A COMPACTNESS RESULT FOR A GELFAND-LIOUVILLE SYSTEM WITH LIPSCHITZ CONDITION. SAMYSKANDERBAHOURA 5 ABSTRACT. Wegiveaquantizationanalysistoanellipticsystem(Gelfand-Liouvilletypesystem)withDirich- 1 letcondition.Anapplication,wehaveacompactnessresultforanellipticsystemwithLipschitzcondition. 0 2 MathematicsSubjectClassification: 35J6035B4535B50 y a Keywords:quantization,blow-up,boundary,Gelfand-Liouvillesystem,Dirichletcondition,aprioriestimate,Lips- M chitzcondition. 1 2 ] 1. INTRODUCTION AND MAIN RESULTS P A Weset∆ = ∂11 +∂22 onopensetΩofR2 withasmoothboundary. . h t a m Weconsiderthefollowingequation: [ 2 −∆u= Vev in Ω ⊂ R2, v 1 −∆v = Weu in Ω ⊂ R2, 4 (P) 4 u = 0 in ∂Ω, 0 v = 0 in ∂Ω. 0 . 1 0 Here: 5 1 : v 0 ∈ ∂Ω i X r When u = v, the above system is reduced to an equation which was studied by many authors, with or a without the boundary condition, also for Riemann surfaces, see [1-16], one can find some existence and compactness results, alsoforasystem. Amongotherresults, wecanseein[6]thefollowingimportant Theorem, TheoremA.(Brezis-Merle[6]).Considerthecaseofoneequation;if(u ) = (v ) and(V ) = (W ) are i i i i i i i i twosequencesoffunctionsrelativelytotheproblem(P)with,0< a ≤V ≤ b < +∞,then,forallcompact i setK ofΩ, 1 supu ≤c = c(a,b,K,Ω). i K Theorem B (Brezis-Merle [6]).Consider the case of one equation and assume that (u ) and (V ) are i i i i twosequences offunctions relatively tothepreviousproblem (P)with,0 ≤ V ≤ b < +∞,and, i euidy ≤ C, Ω Z then,forallcompactsetK ofΩ, supu ≤ c = c(b,C,K,Ω). i K Next,wecallenergythefollowingquantity: E = euidy. Ω Z Theboundedness oftheenergy isanecessary condition toworkontheproblem (P)asshowedin[6],by thefollowingcounterexample. TheoremC(Brezis-Merle[6]).Considerthecaseofoneequation,thentherearetwosequences(u ) and i i (V ) oftheproblem (P)with,0 ≤ V ≤ b < +∞,and, i i i euidy ≤ C, Ω Z and supu → +∞. i Ω Note that in [11], Dupaigne-Farina-Sirakov proved (by an existence result of Montenegro, see [14]) that thesolutionsoftheabovesystemwhenV andW areconstantscanbeextremalandthisconditionimplythe boundedness oftheenergyanddirectlythecompactness. Notethatin[10],ifweassume(inparticular) that ′ ∇logV and ∇logW and V > a > 0 or W > a > 0 and V,W are nonegative and uniformly bounded thentheenergy isbounded andwehaveacompactness result. Notethatinthecaseofoneequation,wecanprovebyusingthePohozaevidentitythatif+∞ > b≥ V ≥ a > 0, ∇V is uniformely Lipschitzian that the energy is bounded when Ω is starshaped. In [13] Ma-Wei, usingthemoving-planemethodshowedthatthisfactistrueforalldomainΩwiththesameassumptions on V. In [10] De Figueiredo-do O-Ruf extend this fact to a system by using the moving-plane method for a system. 