ebook img

A Compact Orbital Angular Momentum Spectrometer Using Quantum Zeno Interrogation PDF

0.79 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Compact Orbital Angular Momentum Spectrometer Using Quantum Zeno Interrogation

A Compact Orbital Angular Momentum Spectrometer Using Quantum Zeno Interrogation PaulBierdz,HuiDeng* 4 DepartmentofPhysics,UniversityofMichigan,AnnArbor,USA 1 [email protected],[email protected] 0 2 n Abstract: We present a scheme to measure the orbital angular momen- a J tum spectrum of light using a precisely timed optical loop and quantum 1 non-demolition measurements. We also discuss the influence of imperfect 1 opticalcomponents. ] © 2014 OpticalSocietyofAmerica s c OCIScodes:050.4865Opticalvortices,120.4290Nondestructivetesting. i t p o Referencesandlinks . s 1. L.Allen,M.W.Beijersbergen,R.J.C.Spreeuw,andJ.P.Woerdman,“Orbitalangularmomentumoflightand c thetransformationofLaguerre-Gaussianlasermodes,”PhysicalReviewA45,8185(1992). i s 2. G.Molina-Terriza,J.P.Torres,andL.Torner,“Twistedphotons,”NatPhys3,305–310(2007). y 3. S.Franke-Arnold, L.Allen,andM.J.Padgett,“Advances inopticalangularmomentum,”Laser&Photonics h Review2,299–313(2008). p 4. G.Molina-Terriza,J.P.Torres,andL.Torner,“Managementoftheangularmomentumoflight:Preparationof [ photonsinmultidimensionalvectorstatesofangularmomentum,”PhysicalReviewLetters88,013,601(2001). 5. A.Mair,A.Vaziri,G.Weihs,andA.Zeilinger,“Entanglementoftheorbitalangularmomentumstatesofpho- 1 tons,”Nature412,313–316(2001). v 6. G.Molina-Terriza,A.Vaziri,R.Ursin,andA.Zeilinger,“Experimentalquantumcointossing,”PhysicalReview 9 Letters94,040,501(2005). 5 7. D.Kaszlikowski,P.Gnacinacuteski,M.Zdotukowski,W.Miklaszewski,andA.Zeilinger,“Violationsoflocal 5 realismbytwoentangledN-Dimensionalsystemsarestrongerthanfortwoqubits,”PhysicalReviewLetters85, 2 4418(2000). 8. N.J. Cerf, M. Bourennane, A.Karlsson, and N.Gisin, “Security of quantum key distribution using d-Level . 1 systems,”PhysicalReviewLetters88,127,902(2002). 0 9. B.P.Lanyon,M.Barbieri,M.P.Almeida,T.Jennewein,T.C.Ralph,K.J.Resch,G.J.Pryde,J.L.O’Brien, 4 A.Gilchrist,andA.G.White,“Simplifyingquantumlogicusinghigher-dimensionalhilbertspaces,”NatPhys 1 5,134–140(2009). : 10. J.T.Barreiro,T.Wei,andP.G.Kwiat,“Beatingthechannelcapacitylimitforlinearphotonicsuperdensecoding,” v NatPhys4,282–286(2008). Xi 11. J.M.Hickmann, E.J.S.Fonseca,W.C.Soares,andS.Cha´vez-Cerda, “Unveiling atruncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Physical Review Letters 105, r 053,904(2010). a 12. Z.Wang,Z.Zhang,andQ.Lin,“AnovelmethodtodeterminethehelicalphasestructureofLaguerre–Gaussian beams,”JournalofOpticsA:PureandAppliedOptics11,085,702(2009). 13. V.Bazhekov,M.Vasnetsov,andM.S.Soskin,“Laser-beamswithscrewdislocationintheirwave-fronts,”JETP Letters52,429–431(1990). 14. N. R. Heckenberg, R. McDuff, C. P.Smith, and A. G. White, “Generation of optical phase singularities by computer-generatedholograms,”OpticsLetters17,221–223(1992). 15. J.Arlt,K.Dholakia,L.Allen,andM.J.Padgett,“TheproductionofmultiringedLaguerre–Gaussianmodesby computer-generatedholograms,”JournalofModernOptics45,1231(1998). 16. J.Leach,J.Courtial,K.Skeldon,S.M.Barnett,S.Franke-Arnold,andM.J.Padgett,“Interferometricmethods tomeasureorbitalandspin,orthetotalangularmomentumofasinglephoton,”PhysicalReview Letters 92, 013,601(2004). 