveue,Tuc- ity to both accurately and efficiently measure the masses of son,AZ85719,USA 7Institute forAstronomy, University ofHawaii, 2680WoodlawnDrive, SMBHs,MBH,atallredshiftswilllikelyleadtonewinsights Honolulu,HI96822,USA onquestionssuchashowareblackholesfueled,whatitisthe 8DepartamentodeAstronomía,UniversidaddeConcepción,Casilla160- C,Concepción,Chile 9Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, 1200EastCaliforniaBoulevard,Pasadena,CA91125,USA Sendai980-8578,Japan 17Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cam- 10Max-Planck-InstitutfürextraterrestrischePhysik,Giessenbachstrasse1, bridge,MA02138,USA 85748GarchingbeiMünchen,Germany 18TheObservatories ofthe Carnegie Institution forScience, 813Santa 11INAF–OsservatorioAstronomicodiRoma,ViadiFrascati33,00040 BarbaraStreet,Pasadena,CA91101,USA MontePorzioCatone,Italy 19InstituteforAstronomy,ETHZürich,Wolfgang-Pauli-Strasse27,8093 12Department of Astronomy and Astrophysics, ThePennsylvania State Zürich,Switzerland 20EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse 2,85748 University,UniversityPark,PA16802,USA GarchingbeiMünchen,Germany 13Max-Planck-InstitutfürextraterrestrischePhysik,Postfach1312,84571 21University of California Observatories/Lick Observatory and Depart- GarchingbeiMünchen,Germany mentofAstronomyandAstrophysics,UniversityofCalifornia,SantaCruz, 14DipartimentodiFisicaeAstronomia,UniversitádegliStudidiBologna, CA95064,USA vialeBertiPichat6/2,40127Bologna,Italy 22DepartmentofPhysics,DurhamUniversity,SouthRoad,DurhamDH1 15INAF–OsservatorioAstronomicodiBologna, ViaRanzani1,40127 3LE,UK Bologna,Italy 23Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 16NASA/JPLSpitzerSciencecenter, California InstituteofTechnology, 10617,Taiwan 2 MATSUOKAETAL. connectionwith its host galaxy, and how do SMBHs evolve the broad-line region is not so simple (Wangetal. 2009; withinacosmologicalframework. Trakhtenbrot&Netzer 2012), especially for the most lumi- Spectroscopyenablesustoprobethekinematicsofionized nous quasars (Marzianietal. 2009; Steinhardt&Silverman gas within the vicinity of a SMBH in distant active galac- 2011;Marzianietal.2013)thatcanhavesignificantoutflows tic nuclei (AGNs) and luminous quasars to infer their black possiblyinresponsetoamoreintenseradiationfield.Further- holemasses. Traditionally,emissionlines(e.g.,CIV, MgII, more,itisnon-trivialtodisentanglethebroadMgIIlinefrom Hβ, and Hα) detected in the optical and velocity-broadened Fe emission that sits at its base, especially for lower mass between 2000- 20000 km s- 1 are used to probe the gravi- blackholesandmaybeeventhoseatthehighmassend. tational potential well of a SMBH. This lower limit on the We present first results of a near-infrared spectroscopic velocity width has been set somewhat arbitrarily since there survey of broad-line AGNs (BLAGNs) primarily in the existsa well-knownpopulationof bothtype1 AGNshaving COSMOS field using the Fiber Multi-Object Spectrograph narrowerlinewidths(i.e.,NLS1;Osterbrock&Pogge1987) (FMOS) mounted on the Subaru Telescope. With FMOS, and those with intermediate-massblackholes(Greene&Ho we now have the capability to simultaneously acquire near- 2004,2007). infraredspectraof ∼200targetsoverafieldofviewof0.19 There are methods to determine the luminosity-weighted square degrees. In this study, we report on the comparison radialdistancebetweenthebroad-lineregion(BLR)andcen- between the Hα emission line profile, detected in the near- tral source, RBLR, for AGN (z.0.4) through reverberation- infrared, with that of Mg II present in previously available mappingcampaigns(e.g.,Bahcalletal.1972;Peterson1993; optical spectra. We aim to establish how effective recipes Bentzetal.2009)basedonBalmerlines. Evenwiththecom- (established locally) are to measure single-epoch black hole plex nature of the BLR, this characteristic radius is tightly masses outto z∼1.8 and forBLAGNs of lower luminosity correlatedwith its luminosity(Kaspietal. 2000, 2005), thus (i.e., lower black hole mass), as comparedto those foundin providing a means to infer such a distance to the BLR in theSDSS.OursampleissupplementedwithAGNsfromthe large quasarsamples based solely on luminosity. Then cou- ExtendedChandra Deep Field-South (ECDF-S) Survey that pled with velocity information provides a viral mass esti- reach fainterdepths, in X-rays, than the Chandra/COSMOS mate based on a single-epoch spectrum. Such techniques surveyandimproveourstatisticsatlowerblackholemasses. have been applied to large quasar samples most notably In Section 2, we fully describe the FMOS observations in- the Sloan Digital Sky Survey (SDSS). A number of studies cludingtargetselection,datareduction,andsuccessratewith (e.g., Vestergaard&Osmer 2009; Steinhardt&Elvis 2010; respect to detecting the Hα emission line. We describe our Shenetal.2011)clearlydemonstratethatsuchsampleseffec- methodforfittingbroademissionlinesinSection3. Ourre- tivelyprobeSMBHsaboveMBH&109M⊙atz∼2(anepoch sults are described in Section 4. Throughout this work, we ofmaximalblackholeactivity)duetothewideareacoverage assumeH0=70kms- 1 Mpc- 1, ΩΛ=0.7,ΩM =0.3,andAB andshallowdepth. Itisimportanttokeepinmindthatthese magnitudes. black hole masses are based on calibrations using lower lu- 2. NEAR-INFRAREDSPECTROSCOPYWITH minosityAGNsatlowredshift;theirapplicationtoluminous SUBARU/FMOS quasarsathighredshiftis notwellsolidifiedwith reverbera- tionmapping(Kaspietal.2007). The capability of FMOS (Kimuraetal. 