2 Theorem C, shows that we have not a global compactness to the previous problem with one equation, perhaps we need more information on V to conclude to the boundedness of the solutions. When ∇logV isLipschitz function, Chen-Liand Ma-Weisee[7] and[13], showed thatwehave acompactness onallthe open set. The proof is via the moving plane-Method of Serrin and Gidas-Ni-Nirenberg. Note that in [10], we have the same result for this system when ∇logV and ∇logW are uniformly bounded. We will see belowthatforasystemwealsohaveacompactness resultwhenV andW areLipschitzian. Nowconsider thecaseofoneequation. Inthiscaseourequation haveniceproperties. IfweassumeV withmoreregularity,wecanhaveanothertypeofestimates,asup+inf typeinequalities. ItwasprovedbyShafrirsee[16],that,if(u ) ,(V ) aretwosequencesoffunctionssolutionsoftheprevious i i i i equation without assumption on the boundary and, 0 < a ≤ V ≤ b < +∞, then we have the following i interiorestimate: a C supu +infu ≤ c = c(a,b,K,Ω). i i b K Ω (cid:16) (cid:17) Now, if we suppose (V ) uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and i i c = c(a,b,A,K,Ω), see[5]. Hereweareinterested bythecaseofasystem ofthistypeofequation. First,wegivethebehavior ofthe blow-up points on theboundary and inthe second timewehave aproof ofcompactness of thesolutions to Gelfand-Liouville typesystemwithLipschitzcondition. Here,wewriteanextention ofBrezis-MerleProblem(see[6])is: Problem. Suppose that Vi → V andWi → W inC0(Ω¯),with, 0 ≤ Vi ≤ b1 and 0 ≤ Wi ≤ b2 forsome positiveconstantsb1,b2. Also,weconsiderasequenceofsolutions(ui),(vi)of(P)relativelyto(Vi),(Wi) suchthat, euidx ≤ C1, evidx ≤ C2, Ω Ω Z Z isitpossibletohave: ||ui||L∞ ≤C3 = C3(b1,b2,C1,C2,Ω)? and, ||vi||L∞ ≤C4 = C4(b1,b2,C1,C2,Ω)? In this paper we give a caracterization of the behavior of the blow-up points on the boundary and also a proof of the compactness theorem when V and W are uniformly Lipschitzian. For the behavior of the i i blow-uppointsontheboundary, thefollowingcondition areenough, 3 0 ≤ Vi ≤ b1, 0 ≤ Wi ≤ b2, Theconditions V → V andW → W inC0(Ω¯)arenotnecessary. i i Butfortheproof ofthecompactness forthe Gelfand-Liouville type system (Brezis-Merle type problem) weassumethat: ||∇Vi||L∞ ≤ A1, ||∇Wi||L∞ ≤ A2. Ourmainresultare: Theorem 1.1. Assumethat maxΩui → +∞and maxΩvi → +∞Where(ui)and (vi)are solutions of theprobleme(P)with: 0 ≤ Vi ≤ b1, and euidx ≤ C1, ∀ i, Ω Z and, 0 ≤ Wi ≤ b2, and evidx ≤ C2, ∀ i, Ω Z then; after passing to a subsequence, there is a finction u, there is a number N ∈ N and N points x1,x2,...,xN ∈ ∂Ω,suchthat, N ∂ u ϕ → ∂ uϕ+ α ϕ(x ), α ≥ 4π, ν i ν j j j Z∂Ω Z∂Ω j=1 X for any ϕ∈ C0(∂Ω),and, ui → u in Cl1oc(Ω¯ −{x1,...,xN}). N ∂ u ϕ→ ∂ uϕ+ β ϕ(x ), β ≥ 4π, ν i ν j j j Z∂Ω Z∂Ω j=1 X for any ϕ∈ C0(∂Ω),and, vi → v in Cl1oc(Ω¯ −{x1,...,xN}). Inthefollowingtheorem,wehaveaprooffortheglobalaprioriestimatewhichconcerntheproblem(P). 