ebook img

A compactness result for a Gelfand-Liouville system with Lipschitz condition PDF

0.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A compactness result for a Gelfand-Liouville system with Lipschitz condition

A COMPACTNESS RESULT FOR A GELFAND-LIOUVILLE SYSTEM WITH LIPSCHITZ CONDITION. SAMYSKANDERBAHOURA 5 ABSTRACT. Wegiveaquantizationanalysistoanellipticsystem(Gelfand-Liouvilletypesystem)withDirich- 1 letcondition.Anapplication,wehaveacompactnessresultforanellipticsystemwithLipschitzcondition. 0 2 MathematicsSubjectClassification: 35J6035B4535B50 y a Keywords:quantization,blow-up,boundary,Gelfand-Liouvillesystem,Dirichletcondition,aprioriestimate,Lips- M chitzcondition. 1 2 ] 1. INTRODUCTION AND MAIN RESULTS P A Weset∆ = ∂11 +∂22 onopensetΩofR2 withasmoothboundary. . h t a m Weconsiderthefollowingequation: [ 2 −∆u= Vev in Ω ⊂ R2, v 1 −∆v = Weu in Ω ⊂ R2, 4 (P)  4  u = 0 in ∂Ω,  0  v = 0 in ∂Ω. 0 .  1   0 Here: 5 1 : v 0 ∈ ∂Ω i X r When u = v, the above system is reduced to an equation which was studied by many authors, with or a without the boundary condition, also for Riemann surfaces, see [1-16], one can find some existence and compactness results, alsoforasystem. Amongotherresults, wecanseein[6]thefollowingimportant Theorem, TheoremA.(Brezis-Merle[6]).Considerthecaseofoneequation;if(u ) = (v ) and(V ) = (W ) are i i i i i i i i twosequencesoffunctionsrelativelytotheproblem(P)with,0< a ≤V ≤ b < +∞,then,forallcompact i setK ofΩ, 1 supu ≤c = c(a,b,K,Ω). i K Theorem B (Brezis-Merle [6]).Consider the case of one equation and assume that (u ) and (V ) are i i i i twosequences offunctions relatively tothepreviousproblem (P)with,0 ≤ V ≤ b < +∞,and, i euidy ≤ C, Ω Z then,forallcompactsetK ofΩ, supu ≤ c = c(b,C,K,Ω). i K Next,wecallenergythefollowingquantity: E = euidy. Ω Z Theboundedness oftheenergy isanecessary condition toworkontheproblem (P)asshowedin[6],by thefollowingcounterexample. TheoremC(Brezis-Merle[6]).Considerthecaseofoneequation,thentherearetwosequences(u ) and i i (V ) oftheproblem (P)with,0 ≤ V ≤ b < +∞,and, i i i euidy ≤ C, Ω Z and supu → +∞. i Ω Note that in [11], Dupaigne-Farina-Sirakov proved (by an existence result of Montenegro, see [14]) that thesolutionsoftheabovesystemwhenV andW areconstantscanbeextremalandthisconditionimplythe boundedness oftheenergyanddirectlythecompactness. Notethatin[10],ifweassume(inparticular) that ′ ∇logV and ∇logW and V > a > 0 or W > a > 0 and V,W are nonegative and uniformly bounded thentheenergy isbounded andwehaveacompactness result. Notethatinthecaseofoneequation,wecanprovebyusingthePohozaevidentitythatif+∞ > b≥ V ≥ a > 0, ∇V is uniformely Lipschitzian that the energy is bounded when Ω is starshaped. In [13] Ma-Wei, usingthemoving-planemethodshowedthatthisfactistrueforalldomainΩwiththesameassumptions on V. In [10] De Figueiredo-do O-Ruf extend this fact to a system by using the moving-plane method for a system. 