2010) to simulta- Deep surveys, such as COSMOS, GOODS and AEGIS, neously acquire near-infrared spectra for a large number of are effectiveprobesof blackholeaccretionat lowermasses. objectsovera wide field offers greatpotentialfor studies of Giventhattheblackholemassfunctionissteeplydecliningat galaxies(Yabeetal.2012;Roseboometal.2012)andAGNs logM &9(Shen&Kelly2012),studiesoftheglobalpop- (Nobutaetal.2012)athighredshift.Overacircularregionof BH ulationwithSDSSaresusceptibletolargeuncertaintieswhen 30′ in diameter, it is possible to place up to 400fibers, each extrapolatedtolowermasses(Kelly&Shen2012).Whileno- witha1.′′2aperture,acrossthefield. Todetectemissionlines ble attempts have been made to characterize the low-mass inAGNsoverawiderangeinredshift,weelecttousethelow- end (logM . 9; Tamuraetal. 2006; Hopkinsetal. 2007; resolutionmodethateffectivelycoverstwowavelengthinter- BH Merloni&Heinz2008),thesestudieshavebeenbasedonlu- valsof1.05- 1.34µm(Jband)and1.43- 1.77µm(Hband) minosity and do not consider virial velocities. These deep simultaneously. Thespectralresolutionisλ/∆λ≈600,thus survey fields have considerable X-ray coverage that can be a velocity resolution FWHM ∼500 km s- 1 at λ=1.5 µm, utilizedto selectAGNsthatmitigatebiasesincurredby host suitable for the study of broad emission lines of AGN. Un- galaxydilutionandobscuration. Suchselectionthenhasthe fortunately,this mode requiresan additionalopticalelement potentialtoeffectivelyprobethelowerluminosityAGNpopu- (i.e.,VPHgrating)thatreducesthetotalthroughputto ∼4% lationthatmaybepoweredbylowermassblackholesorthose at 1.3 µm and impactsthe limiting depth reachablein a few accreting at sub-Eddington rates. Followup optical spectro- hoursofintegrationtime. scopic observations are enabling single-epoch virial black Accurate removal of the bright sky backgroundwhen ob- hole mass estimates (down to 107M⊙) based on the proper- servingfromthegroundwithnear-infrareddetectorsremains ties of their broad emission lines and continuum luminosity the primary challenge. With FMOS, an OH-airglow sup- (Trumpetal.2009;Merlonietal.2010). pression filter (Maiharaetal. 1993; Iwamuroetal. 2001) is MassestimatesforthesehigherredshiftAGNs,whichactu- built into the system that significantly reduces the intensity allyconstitutethemajorityofthepopulationindeepsurveys of strong atmospheric emission lines that usually plague the such as COSMOS, rely on MgII or CIV since the Hβ line JbandandHband. Equallyimportant,thereisthecapability (usedtocalibraterecipesbasedonlocalsamples)isnolonger (cross-beam-switching; CBS hereafter) to dither targets be- availableintheopticalwindowatz&0.8. Whiletheassump- tween fiber pairs effectively measuring the sky background tion that the MgII line is produced from the same physical spatially close to individual objects and through the same region as Hβ may hold (McLure&Jarvis 2002; Shenetal. fibersasthesciencetargets. Inthismode,twosequentialob- 2008), there are studies that indicate that the physics of servationsaretakenbyoffsettingthetelescopeby60′′ while BHMASSESTIMATESOFMODERATE-LUMINOSITYAGNS 3 keepingthetargetwithinoneofthetwofibers. Thetradeoff is that only 200 fibers are available in this CBS mode. We referthe readerto Kimuraetal.(2010) forfulldetailsofthe instrumentanditsperformance. Below, we briefly describe our observing program using FMOS including the selection of type 1 AGNs, data reduc- tion, and success rate with respect to the detection of broad emissionlines. Completedetailsofourprogramwillbepre- sentedinSilvermanetal.(inprep.)alongwiththefullcatalog of emission-line propertiesof broad-lineAGNs in the COS- MOSandECDF-S. 2.1. Targetselection Our primary selection of AGNs is based on their hav- ing X-ray emission detected by Chandra (Elvisetal. 2009; Civanoetal.2012)withinthecentralsquaredegreeofCOS- MOS (hereafter C-COSMOS). The high surface density of AGNs(∼2000perdeg2)atthelimitingdepths(f0.5- 2.0keV> 2×10- 16ergscm- 2s- 1)ofC-COSMOSfieldensuresthatwe makeadequateuseofthemultiplexcapabilitiesofFMOS.In addition,twoFMOSpointingswereobservedfurtheroutfrom thecenteroftheCOSMOSfieldthuswerelieduponthecata- logofopticalandnear-infraredcounterpartsto XMM-Newton sources(Brusaetal.2010)forAGNselection. We further require that optical spectroscopy (Trumpetal. 