4 Theorem 1.2. Assume that (u ),(v ) are solutions of (P) relatively to (V ),(W ) with the following i i i i conditions: x1 = 0 ∈∂Ω, and, 0 ≤ Vi ≤ b1, ||∇Vi||L∞ ≤ A1, and eui ≤ C1, Ω Z 0≤ Wi ≤ b2, ||∇Wi||L∞ ≤ A2, and evi ≤ C2, Ω Z Wehave, ||ui||L∞ ≤ C3(b1,b2,A1,A2,C1,C2,Ω), and, ||vi||L∞ ≤ C4(b1,b2,A1,A2,C1,C2,Ω), 2. PROOF OF THE THEOREMS Proofoftheorem1.1: SinceVievi andWieui areboundedinL1(Ω),wecanextractfromthosetwosequencestwosubsequences whichconverge totwononegativemeasuresµ1 andµ2. Ifµ1(x0) < 4π, byaBrezis-Merle estimate forthe firstequation, wehave eui ∈ L1+ǫ around x0,bythe elliptic estimates, for the second equation, we have vi ∈ W2,1+ǫ ⊂ L∞ around x0, and , returning to the ∞ firstequation, wehaveui ∈ L aroundx0. Ifµ2(x0) < 4π,thenui andvi arealsolocallybounded aroundx0. Thus, we take a look to the case when, µ1(x0) ≥ 4π and µ2(x0) ≥ 4π. Byour hypothesis, those points x0 arefinite. Wewillseethatinside Ωnosuchpoints exist. Bycontradiction, assumethat, wehaveµ1(x0) ≥ 4π. Let usconsideraballBR(x0)whichcontainonlyx0 asnonregular point. Thus,on∂BR(x0),thetwosequence u andv areuniformlybounded. Letusconsider: i i 5 −∆zi = Vievi in BR(x0) ⊂R2, ( zi = 0 in ∂BR(x0). Bythemaximumprinciple wehave: z ≤ u i i andz → z almosteverywhereonthisball,andthus, i ezi ≤ eui ≤ C, Z Z and, ez ≤ C. Z but,z isasolution tothefollowingequation: −∆z = µ1 in BR(x0)⊂ R2, ( z = 0 in ∂BR(x0). with,µ1 ≥ 4π andthus,µ1 ≥ 4πδx0 andthen,bythemaximumprinciple: z ≥ −2log|x−x0|+C thus, ez = +∞, Z whichisacontradiction. Thus,thereisnononregular pointsinsideΩ Thus,weconsider thecasewherewehavenonregular pointsontheboundary, weusetwoestimates: ∂νuidσ ≤ C1, ∂νvidσ ≤ C2, Z∂Ω Z∂Ω and, ′ ||∇ui||Lq ≤ Cq, ||∇vi||Lq ≤Cq, ∀ i and 1 < q < 2. 6 Wehavethesamecomputations, asinthecaseofoneequation. Weconsiderapointsx0 ∈ ∂Ωsuchthat: µ1(x0) < 4π. We consider a test function on the boundary η we extend η by a harmonic function on Ω, we write the equation: −∆((u −u)η) = (V evi −Vev)η+ < ∇(u −u)|∇η >=f i i i i with, |f |≤ 4π−ǫ+o(1) < 4π−2ǫ <4π, i Z −∆((v −v)η) = (W eui −Weu)η+ < ∇(v −v)|∇η >= g , i i i i with, |g | ≤ 4π−ǫ+o(1) < 4π−2ǫ < 4π, i Z By the Brezis-Merle estimate, we have uniformly, eui ∈ L1+ǫ around x0, by the elliptic estimates, for the second equation, wehave vi ∈ W2,1+ǫ ⊂ L∞ around x0, and , returning to the first equation, we have ∞ ui ∈ L aroundx0. Wehavethesamethingifweassume: µ2(x0) < 4π. Thus,ifµ1(x0)< 4π orµ2(x0)< 4π,wehaveforR > 0smallenough: (ui,vi)∈ L∞(BR(x0)∩Ω¯). Byourhypothesis thesetofthepointssuchthat: µ1(x0) ≥ 4π, µ2(x0) ≥ 4π, isfinite, and, outside this setu andv are locally uniformly bounded. Bythe elliptic estimates, wehave i i theC1 convergence touandv oneachcompactsetofΩ¯ −{x1,...xN}. 