17. G.C.G.Berkhout,M.P.J.Lavery,J.Courtial, M.W.Beijersbergen, andM.J.Padgett,“Efficientsortingof orbitalangularmomentumstatesoflight,”PhysicalReviewLetters105,153,601(2010). 18. A.Peres,“Zenoparadoxinquantumtheory,”AmericanJournalofPhysics48,931(1980). 19. A.C.ElitzurandL.Vaidman,“Quantummechanicalinteraction-freemeasurements,”FoundationsofPhysics7, 987–997(1993). 20. P.G.Kwiat,A.G.White,J.R.Mitchell,O.Nairz,G.Weihs,H.Weinfurter,andA.Zeilinger,“High-Efficiency quantuminterrogationmeasurementsviathequantumZenoeffect,”PhysicalReviewLetters83,4725(1999). 21. S0andS1areopticalswitchesthatcanbeswitchedfrombeentransmittivetoreflective.S0needstotransmitthe initialincidentlight,andbeswitchedtobereflectivebytheendofthefirstouter-loopcycle.Ahighrepetitionrate isnotrequiredanditcanbeimplemetedeithermechanicallyoropto-electrically.Alternativelyitcouldalsobea statichigh-reflectancemirror,iftheone-timetransmissionlossattheverybeginningcanbetolerated.S1needsto beswitchedeveryQZIloopcycle(D T)andneedtobepolarizationinsensitive.ThefastestswitchesarePockels cells,whichcanoperateat10-100GHzwith99%transmission.Onescheme,similartotheoneimplementedin Ref.[20],istoaninterferometerwithPockelscellsinoneofthearms.ThePockelscellsintroducep phaseshift inthearmwhenactivated,andthusswitchthebeambetweentwooutputportsoftheinterferometer.Usingtwo Pockelscellsrotatedrelativetoeachotherwillcancelthebirefringenteffect. 22. M.W.Beijersbergen,R.P.C.Coerwinkel,M.Kristensen,andJ.P.Woerdman,“Helical-wavefrontlaserbeams producedwithaspiralphaseplate,”OpticsCommunications112,321–327(1994). 23. B.MisraandE.C.G.Sudarshan,“TheZeno’sparadoxinquantumtheory,”JournalofMathematicalPhysics18, 756(1977). 24. Technically,each a 2isslightlydifferent,butthedifferenceiswellwithin1%.The a 2thatmattersmostisthe | | | | onecorrespondingtotheQZIloop(includingS1),which,withoutanyoptimization,consistsof4beamsplitters, 5mirrors,1waveplateanduptothreePockelscells.Assumingallopticsareanti-reflectioncoatedsothatlossis 1%ateachPockelscelland0.1%ateachothercomponent,wehave a 2 0.96. | | ≥ 25. J.Jang,“Opticalinteraction-freemeasurementofsemitransparentobjects,”PhysicalReviewA59,2322(1999). Lightcarriesquantizedorbitalangularmomentum(OAM)oflh¯ perphotonwhentheelectric field has an overall azimuthal dependence on phase, e ilf , where f is the azimuthal angle − aboutthe beam propagationaxis [1, 2, 3]. The OAM quantumnumberl takes integervalues from ¥ to +¥ . With an infinite number of states available, OAM can be utilized for qudit − (d-dimensional,d>2)systems[4]thatallow,forexample,higherdimensionalentanglement [5], quantumcoin-tossing[6],increasedviolationsoflocalrealism[7], improvedsecurityfor quantumkeydistribution[8],simplifiedquantumgates[9]andsuperdensecodingforquantum communicationswithincreasedchannelcapacity[10]. Determining OAM of light in an unknown state, however, is more challenging than measuring different polarizations or frequencies. Eigenstates of OAM can be deduced from thediffractioninterferencepatternwithjudiciouslychosenapertures[11,12].Butthemethod requires a large collection of photons to develop the pattern. Moreover it may become very complicatedforsuperpositionsof OAM states. An