2007;Lillyetal.2009)isavailableforeachsourcethatyields a reliable redshift and detection of at least a single broad (FWHM>2000kms- 1)emissionline,namelyMgIIinmany cases. Wethenspecificallytargetedthosewithspectroscopic redshiftsthatallowsustodetecteitherHβ(1.2<z<1.7and 1.9<z<2.6),Hα(0.6<z<1.0and1.2<z<1.7),orMgII (2.8<z<3.8and4.1<z<5.3)intheobservedFMOSspec- tralwindowsinlow-resolutionmode,i.e.,1.05- 1.34µmand 1.43- 1.77µm. Fibers are assigned to BLAGNs (forwhich FIG.1.—SelectionandcompletenessoftheCOSMOSAGNswithFMOS wecandetectemissionlinesofinterest)withalimitingmag- spectra. Each panel shows the distribution of the observed sample (open histogram)andthosethatyieldblackholemassestimatesbasedontheHα nitudeofJAB=23. ThoseatJAB<21.5aregivenhigherpri- emissionline(filledblackhistogram)for(a)X-ray0.5- 10.0keVfluxand oritytoensurethatthissample(oflowerdensityonthesky) (b)J-bandmagnitude. is well represented in the final catalog; this also effectively improvesuponoursuccess rate ofdetectionbothcontinuum of Hawaii in S10B- S11A. Weather conditions were accept- and line emission. Due to the sensitivity of FMOS and the able although clouds, mainly cirrus, reduced our observing low numberdensity of AGNs at z>3, our sample has very efficiency. The typical seeing was ∼ 1′′ with considerable fewdetectionsofMgIIinthenearinfrared. variationacrossthenights. In addition, we have acquired FMOS observations of X- WeelectedtousetheCBSmodewhiletakingtwosequen- ray selected AGNs in the ECDF-S (Lehmeretal. 2005) sur- tial exposureseach of 15 minutes for each position (namely vey with the inclusion of those that are only detected in the A and B positions hereafter). These pairs of exposure were deeper2- 4Msdata (Luoetal. 2010; Xueetal. 2011) in the repeatedmultipletimesinordertoreachaneffectivetotalin- central region that covers GOODS. This deeper X-ray field tegrationtimeof2.0- 3.5hourson-source. Sometimeislost offersthepotentialtoextendthedynamicrangeofourstudy torefocusingandrepositioningfibersatregularintervalsdur- intermsofblackholemassandEddingtonratio. We specif- ing the fullobservation. In the early data, only onespectro- ically select AGNs, as mentioned above, based on their op- graph(IRS1) was available thus∼100fibers were available tical propertiesdeterminedthroughdeepspectroscopiccam- forsciencetargets. paigns(Szokolyetal. 2004; Silvermanetal. 2010). As with 2.3. DataReduction theCOSMOSsample,weplacehigherpriorityonthebrighter AGNs(R <22)whiletargetingthefaintercaseswithlower WeusethepubliclyavailablesoftwareFIBRE-pac(FMOS AB priority. Image-BasedREductionpackage;Iwamuroetal.2012). The reductionroutinesare basedon IRAFtasks althoughseveral 2.2. Observations stepsareprocessedbyadditionaltoolswrittenbytheFMOS Wehaveacquirednear-infraredspectrawithSubaru/FMOS instrument team. Since our observation are carried out us- of broad-line AGNs from the COSMOS and ECDF-S sur- inganABABnoddingpatterninCBSmodeofthetelescope, veys. Themajorityofthedatawasobtainedduringopenuse aneffectiveskysubtraction(A- B)canbeperformedusingthe timethroughNAOJoverthreenightsinDecember2010(ID; twodifferentskyimages:An- Bn- 1andAn- Bn+1takenbefore S10B-108)andtwonightsinDecember2011(ID;S11B-098). andafterthen-thexposure. Aftertheinitialbackgroundsub- Additional targets were observed during other programsbe- traction,a crosstalksignalisremovedbysubtracting0.15% ing carriedoutin the COSMOS field throughthe University for IRS1 and 1% for IRS2 from each quadrant. The differ- 4 MATSUOKAETAL. ence in the bias between the quadrants is corrected to make theaverageovereachquadrantequal. Wefurtherapplyaflat fieldcorrectionusingadomelampexposure. Badpixelsare maskedthroughoutthereductionprocedure.Additionalsteps include the distortion correctionand the removalof residual airglowlines. Thisprocedureiscarriedoutforbothpositions A and B. Individual frames are combined into an averaged imageandanassociatednoiseimage.Finally,thewavelength calibrationiscarriedoutbasedonareferenceimageofaTh- Ar emission spectrum. Individual one-dimensional science anderrorspectraare extractedbothtobe usedforthe fitting ofemissionlineprofiles. Weperformafirstattemptatfluxcalibrationbyusingspec- tra of bright stars, usually 1- 2 per spectrograph. A single stellar spectrum for each spectrograph is chosen to apply a correctionbasedonthespectroscopicmagnitudeandphotom- FIG. 2.—Bolometric luminosity as a function ofredshift forAGNs in etryfrom2MASS.Animprovementoftheabsolutefluxlevel COSMOS(redfilledcircles), ECDF-S(redopencircles), andSDSS(grey isrequiredtoaccountforapertureeffects.Therefore,wescale andblacksymbols). thefluxofeachFMOSspectraofourAGNstomatchthedeep infraredphotometryusingtotalmagnitudesavailablefromthe resolutionmode(seeFigure19ofKimuraetal.2010). UltraVISTA survey (McCrackenetal. 