7 Proofoftheorem1.2: Without loss of generality, we can assume that 0 is a blow-up point (either, we use a translation). Also, byaconformal transformation, wecanassumethatΩ = B+,thehalfball,and∂+B+ istheexterior part,a 1 1 part which not contain 0 and onwhich u and v converge in the C1 norm touand v. Letus consider B+, i i ǫ thehalfballwithradiusǫ > 0. ThePohozaevidentity gives: ∆u < x|∇v > dx = − ∆v <x|∇u > dx+ g(∂ u ,∂ v )dσ, (1) i i i i ν i ν i ZBǫ+ ZBǫ+ Z∂+Bǫ+ Thus, V evi < x|∇v > dx = − W eui < x|∇u > dx+ g(∂ u ,∂ v )dσ, (2) i i i i ν i ν i ZBǫ+ ZBǫ+ Z∂+Bǫ+ Afterintegration byparts, weobtain: V evidx+ < x|∇V > evidx+ < ν|∇V >dσ+ i i i ZBǫ+ ZBǫ+ Z∂Bǫ+ + W euidx+ < x|∇W > euidx+ < ν|∇W > dσ = i i i ZBǫ+ ZBǫ+ Z∂Bǫ+ = g(∂ u ,∂ v )dσ, ν i ν i Z∂+Bǫ+ Also,foruandv,wehave: Vevdx+ < x|∇V > evdx+ < ν|∇V > dσ+ ZBǫ+ ZBǫ+ Z∂Bǫ+ + Weudx+ < x|∇W > eudx+ < ν|∇W > dσ = ZBǫ+ ZBǫ+ Z∂Bǫ+ = g(∂ u,∂ v)dσ, ν ν Z∂+Bǫ+ If,wetakethedifference, weobtain: (1+o(ǫ))( V evidx− Vevdx)+ i ZBǫ+ ZBǫ+ 8 +(1+o(ǫ))( W euidx− Weudx) = i ZBǫ+ ZBǫ+ = α1+β1 +o(ǫ)+o(1) = o(1), acontradiction. REFERENCES [1] T.Aubin.SomeNonlinearProblemsinRiemannianGeometry.Springer-Verlag,1998. [2] C.Bandle.IsoperimetricInequalitiesandApplications.Pitman,1980. [3] Bartolucci,D.A”sup+Cinf”inequalityforLiouville-typeequationswithsingularpotentials.Math.Nachr.284(2011), no. 13,1639-1651. [4] Bartolucci,D.A‘sup+Cinf’inequalityfortheequation−∆u=Veu/|x|2α.Proc.Roy.Soc.EdinburghSect.A140(2010), no.6,1119-1139 [5] H.Brezis,YY.LiandI.Shafrir.Asup+infinequalityforsomenonlinearellipticequationsinvolvingexponentialnonlineari- ties.J.Funct.Anal.115(1993)344-358. [6] H.Brezis,F.Merle.UniformestimatesandBlow-upbehaviorforsolutionsof−∆u=V(x)euintwodimension.Commun. inPartialDifferentialEquations,16(8and9),1223-1253(1991). [7] W. Chen, C. Li. A priori estimates for solutions to nonlinear elliptic equations. Arch. Rational. Mech. Anal. 122 (1993) 145-157. [8] C-C.Chen,C-S.Lin.Asharpsup+infinequalityforanonlinearellipticequationinR2.Commun.Anal.Geom.6,No.1,1-19 (1998). [9] D.G.DeFigueiredo,P.L.Lions,R.D.Nussbaum,AprioriEstimatesandExistenceofPositiveSolutionsofSemilinearElliptic Equations,J.Math.PuresetAppl.,vol61,1982,pp.41-63. [10] D.G.DeFigueiredo.J.M.doO.B.Ruf.Semilinearellipticsystemswithexponentialnonlinearitiesintwodimensions.Adv. NonlinearStud.6(2006),no.2,199-213. [11] Dupaigne,L.Farina,A.Sirakov,B.RegularityoftheextremalsolutionsfortheLiouvillesystem.Geometricpartialdifferential equations,139-144,CRMSeries,15,Ed.Norm.,Pisa,2013. [12] YY.Li,I.Shafrir.Blow-upanalysisforsolutionsof−∆u = Veu indimensiontwo.Indiana.Math.J.Vol3,no4.(1994). 1255-1270. [13] YY.Li.HarnackTypeInequality:themethodofmovingplanes.Commun.Math.Phys.200,421-444(1999). [14] L.Ma,J-C.Wei.ConvergenceforaLiouvilleequation.Comment.Math.Helv.76(2001)506-514. [15] Montenegro.M.Minimalsolutionsforaclassofellpticsystems.Bull.London.Math.Soc.37(2005),no.3,405-416. [16] I.Shafrir.Asup+infinequalityfortheequation−∆u=Veu.C.R.Acad.Sci.ParisSe´r.IMath.315(1992),no.2,159-164. DEPARTEMENTDEMATHEMATIQUES,UNIVERSITEPIERREETMARIECURIE,2PLACEJUSSIEU,75005,PARIS,FRANCE. E-mailaddress: [email protected] 9