2 Theorem C, shows that we have not a global compactness to the previous problem with one equation, perhaps we need more information on V to conclude to the boundedness of the solutions. When ∇logV isLipschitz function, Chen-Liand Ma-Weisee[7] and[13], showed thatwehave acompactness onallthe open set. The proof is via the moving plane-Method of Serrin and Gidas-Ni-Nirenberg. Note that in [10], we have the same result for this system when ∇logV and ∇logW are uniformly bounded. We will see belowthatforasystemwealsohaveacompactness resultwhenV andW areLipschitzian. Nowconsider thecaseofoneequation. Inthiscaseourequation haveniceproperties. IfweassumeV withmoreregularity,wecanhaveanothertypeofestimates,asup+inf typeinequalities. ItwasprovedbyShafrirsee[16],that,if(u ) ,(V ) aretwosequencesoffunctionssolutionsoftheprevious i i i i equation without assumption on the boundary and, 0 < a ≤ V ≤ b < +∞, then we have the following i interiorestimate: a C supu +infu ≤ c = c(a,b,K,Ω). i i b K Ω (cid:16) (cid:17) Now, if we suppose (V ) uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and i i c = c(a,b,A,K,Ω), see[5]. Hereweareinterested bythecaseofasystem ofthistypeofequation. First,wegivethebehavior ofthe blow-up points on theboundary and inthe second timewehave aproof ofcompactness of thesolutions to Gelfand-Liouville typesystemwithLipschitzcondition. Here,wewriteanextention ofBrezis-MerleProblem(see[6])is: Problem. Suppose that Vi → V andWi → W inC0(Ω¯),with, 0 ≤ Vi ≤ b1 and 0 ≤ Wi ≤ b2 forsome positiveconstantsb1,b2. Also,weconsiderasequenceofsolutions(ui),(vi)of(P)relativelyto(Vi),(Wi) suchthat, euidx ≤ C1, evidx ≤ C2, Ω Ω Z Z isitpossibletohave: ||ui||L∞ ≤C3 = C3(b1,b2,C1,C2,Ω)? and, ||vi||L∞ ≤C4 = C4(b1,b2,C1,C2,Ω)? In this paper we give a caracterization of the behavior of the blow-up points on the boundary and also a proof of the compactness theorem when V and W are uniformly Lipschitzian. For the behavior of the i i blow-uppointsontheboundary, thefollowingcondition areenough, 3 0 ≤ Vi ≤ b1, 0 ≤ Wi ≤ b2, Theconditions V → V andW → W inC0(Ω¯)arenotnecessary. i i Butfortheproof ofthecompactness forthe Gelfand-Liouville type system (Brezis-Merle type problem) weassumethat: ||∇Vi||L∞ ≤ A1, ||∇Wi||L∞ ≤ A2. Ourmainresultare: Theorem 1.1. Assumethat maxΩui → +∞and maxΩvi → +∞Where(ui)and (vi)are solutions of theprobleme(P)with: 0 ≤ Vi ≤ b1, and euidx ≤ C1, ∀ i, Ω Z and, 0 ≤ Wi ≤ b2, and evidx ≤ C2, ∀ i, Ω Z then; after passing to a subsequence, there is a finction u, there is a number N ∈ N and N points x1,x2,...,xN ∈ ∂Ω,suchthat, N ∂ u ϕ → ∂ uϕ+ α ϕ(x ), α ≥ 4π, ν i ν j j j Z∂Ω Z∂Ω j=1 X for any ϕ∈ C0(∂Ω),and, ui → u in Cl1oc(Ω¯ −{x1,...,xN}). N ∂ u ϕ→ ∂ uϕ+ β ϕ(x ), β ≥ 4π, ν i ν j j j Z∂Ω Z∂Ω j=1 X for any ϕ∈ C0(∂Ω),and, vi → v in Cl1oc(Ω¯ −{x1,...,xN}). Inthefollowingtheorem,wehaveaprooffortheglobalaprioriestimatewhichconcerntheproblem(P). 