2012) available over the COSMOS field. While scale factors can reach as high 3. SPECTRALLINEFITTING as∼4,themedianvalueis1.64. Wemeasurethepropertiesofbroademissionlinespresent 2.4. Samplecharacteristicsandcompleteness in optical and near-infrared spectra to derive single-epoch black hole mass estimates. For the emission lines of inter- We haveobservedover100type1AGNsinthecombined est here (i.e., Mg II and Hα), we specifically measure the COSMOSand ECDF-Sfieldsto date. InFigure1, we show fullwidthathalfmaximum(FHWM),totalluminosityofthe the X-ray flux and NIR magnitude distribution of the 108 emissionlineinthecaseofHα,andcontinuumluminosityat AGNs(originallyidentifiedasChandraX-raysources)inthe 3000Å. Due to the moderateluminositiesof the AGN sam- COSMOS field that have 0.6< z< 1.8, a redshift interval ple,therecanbeanon-negligiblehostgalaxycontributionthat where we are capable of detecting Hα in the FMOS spec- impactsthe estimate oftheAGN continuumat redderwave- troscopic window. The distributions are shown for both the lengths;therefore,wechosetousetheHαlinefluxratherthan observedobjectsandthe56havingasignificantdetectionof thecontinuumluminosity. Fortunately,themulti-wavelength a broad Hα emission line (at the expected wavelength) that photometryoftheCOSMOS,includingtheHSTimaging,en- subsequentlyyieldedablackholemassestimate. ablesustodeterminethelevelofsuchcontaminationthatwill Priortoourobservations,wehadnoempiricalassessment befullyassessedinafuturestudy.Emissionlinesarefitusing oftheperformanceofFMOSthusAGNweretargetedtofaint aprocedureasoutlinedbelowthatenablesustocharacterize infraredmagnitudes,nowunderstoodnottobefeasibleusing thelineshapeforeventhosethathaveaconsiderablelevelof the low-resolution mode for the faintest objects (J ∼23). AB noise. Asshown in Figure1(b), we havea reasonablelevelof suc- Our fitting procedure of the continuum and line emission cess (71%) with the detection of broad emission lines at utilizes MPFITFUN, a Levenberg-Marquardt least squares brightermagnitudes(J <21.5). Unfortunately,thesuccess AB minimizationalgorithmas availablewithintheIDL environ- rateissignificantlyloweratfaintermagnitudesthusdropping ment. Even though this routine has well-known computa- to50%fortheentiresamplewithJ <23. Itisworthhigh- AB tionalissues, thisalgorithmiswidelyused duetoits ease of lightingthatasurveydepthofJ <21.5isabouttwomagni- AB use and fast execution time. The routine returns best-fit pa- tudesfainterthancurrentnear-infraredspectroscopicobserva- rametersandtheirerrorsaswellasmeasureofthegoodness tionsofSDSSquasars(Shen&Liu2012)atsimilarredshifts. ofthe overallfit. We furtherdescribe the individualcompo- InFigure2,wedemonstratethisbyplottingthebolometriclu- nents required to successfully extract a parameterization of minosity(basedonL andabolometriccorrectionof5.15; 3000 thebroadcomponentusedindeterminingvirialmasses. Itis Shenetal.2011)ofourAGNcomparedtothosefromSDSS worthrecognizingthat each line has its own advantagesand surveys. disadvantagesthatneedtobeconsideredcarefullyespecially Greene&Ho(2005)describeindetailthebenefitsofusing when fitting data of moderate signal-to-noise ratio (S/N). A Hαforblackholemassmeasurements. Inparticular,theHα finalinspectionofeachfitbyeyeisperformedtoremoveob- emissionlineisstronger(∼3×)thusmoreeasilydetectedas viouscaseswhereabroadcomponentisnotadequatelydeter- compared to Hβ. This is clearly evident from our observa- minedalmostexclusivelyduetospectrahavinglowS/N. tions.WesuccessfullydetectabroadHαlinein∼50%ofthe cases(asmentionedabove)whilethedetectionofHβ isvery 3.1. Hα low(17%).Evenso,wedodetectHβinafairnumberofcases up to z∼2.6 thatwill be presentedin the full emission-line WeperformafittotheHαemissionline(ifdetectedwithin catalog (Silverman et al. in prep.). Any future FMOS cam- the FMOS spectral window) in order to measure line width paign designed to detect the Hβ emission line (both broad and integrated emission-line luminosity. Based on the spec- and narrow) should increase the exposure time significantly troscopic redshift as determined from optical spectroscopy, and/or use the high-resolution mode that has roughly three we select the spectrum at rest wavelengths centered on the times higher throughputin the H band as compared to low- emission line and spanning a range that enables an accurate BHMASSESTIMATESOFMODERATE-LUMINOSITYAGNS 5 FIG.3.—ExamplesofourfittingroutinefortheHαlinedetectedinCOS- FIG. 4.