l-fold forkdiffractiongrating[13, 14, 15] can separate a pre-determined OAM component from others at the single photon level, but cannotbereadilyappliedtodeterminearbitraryOAMstateoflight.AcascadeMach-Zehnder interferometersetup,usingDoveprismstointroduceanl-dependentphaseshift,canseparate differentOAM componentsof lightinto differentoutputportsof the interferometers,even at thesingle-photonlevel[16].ButthesetuprequiresN 1mutuallystabilizedinterferometersto − detectNOAM-modes.Arecentlyproposedscheme[17]requiresonlyaspatiallightmodulator (oraspeciallydesignedhologram),whichconvertsthetwistingphasestructureofOAMstates intoalinearphasegradient,andalens,whichfocusesdifferentOAMcomponentstodifferent spatiallocationsonthefocalplane.However,themethodreliesonintricatespatialmodulation ofthephase,andthusmayhavelimitedapplicabilitytobroadbandultrafastpulses.Moreover, theextinctionratiobetweendifferentOAMstatesislimitedtoabout10.Toincreasetheextinc- tion ratio or to detect higher order OAM states will require larger and increasingly complex holograms. Inthispaper,wepresentacompactOAM-spectrometercomprisingofonlyoneinterferome- ternestedwithinanopticalloop(Fig.1).ItusesaQuantumZenoInterrogator(QZI)[18,19,20] Fig. 1. A schematic of the compact OAM spectrometer. The Quantum Zeno Interroga- tor (shaded region) distinguishes betweenzero andnonzero OAM states.Theouter loop decreasestheOAMvalueoflightbyoneperroundtrip.Allthebeamsplittersarepolariz- ingbeamsplitters(PBSs)thattransmitshorizontallypolarizedlightandreflectsvertically polarizedlight.TheOAMfiltertransmitsstateswithzeroOAM,butblocksstateswithnon- zeroOAM.S0andS1areswitchingmirrorsthateithertransmitsorreflectsincidentlight [21].R1andR2arefixedpolarizationrotators,whichcanbehalfwaveplates.P1andP2 arefastpolarizationswitches,suchasPockelscells.Whenactivated,P1andP2switches horizontalpolarizationtoverticalandviceversa.Whende-activated,theyaretransparent to light. The shaded region is a Quantum Zeno Interrogator [20] which separates OAM componentswithl=0andl=0intodifferentpolarizations.HenceatPBS3,zeroOAM 6 component issenttothedetectorwhilethenone-zeroOAMcomponent issentbackinto theouter-loop.TheouterloopdecreasedOAMbyoneperroundtripvia,forexample,a vortexphaseplate(VPP)[22]. (shadedregioninFig.1)toperformcounterfactualmeasurementsontheOAMstate,andthus mapsdifferentOAMcomponentsofanarbitraryinputlightpulseintodifferenttimebinsatthe output.ItcanachieveveryhighextinctionratiosbetweendifferentOAMstatesandcanwork forarbitrarilyhighOAMorderslimitedmainlybyopticallosses. We illustrate now how the spectrometer works by tracing, as an example, a horizontally polarized input pulse with an OAM value l = l 0, noted as y (0) = H,l . The input 0 0 ≥ | i | i pulse first transmits through optical switches S0 and S1 [21], and enters the QZI. The po- larizationrotatorR1rotatesitspolarizationbyD q =p /(2N),andthestatebecomes y (0) = | 1 i cos p H,l +sin p V,l . If l = 0, the horizontal and vertical components of y (0) 2N | 0i 2N | 0i | 1 i passes throughthe lower andupper armsof the interferometer,respectively.Theyrecombine (cid:0) (cid:1) (cid:0) (cid:1) into the same state y (0) at the polarizing beam splitter PBS2 (neglecting an overall phase | 1 i factor).S1isswitchedtobereflectiveattheendofthefirstQZIloop,andthecombinedbeam continuestoloopintheQZI.ThepolarizationisrotatedbyD q =p /(2N)eachloop.AfterN loops,thelightbecomesverticallypolarizedandentersonlytheupperpathoftheinterferom- eter. At this point, the polarization switch P1 is activated and switches the polarization into horizontal.HencethelighttransmitsthroughbothPBS2andPBS3,andarrivesatthedetector attimeT . 