4 Theorem 1.2. Assume that (u ),(v ) are solutions of (P) relatively to (V ),(W ) with the following i i i i conditions: x1 = 0 ∈∂Ω, and, 0 ≤ Vi ≤ b1, ||∇Vi||L∞ ≤ A1, and eui ≤ C1, Ω Z 0≤ Wi ≤ b2, ||∇Wi||L∞ ≤ A2, and evi ≤ C2, Ω Z Wehave, ||ui||L∞ ≤ C3(b1,b2,A1,A2,C1,C2,Ω), and, ||vi||L∞ ≤ C4(b1,b2,A1,A2,C1,C2,Ω), 2. PROOF OF THE THEOREMS Proofoftheorem1.1: SinceVievi andWieui areboundedinL1(Ω),wecanextractfromthosetwosequencestwosubsequences whichconverge totwononegativemeasuresµ1 andµ2. Ifµ1(x0) < 4π, byaBrezis-Merle estimate forthe firstequation, wehave eui ∈ L1+ǫ around x0,bythe elliptic estimates, for the second equation, we have vi ∈ W2,1+ǫ ⊂ L∞ around x0, and , returning to the ∞ firstequation, wehaveui ∈ L aroundx0. Ifµ2(x0) < 4π,thenui andvi arealsolocallybounded aroundx0. Thus, we take a look to the case when, µ1(x0) ≥ 4π and µ2(x0) ≥ 4π. Byour hypothesis, those points x0 arefinite. Wewillseethatinside Ωnosuchpoints exist. Bycontradiction, assumethat, wehaveµ1(x0) ≥ 4π. Let usconsideraballBR(x0)whichcontainonlyx0 asnonregular point. Thus,on∂BR(x0),thetwosequence u andv areuniformlybounded. Letusconsider: i i 5 −∆zi = Vievi in BR(x0) ⊂R2, ( zi = 0 in ∂BR(x0). Bythemaximumprinciple wehave: z ≤ u i i andz → z almosteverywhereonthisball,andthus, i ezi ≤ eui ≤ C, Z Z and, ez ≤ C. Z but,z isasolution tothefollowingequation: −∆z = µ1 in BR(x0)⊂ R2, ( z = 0 in ∂BR(x0). with,µ1 ≥ 4π andthus,µ1 ≥ 4πδx0 andthen,bythemaximumprinciple: z ≥ −2log|x−x0|+C thus, ez = +∞, Z whichisacontradiction. Thus,thereisnononregular pointsinsideΩ Thus,weconsider thecasewherewehavenonregular pointsontheboundary, weusetwoestimates: ∂νuidσ ≤ C1, ∂νvidσ ≤ C2, Z∂Ω Z∂Ω and, ′ ||∇ui||Lq ≤ Cq, ||∇vi||Lq ≤Cq, ∀ i and 1 < q < 2. 6 Wehavethesamecomputations, asinthecaseofoneequation. Weconsiderapointsx0 ∈ ∂Ωsuchthat: µ1(x0) < 4π. We consider a test function on the boundary η we extend η by a harmonic function on Ω, we write the equation: −∆((u −u)η) = (V evi −Vev)η+ < ∇(u −u)|∇η >=f i i i i with, |f |≤ 4π−ǫ+o(1) < 4π−2ǫ <4π, i Z −∆((v −v)η) = (W eui −Weu)η+ < ∇(v −v)|∇η >= g , i i i i with, |g | ≤ 4π−ǫ+o(1) < 4π−2ǫ < 4π, i Z By the Brezis-Merle estimate, we have uniformly, eui ∈ L1+ǫ around x0, by the elliptic estimates, for the second equation, wehave vi ∈ W2,1+ǫ ⊂ L∞ around x0, and , returning to the first equation, we have ∞ ui ∈ L aroundx0. Wehavethesamethingifweassume: µ2(x0) < 4π. Thus,ifµ1(x0)< 4π orµ2(x0)< 4π,wehaveforR > 0smallenough: (ui,vi)∈ L∞(BR(x0)∩Ω¯). Byourhypothesis thesetofthepointssuchthat: µ1(x0) ≥ 4π, µ2(x0) ≥ 4π, isfinite, and, outside this setu andv are locally uniformly bounded. Bythe elliptic estimates, wehave i i theC1 convergence touandv oneachcompactsetofΩ¯ −{x1,...xN}. 