—ExamplesofourfitsfortheMgIIlineforthesameAGNas MOS AGN. In the upper portion of each panel, the observed spectrum is showninFigure3.ThetoppanelshowsthespectralrangearoundMgII.The showninblackwiththebestfitinred. Thecontinuum (graydashedline) bestfitmodelisindicatedasaredsolidline. Thedifferentcomponentsare andindividualemission-linecomponents(greygaussiancurves)arealsoin- asindicated: Fe-emission(blue),pseudocontinuum(purple),andGaussian dicatedrespectively.Inlowerpanels,theresidualsareshownwithsamescale components(greenandbrown).Theresidualisshowninthelowerpanel.In asthatofupperpanel. theupperrightcornerforeachpanel,weshowtheblackholemassdistribu- tioncomputedfromourMonteCarlotestsbasedontheuncertaintiesofthe linewidthandcontinuumluminositymeasurements. determinationofthecontinuumcharacterizedbyapowerlaw, fλ∝λ- α. We employmultipleGaussian componentsto describe the laboratoryvalueof2.96. Thenarrowwidthofthe[NII]lines lineprofile. Itis commonpracticeto makesuchanassump- isfixedtomatchthenarrowcomponentofHα. Thewidthof tion on the intrinsic shape of individual components, even thenarrowcomponentsislimitedto420- 800kms- 1(arange thoughithasbeendemonstratedthatbroad-emissionlinesin notcorrectedforintrinsicdispersion). Thevelocityprofileof AGN are not necessarily of such a shape (e.g., Collinetal. the broad componentsis characterized by the FWHM, mea- 2006). TheHαlineisfitwithtwoorthreeGaussians(includ- suredusingeitheronegaussianorthesumoftwogaussians. inganarrowcomponent)andthe[NII]λ6548,6684lineswith Wethencorrectthevelocitywidthfortheeffectofinstrumen- apairofGaussians. Theratioofthe[NII]linesisfixedatthe tal dispersion to achieve an intrinsic profile width. The Hα 6 MATSUOKAETAL. luminosity discussed throughoutthis work is the sum of the broadcomponents. There are cases for which the fitting routine returns a so- lutionwiththewidthofthenarrowcomponentpeggedatthe upperboundof800kms- 1. Itisworthhighlightingthatthis minimization routine stops the fitting procedure when a pa- rameters hit a limit thus the returned values are not the true best-fit values. For these, we inspect all fits by eye and de- cidewhethersuchanadditionalbroadcomponentisreal. For manycases, we can use the [OIII]λ5007line profile, within the FMOS spectral window, to determine whether such a fit to the narrow line complex is accurate. In addition, we can usetheavailableopticalspectraforsuchcomparisons. When the level of significance of the narrow line is negligible, we rerun the fitting routine and fix the narrow line width to the spectralresolutionofFMOS, ∼420kms- 1. InFigure3,we showthree examplesofourfits to the Hα emission line that spanarangeoflineproperties. 3.2. MgII We fit the Mg II emission line, as done in Schramm&Silverman (2012), observed in optical spec- FIG. 5.— Comparison between the monochromatic luminosity at 3000 tra primarily from zCOSMOS (Lillyetal. 2009), Mag- ÅandtheHαemission-lineluminosity. AGNsinoursampleareshownas ellan/IMACS (Trumpetal. 2007), and SDSS (Yorketal. redcircles. TheopencirclesmarkpublishedobservationsofSDSSquasars 2000). The emission line is modeled by a combination of (greycircles: 0.35<z<0.40;blackcircles: 1.5<z<2.2). Alinearfitto bothourdataonly(redline)andthejointsample(blackline)isgiven. The one or two broad Gaussian functions to best characterize distribution oflog(λL3000/LHα)asahistogram isshowninthesubpanel. the line shape. We first remove the continuum (before Thecolorsoftheirhistogramsaresameasthesymbols. Errorsrepresenta attempting to deal with the emission lines) by fitting the 1σlevelofuncertainty. emission in a window surrounding the line. As with Hα, a power-law function is chosen to best characterize the two decades in luminosity and exhibits a clear correspon- featureless, non-stellar light attributed to an accretion disk. dence between continuum and line emission. Based on our WefurtherincludeabroadFeemissioncomponentbasedon AGN sample, we determine the best-fit linear relation to be an empirical template (Vestergaard&Wilkes 2001) that is log(λL3000)=(0.82±0.08)×logLHα+(9.31±3.47). Forthe convolvedby a Gaussian of variablewidth and straddlesthe linearfitting,weadopta FITEXYmethod(Pressetal.1992; baseoftheMgIIemissionline. Aleastsquareminimization Parketal.2012).Thelevelofdispersionofthedataaboutthis is implemented to determine the best-fit parameters. When fitis0.20dexthatwillcontributetothedispersioninthefinal possible, we optimize residuals of the fits on a case-by-case massestimates. basis by trying to minimize the number of components. We can compare our data set to more luminous quasars Absorption features are either masked out or interpolated from the SDSS. In particular, we identify 327 quasars across. Thefitreturnstwoparametersrequiredforblackhole from the SDSS sample in Shenetal. (2011) with 0.35 < mass estimates: FWHM and monochromatic luminosity at z < 0.40, that cover a similar luminosity range as our 3000Å. Examplesof ourfits to the MgIIline are presented high redshift sample. These were selected from 1178 inFigure4. quasars at 0.35 < z < 0.40 based on