0 If l =0, however, the vertical component is sent to the upper path at PBS1, and is then 0 6 blockedbytheOAMfilter.OnlythehorizontalcomponentemergesafterPBS2,thestatecol- lapsesinto H,l withaprobabilitycos2 p .AfterNloops,afractionp=cos(p /(2N))2N of | 0i 2N thelightremainsinthehorizontalpolarizationinthelowerarmoftheinterferometer,whilea (cid:0) (cid:1) (babilitya) 111000--042 æìàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòôOAæìçàòôMæìçàòô æìçàòô ìæçàòô æìçàòô æìçàòô æìçàòô (babilityb) 111000--042 æìàò æìçàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòôOAæìçàòôMæìçàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòô o o ô Pr 10-6 ç 0 2 4 6 8 10 Pr 10-6 0 2 4 6 8 10 æ à ì ò ô ç ç æ à ì ò ô ç 10-8 10-8 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 Number of Loops HNL Number of Loops HNL Fig. 2. The probability of detecting the correct OAM value as a function of the number of loops(N)intheQZIusingaperfect OAMfilter.(a)Neglect opticalloss.(b) Assume a 2=0.96basedoncommerciallyavailableoptics.Whenopticallossisincluded,there | | exists an optimal N for higher order OAM states, due to the compromise between the quantumZenoenhancementandopticalloss. fraction1 pofthelightislost(blockedbyOAMfilter).Atthispoint,thepolarizationswitch − P2 is activated and switches the polarization to vertical, and the light reflects off both PBS2 andPBS3,andenterstheouterloop.Bythistime,S0isswitchedtobereflective.Asthelight cycles in the outer loop, the polarization in rotated back to horizontal by R2, and the OAM value is decreased by D l =1 per cycle by a vortex phase plate (VPP) [22]. After l cycles, 0 l=0.WhenthelightenterstheQZIagain,itwillexitthespectrometertothedetector,atatime T(l )=T +l (NL +L )/c. Here L and L are the optical path lengths of the QZI 0 0 0 QZI out QZI out loop(fromS1toPBS2backtoS1)andtheouter-loop(fromS1toPBS2,toPBS3,toS0,back toS1).ThedetectedfractionofthelightintensityisP(l0)=pl0 =cos 2pN 2Nl0. Inshort,theOAMspectrometersortsdifferentOAMcomponentsintodifferenttimeintervals separated by D T = (NL +L )/c with a perfect extinction ratio.(cid:0)Th(cid:1)e total transmission QZI out efficiencyofthespectrometerisP(l )forthecomponentwithOAMofl h¯.P(l ) 1foralll 0 0 0 0 asN ¥ duetothequantumZenoeffect[23],asshownintheFig.2(a). → → In practice, optical components introduce loss. Assuming high quality, but commercially available optical components, we estimate a round trip transmission of a 2 0.96 [24] per cycle for both the outer loop (a ), the QZI loop (a ) and initial| a|nd∼final optics out QZI (a ).HencethetotaltransmissionefficiencyoftheOAMspectrometerbecomesP(l ) init,final 0 ≈ a (2N+2)(l0+1)cos 2pN 2Nl0 forthe l0-thorderOAM component.We plotinFig. 