7 Proofoftheorem1.2: Without loss of generality, we can assume that 0 is a blow-up point (either, we use a translation). Also, byaconformal transformation, wecanassumethatΩ = B+,thehalfball,and∂+B+ istheexterior part,a 1 1 part which not contain 0 and onwhich u and v converge in the C1 norm touand v. Letus consider B+, i i ǫ thehalfballwithradiusǫ > 0. ThePohozaevidentity gives: ∆u < x|∇v > dx = − ∆v <x|∇u > dx+ g(∂ u ,∂ v )dσ, (1) i i i i ν i ν i ZBǫ+ ZBǫ+ Z∂+Bǫ+ Thus, V evi < x|∇v > dx = − W eui < x|∇u > dx+ g(∂ u ,∂ v )dσ, (2) i i i i ν i ν i ZBǫ+ ZBǫ+ Z∂+Bǫ+ Afterintegration byparts, weobtain: V evidx+ < x|∇V > evidx+ < ν|∇V >dσ+ i i i ZBǫ+ ZBǫ+ Z∂Bǫ+ + W euidx+ < x|∇W > euidx+ < ν|∇W > dσ = i i i ZBǫ+ ZBǫ+ Z∂Bǫ+ = g(∂ u ,∂ v )dσ, ν i ν i Z∂+Bǫ+ Also,foruandv,wehave: Vevdx+ < x|∇V > evdx+ < ν|∇V > dσ+ ZBǫ+ ZBǫ+ Z∂Bǫ+ + Weudx+ < x|∇W > eudx+ < ν|∇W > dσ = ZBǫ+ ZBǫ+ Z∂Bǫ+ = g(∂ u,∂ v)dσ, ν ν Z∂+Bǫ+ If,wetakethedifference, weobtain: (1+o(ǫ))( V evidx− Vevdx)+ i ZBǫ+ ZBǫ+ 8 +(1+o(ǫ))( W euidx− Weudx) = i ZBǫ+ ZBǫ+ = α1+β1 +o(ǫ)+o(1) = o(1), acontradiction. REFERENCES [1] T.Aubin.SomeNonlinearProblemsinRiemannianGeometry.Springer-Verlag,1998. [2] C.Bandle.IsoperimetricInequalitiesandApplications.Pitman,1980. [3] Bartolucci,D.A”sup+Cinf”inequalityforLiouville-typeequationswithsingularpotentials.Math.Nachr.284(2011), no. 13,1639-1651. [4] Bartolucci,D.A‘sup+Cinf’inequalityfortheequation−∆u=Veu/|x|2α.Proc.Roy.Soc.EdinburghSect.A140(2010), no.6,1119-1139 [5] H.Brezis,YY.LiandI.Shafrir.Asup+infinequalityforsomenonlinearellipticequationsinvolvingexponentialnonlineari- ties.J.Funct.Anal.115(1993)344-358. [6] H.Brezis,F.Merle.UniformestimatesandBlow-upbehaviorforsolutionsof−∆u=V(x)euintwodimension.Commun. inPartialDifferentialEquations,16(8and9),1223-1253(1991). [7] W. Chen, C. Li. A priori estimates for solutions to nonlinear elliptic equations. Arch. Rational. Mech. Anal. 122 (1993) 145-157. [8] C-C.Chen,C-S.Lin.Asharpsup+infinequalityforanonlinearellipticequationinR2.Commun.Anal.Geom.6,No.1,1-19 (1998). [9] D.G.DeFigueiredo,P.L.Lions,R.D.Nussbaum,AprioriEstimatesandExistenceofPositiveSolutionsofSemilinearElliptic Equations,J.Math.PuresetAppl.,vol61,1982,pp.41-63. [10] D.G.DeFigueiredo.J.M.doO.B.Ruf.Semilinearellipticsystemswithexponentialnonlinearitiesintwodimensions.Adv. NonlinearStud.6(2006),no.2,199-213. [11] Dupaigne,L.Farina,A.Sirakov,B.RegularityoftheextremalsolutionsfortheLiouvillesystem.Geometricpartialdifferential equations,139-144,CRMSeries,15,Ed.Norm.,Pisa,2013. [12] YY.Li,I.Shafrir.Blow-upanalysisforsolutionsof−∆u = Veu indimensiontwo.Indiana.Math.J.Vol3,no4.(1994). 1255-1270. [13] YY.Li.HarnackTypeInequality:themethodofmovingplanes.Commun.Math.Phys.200,421-444(1999). [14] L.Ma,J-C.Wei.ConvergenceforaLiouvilleequation.Comment.Math.Helv.76(2001)506-514. [15] Montenegro.M.Minimalsolutionsforaclassofellpticsystems.Bull.London.Math.Soc.37(2005),no.3,405-416. [16] I.Shafrir.Asup+infinequalityfortheequation−∆u=Veu.C.R.Acad.Sci.ParisSe´r.IMath.315(1992),no.2,159-164. DEPARTEMENTDEMATHEMATIQUES,UNIVERSITEPIERREETMARIECURIE,2PLACEJUSSIEU,75005,PARIS,FRANCE. E-mailaddress: [email protected] 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.