high-quality data determined by adopting the following criteria: error in 4. RESULTS log(MBH/M⊙) < 0.5, log(FWHMHα/kms- 1) > 2.9, and We can determine how closely the parameters (i.e., lumi- log(FWHM /kms- 1)>2.9. Inaddition,we includedata MgII nosity and FWHM) required to estimate single-epoch black from a recent study by Shen&Liu (2012) that providesthe holemassesagreebetweentheHαandMgIIemissionlines. emissionlinepropertiesincludingHαlineofhigh-luminosity Any systematic offset or inherent scatter may only add ad- quasars from the SDSS with 1.5<z<2.2. These samples ditional uncertainty to the derived masses. We essentially are added to our data shown Figure 5. We clearly see that want to establish whether or not the kinematics of the BLR SDSS quasars fall along the λL3000-LHα relation as estab- is consistent with photoionized gas in virial motion around lished above. Furthermore, the SDSS quasars have similar theSMBH.Weprovideallmeasurementsandderivedmasses dispersion at both low-z and high-z samples to our sample, inTable1. σ =0.20 and σ =0.15, respectively. We highlight that our AGNsamplenicelyextendssuchcomparisonsbetweencon- 4.1. Luminosities tinuum luminosity and line emission at higher redshifts and OurfirstconcernistodeterminewhethertheHαemission- to lower luminosities. We are able to effectively establish a line luminosity scales appropriatelywith the UV continuum wider dynamic range, not present in the high-z SDSS sam- luminosity. For the following analysis, we do not correct pleduetothelimitedluminosityrangearoundlog(λL )∼ 3000 forextinctiondueto dustandanycontaminationbythe host 46.2. By merging all three samples, we find the following galaxy;theimpactofthese,thoughttobesmall,willbequan- relation based on a linear fit: log(λL )=(0.96±0.01)× 3000 tified in a later study. In Figure 5, the continuum luminos- logLHα+(3.00±0.53). ity,λLλ at3000Å,isplottedagainsttheemission-linelumi- While there is verygoodagreementbetweenthe UV con- nosity of Hα. Our data (as shown by the red points) spans tinuum and emission line luminosity, there is a small dif- BHMASSESTIMATESOFMODERATE-LUMINOSITYAGNS 7 TABLE1 CATALOGOFEMISSION-LINEPROPERTIESANDBLACKHOLEMASSES logL[ergs- 1] logFWHM[kms- 1] logMBH[M⊙] CIDa Field RA[J2000] DEC[J2000] z Hα 3000Å Hα MgII Hα MgII 178 COSMOS 149.58521 +2.05114 1.350 43.76±0.03 45.35±0.03 3.685±0.013 3.811±0.079 8.68±0.03 8.78±0.16 5275 COSMOS 149.59021 +2.77450 1.400 44.10±0.13 45.50±0.02 3.835±0.028 3.973±0.072 9.18±0.09 9.18±0.14 322 COSMOS 149.62421 +2.18067 1.190 43.16±0.14 45.02±0.02 3.440±0.044 3.581±0.081 7.84±0.12 8.17±0.16 192 COSMOS 149.66358 +2.08522 1.220 43.24±0.14 45.05±0.02 3.339±0.075 3.490±0.035 7.68±0.17 8.00±0.07 157 COSMOS 149.67512 +1.98275 1.330 42.98±0.13 44.84±0.03 3.701±0.040 3.632±0.017 8.28±0.11 8.19±0.04 aTheChandraobs.ID. ference that may impact, even slightly, our comparison of the masses. Based on the FMOS sample, the mean ra- tio hlog(λL3000/LHα)i is 1.54±0.03, slightly higher than that found for both the low-z and high-z SDSS quasar sam- ples mentioned above; hlog(λL3000/LHα)i=1.40±0.01 and hlog(λL3000/LHα)i= 1.36±0.02, respectively. This can be seenintheinsethistograminFigure5. Ifthiswasduetothe effect of dust extinction, one would find the opposite trend withreducedUVcontinuumrelativetotheHαlineemission. TheremaybeotherexplanationssuchasanunderlyingSED thatmay bedifferentforX-rayselected samples(Elvisetal. 2012;Haoetal.2012)andhasanimpactontheresponseseen in photoionized gas, or the effect of the host galaxy on the aperturecorrectionsthat differsin each band. While this is- sue is of importance, we reserve a detailed investigation to subsequentworksinceitisbeyondthescopeofthispaperto adequately demonstrate such effects. Here, we are primar- ily concernedwith the magnitudeof a luminosity offsetand whetheritcontributestoanoffsetbetweenthemasses. With blackholemassscalingwiththesquarerootoftheluminos- ity(seebelow),theoffsetinluminosity,asdeterminedabove, amountstoaverysmalloffsetinlog(MBH/M⊙)of0.07. FIG. 6.— Comparison between the FWHM of Hα with that of MgII. Red,gray,andblackcirclesarethesameasthoseinFigure5. Alinearfitto 4.2. Velocitywidths bothourdataonly(redline)andthejointsample(blackline)isverysimilar to a one-to-one relation indicated by the dashed line. The distribution of A second pillar for the use of MgII as a black hole mass indicator is that the emitting-line gas is located essentially log(FWHMMgII/FWHMHα)isalsoshowninthesubpanel. within the same clouds that emit Balmer emission. While there are claims that this is the case by comparing the ve- locityprofileofMgIIwithHβ (e.g.,McLure&Jarvis2002; Shenetal. 2011), there are reported differences and trends theclaimbyWangetal.(2009)forashallowervalue. These that are not well understood (Wangetal. 2009; Shen&Liu results are supportive of a scenario where the Mg II and the 2012;Trakhtenbrot&Netzer2012).Forexample,MgIItends Hαemittingregionsareessentiallyco-spatialwithrespectto tobenarrowerthanHβ withadifferencesignificantlylarger thecentralionizingsource. athighervelocitywidths(seeFigure2ofWangetal.2009). Thereareafewnoticeableoutlierswelloutsidethedisper- OuraimhereistocomparetheFWHMoftheMgIIandHα sionofthesample.Theseobjectsthenappearasoutlierswhen emission lines using a sample not yet explored, namely the comparing their masses based on different lines in the next moderate-luminosityAGNsathigh-redshiftsin surveyfields section. Uponinspection,wefindthatthesearetheresultof suchasCOSMOS.InFigure6,weplottheemission-lineve- theFMOSspectrahavinglowS/N.Insomecases,theremay locitywidthbetweenHαandMgIIemissionlines. Basedon beafittotheHαemissionline,basedondifferentparameter the FMOS sample only, a positive linear correlation is seen constraints,thatisequallyacceptabletotheoriginalfitasas- between the velocity width of the two emission lines with sessedbyachi-squaregoodnessoffitandhasavelocitywidth the mean ratio of hlog(FWHMMgII/FWHMHα)i = 0.089± in closer agreement with Mg II. Although, we refrain from 0.022(σ=0.143). Ourdata is in very goodagreementwith such selective fitting in order to present results that may be those from the SDSS, i.e., hlog(FWHMMgII/FWHMHα)i = obtainedfrom using similar fitting algorithmson largerdata 0.033 (σ = 0.176) for the low-z sample from Shenetal. setswheresuchcloseinspectionisnotfeasible. (2011),hlog(FWHMMgII/FWHMHα)i=0.00(σ=0.076)for thehigh-zsamplefromShen&Liu(2012),andrecentFMOS 4.3. Virialsingle-epochmasses resultsfromSXDS(see Nobutaetal.2012). Based ona lin- earfittothedatashowninFigure6,wemeasureaslopethat We now calculate black hole masses (M ) based on our BH is consistent with unity; 0.898±0.132 for FMOS only and single-epochspectrausingboth(i)L andFWHM ,and 3000 MgII 1.001±0.001forFMOS+SDSS,andthatcannotsubstantiate (ii)LHα andFWHMHα. Thiscalculationcanbeexpressedas 8 MATSUOKAETAL. 5. CONCLUSIONS WehaveinvestigatedtheemissionlinepropertiesofAGNs in COSMOS and ECDF-S to establish whether Mg II and Hα provide comparable estimates of their black hole mass. ThisstudyisthefirstattempttodosoforAGNsofmoderate luminosity, hence lower black hole mass (107M⊙ <MBH < 109M ), at high redshift that complements studies of more ⊙ luminousquasars. Ourresults clearlyshow thatthe velocity profilesofMgIIandHαareverysimilarwhencharacterized by FWHM and the relation between continuum luminosity andlineluminosityistight.Wethenfindthatvirialblackhole massesbasedonMgIIandHαhaveverysimilarvaluesanda levelofdispersion(σ∼0.3)comparabletoluminousquasars from SDSS. It is important to keep in mind that these re- sultspertaintospecificcalibrations(McLure&Dunlop2004; Greene&Ho2005)forestimatingblackholemass. Theuse ofotherrecipes,suchasprovidedbyMcGilletal.(2008),will show a discrepancy larger than seen here. To conclude, the locally-calibratedrecipesforblackholesmassesusingMgII and Hα are applicableforfainter AGN samples at high red- shift. These results further support a lack of evolution in FIG. 7.—ThecomparisonoftheblackholemassestimatedbyHαline the physical properties of the broad line region in terms of withthatbyMgIIline.Red,gray,andblackcirclesarethesameasthosein quantities such as α (e.g., Steffenetal. 2006; Greenetal. Figure5. Thefittobothourdata(redline)andthejointsample(blackline) ox isnearlyequivalenttoaone-to-onerelation(dashedline).Thedistributionof 2009), emission-line strengths (e.g., Fan 2006), and the in- log(MMgII/MHα)isalsoshowninthesubpanel. ferred metallicities (Maiolinoetal. 2001; Nagaoetal. 2006; Matsuokaetal.2011). follows: As a final word of caution, such estimates of black hole massarelikelytohaveinherentdispersionasdiscussedabove log MBH =a+blog λLλ orLline +clog FWHM . andsystematicuncertaintiesthatarenotyetwellunderstood. (cid:18)M⊙ (cid:19) (cid:18)1044ergss- 1(cid:19) (cid:18) kms- 1 (cid:19) For instance, recipes for estimating black hole mass depend (1) ontheassumptionthatthegasispurelyinvirialmotion.This We explicitly use the recipes provided by Greene&Ho isunlikelytobetrueforallcasessincebothoutflowsandin- (2005)andMcLure&Dunlop(2004)forthecasesofHαand flowsare commonin AGNs. Evenso, thereis evidencethat MgIIlines,respectively: thevirialproductofmassandluminosity(asa proxyforthe (a,b,c)=(1.221,0.550,2.060) forHα, radius to the BLR) is a useful probe of the central gravita- tionalpotential. Inthe veryleast, itis importanttoestablish (a,b,c)=(0.505,0.620,2.000) forMgII. thelevelofdispersioninsuchrelationssinceobservedtrends WenotethatthecalibrationoftherelationforMgIIhasbeen usually rely on offsets comparableto the dispersion such as carried out by many studies (e.g., Vestergaard&Peterson theredshiftevolutionoftherelationbetweenblackholesand 2006;McGilletal.2008)andthereareknowndifferencesbe- theirhostgalaxies(e.g.,Pengetal.2006;Merlonietal.2010; tweenthem. Schramm&Silverman2012). In Figure 7, we show M for our sample derived BH from Hα and Mg II. Our sample spans a range of 7.2 . log(MBH/M⊙) . 9.5 consistent with that reported by pre- vious studies of type 1 AGNs in COSMOS (Merlonietal. 2010;Trumpetal.2011)andiscomplementarytothehigher- L quasarsample at similarredshiftswith log(MBH/M⊙)&9 (Shen&Liu 2012). We find the average (dispersion) in the blackholemassratioofhlog(MMgII/MHα)iis0.17(σ=0.32) forourFMOSsample. Theseresultsaresimilartothatdeter- We thank Kentaro Aokiand NaoyukiTamura for their in- minedfromtheSDSSsample;theaverage(dispersion)inthe valuable assistance during our Subaru/FMOS observations. blackholemassratio is - 0.05(σ=0.39)atlowz and- 0.03 K.M.acknowledgesfinancialsupportfromtheJapanSociety (σ=0.20)athighz. Whileanoffsetof0.17dexisseeninthe for the Promotion of Science (JSPS). Data analysis were in FMOS sample, we conclude that the recipes established us- partcarried outon common-usedata analysiscomputersys- inglocalrelationsgiveconsistentresultsbetweenMgII-and temattheAstronomyDataCenter,ADC,oftheNationalAs- Hα-basedestimates. tronomicalObservatoryofJapan(NAOJ). REFERENCES Bahcall,J.N.,Kozlovsky,B.-Z.,&Salpeter,E.E.1972,ApJ,171,467 Fan,X.2006,NewARev.,50,665 Bentz,M.C.,Walsh,J.L.,Barth,A.J.,etal.2009,ApJ,705,199 Green,P.J.,Aldcroft,T.L.,Richards,G.T.,etal.2009,ApJ,690,644 Brusa,M.,Civano,F.,Comastri,A.,etal.2010,ApJ,716,348 Greene,J.E.,&Ho,L.C.2004,ApJ,610,722 Civano,F.,Elvis,M.,Brusa,M.,etal.2012,ApJS,201,30 Greene,J.E.,&Ho,L.C.2005,ApJ,630,122 Collin,S.,Kawaguchi,T.,Peterson,B.M.,etal.2006,A&A,456,75 Greene,J.E.,&Ho,L.C.2007,ApJ,670,92 Elvis,M.,Civano,F.,Vignali,C.,etal.2009,ApJS,184,158 Hao,H.,Elvis,M.,Kelly,B.C.,etal.2012,arXiv:1210.3044 Elvis,M.,Hao,H.,Civano,F.,etal.2012,ApJ,759,6 Hopkins,P.F.,Richards,G.T.,&Hernquist,L.2007,ApJ,654,731 BHMASSESTIMATESOFMODERATE-LUMINOSITYAGNS 9 Iwamuro,F.,Motohara,K.,Maihara,T.,etal.2001,PASJ,53,355 Press, W.H.,Teukolsky, S.A., Vetterling, W. T.,& Flannery, B. P.1992, Iwamuro,F.,Moritani,Y.,Yabe,K.,etal.2012,PASJ,64,59 Numerical recipes in C. The art of scientific computing, Cambridge: Kaspi,S.,Smith,P.S.,Netzer,H.,etal.2000,ApJ,533,631 UniversityPress,2nded. Kaspi,S.,Maoz,D.,Netzer,H.,etal.2005,ApJ,629,61 Roseboom,I.G.,Bunker,A.,Sumiyoshi,M.,etal.2012,MNRAS,426,1782 Kaspi,S.,Brandt,W.N.,Maoz,D.,etal.2007,ApJ,659,997 Schramm,M.,&Silverman,J.D.2012,arXiv:1212.2999 Kelly,B.C.,&Shen,Y.2012,arXiv:1209.0477 Shen,Y.,Greene,J.E.,Strauss,M.A.,etal.2008,ApJ,680,169 Kimura,M.,Maihara,T.,Iwamuro,F.,etal.2010,PASJ,62,1135 Shen,Y.,Richards,G.T.,Strauss,M.A.,etal.2011,ApJS,194,45 Lehmer,B.D.,Brandt,W.N.,Alexander,D.M.,etal.2005,ApJS,161,21 Shen,Y.,&Kelly,B.C.2012,ApJ,746,169 Lilly,S.J.,LeBrun,V.,Maier,C.,etal.2009,ApJS,184,218 Shen,Y.,&Liu,X.2012,ApJ,753,125 Luo,B.,Brandt,W.N.,Xue,Y.Q.,etal.2010,ApJS,187,560 Silverman,J.D.,Mainieri,V.,Salvato,M.,etal.2010,ApJS,191,124 Maihara,T.,Iwamuro,F.,Yamashita,T.,etal.1993,PASP,105,940 Steffen,A.T.,Strateva,I.,Brandt,W.N.,etal.2006,AJ,131,2826 Maiolino,R.,Mannucci,F.,Baffa,C.,etal.2001,A&A,372,L5 Steinhardt,C.L.,&Elvis,M.2010,MNRAS,402,2637 Marziani,P.,Sulentic,J.W.,Stirpe,G.M.,etal.2009,A&A,495,83 Steinhardt,C.L.,&Silverman,J.D.2011,arXiv:1109.1554 Marziani, P., Sulentic, J. W., Plauchu-Frayn, I., & del Olmo, A. 2013, Szokoly,G.P.,Bergeron,J.,Hasinger,G.,etal.2004,ApJS,155,271 arXiv:1301.0520 Tamura,N.,Ohta,K.,&Ueda,Y.2006,MNRAS,365,134 Matsuoka,K.,Nagao,T.,Marconi,A.,etal.2011,A&A,527,A100 Trakhtenbrot,B.,&Netzer,H.2012,MNRAS,427,3081 McCracken, H.J.,Milvang-Jensen, B.,Dunlop,J.,etal.2012,A&A,544, Trump,J.R.,Impey,C.D.,McCarthy,P.J.,etal.2007,ApJS,172,383 A156 Trump,J.R.,Impey,C.D.,Kelly,B.C.,etal.2009,ApJ,700,49 McGill,K.L.,Woo,J.-H.,Treu,T.,&Malkan,M.A.2008,ApJ,673,703 Trump,J.R.,Impey,C.D.,Kelly,B.C.,etal.2011,ApJ,733,60 McLure,R.J.,&Jarvis,M.J.2002,MNRAS,337,109 Vestergaard,M.,&Wilkes,B.J.2001,ApJS,134,1 McLure,R.J.,&Dunlop,J.S.2004,MNRAS,352,1390 Vestergaard,M.,&Peterson,B.M.2006,ApJ,641,689 Merloni,A.,&Heinz,S.2008,MNRAS,388,1011 Vestergaard,M.,&Osmer,P.S.2009,ApJ,699,800 Merloni,A.,Bongiorno,A.,Bolzonella,M.,etal.2010,ApJ,708,137 Wang,J.-G.,Dong,X.-B.,Wang,T.-G.,etal.2009,ApJ,707,1334 Nagao,T.,Marconi,A.,&Maiolino,R.2006,A&A,447,157 Xue,Y.Q.,Luo,B.,Brandt,W.N.,etal.2011,ApJS,195,10 Nobuta,K.,Akiyama,M.,Ueda,Y.,etal.2012,ApJ,761,143 Yabe,K.,Ohta,K.,Iwamuro,F.,etal.2012,PASJ,64,60 Osterbrock,D.E.,&Pogge,R.W.1987,ApJ,323,108 York,D.G.,Adelman,J.,Anderson,J.E.,Jr.,etal.2000,AJ,120,1579 Park,D.,Kelly,B.C.,Woo,J.-H.,&Treu,T.2012,ApJS,203,6 Peng,C.Y.,Impey,C.D.,Ho,L.C.,etal.2006,ApJ,640,114 Peterson,B.M.1993,PASP,105,247

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.