2(b)theP(l0) vs.N forOAMcomponentsl =0 10.WithincreasingN,thequantumZenoeffectleadsto 0 (cid:0) (cid:1) − anincreaseinP(l ),whilelossleadstoadecreaseinP(l ).Asaresult,anoptimalN isfound 0 0 atabout7 8forhighorderOAMcomponents.Notethattheextinctionratiobetweendifferent − OAMstatesremainsinfiniteeveninthepresenceofloss.Crosstalkwouldonlytakeplacewhen theOAMfilterisnotcompletelyopaquetononzeroOAMstates. To take into account imperfect OAM filters, we derive below the general expression for thetransmissionefficiencyandextinctionratio,withfiniteN andopticalloss.Weconsiderthe OAMfilterhavingacomplextransmissioncoefficient T(l)eif (l)forthelthOAMcomponent. Ifthestate y = H,l enterstheQZI,afterN cycles,itexitstheQZIloopinapolarization 0 | i | i p superpositionstate p H +p V [25],where p and p aregivenby: H V H V | i | i p p N p 1 0 cos sin 1 (cid:18) pHV (cid:19)=a QNZI(cid:20)(cid:18) 0 T(l)eif (l) (cid:19)(cid:18) sin(cid:0)22pNN(cid:1) −co(cid:0)s2N2pN(cid:1) (cid:19)(cid:21) (cid:18) 0 (cid:19). (1) p (cid:0) (cid:1) (cid:0) (cid:1) 1.000 (b) (a) 0.500 y 0.100 bilit 0.050 a b o 0.010 Pr 0.005 0.001 0.0 0.2 0.4 0.6 0.8 1.0 Transmission Fig.3.TheprobabilitiesofdifferentoutcomesofaQZIinterrogationasafunctionofthe transmissionoftheOAMfilter,neglectingopticalloss.Thebluesolidlinerepresentsde- tectingOAM=0,thereddashedlineisdetectingOAM=0,andtheorangedottedline,loss. 6 (a)N=8.(b)N=2 10. − Thepulsere-enterstheouterloopatPBS3withprobability p 2,correspondingtoasuccessful H interrogationbythe QZI (if l =0).With probably p 2,|the|pulse exitstowardthe detector, 0 V correspondingto an error(if l6 =0). The total loss|of t|his QZI interrogationis loss2 =1 0 6 | | − p 2 p 2.Intheouterloop,theOAMvalueofthepulseisloweredby1viatheVPP,and H V t|he|int−en|sity| ofthepulseisreducedbya factor a 2 perloop.Therefore,theprobabilityof out | | detectingtheOAMeigenstatel inthelthtimeinterval(or,measuredaswithOAMlh¯)isgiven 0 by: P(l;l )= a 2 p (l l)2 (cid:213) l0 a 2 p (m)2 . (2) 0 init,final V 0 out H | | | − | | | | | m=l0−l+1(cid:0) (cid:1) Andwedefinetheextinctionratioh as: h (l )=P(l ;l )/(cid:229) P(l;l ). (3) 0 0 0 0 l6=l0 WithanimperfectOAMfilter,lightwithnonzeroOAMhasafiniteprobabilityoftransmit- tingthroughthefilter inverticalpolarizationaftertheNth QZI-loop.Itwillthenbeswitched tohorizontalpolarizationbyP1andexitata timeintervalcorrespondingtocomponentswith alowerOAM.Consequently,theextinctionratioisreduced.Ifthelightistransmittedthrough thefilterbeforetheNthloop,itwillresultsinalargerloss.AnimperfectOAMfiltermayalso partiallyblocklightwithzeroOAM,whichwhichalsoresultsinloss. Figure3(a)shows,perquantumZenointerrogationoflightwithOAMoflh¯,theprobabilities ofthelightexitingtowardthedetector( p 2),re-enteringtheouter-loop( p 2)andbeinglost V H | | | | (1 p 2 p 2). These probabilitiesare plottedas a functionof transmissionT(l,a ) and V H 0 N.−Th|ec|ro−ssi|ng|of p 2 and p 2 separatestheregimeswhentheinterrogationresultismore H V | | | | likely(totherightside)orlesslikely(totheleftside)tobecorrectthanincorrect. AsapracticalexampleofanimperfectOAMfilter,weconsiderapinholespatialfilter.Light with OAM of lh¯ =0 has zero intensity at the center of the beam, while light without OAM 6 hasmaximumintensityatthecenter.Henceaverysimplepinholeefficientlydistinguisheslight with and without OAM. The intensity distribution of a Laguerre-Gaussian beam, a paraxial beampossessingOAMlh¯,isgivenby[1]: I √2r |l| 2r r2 ILG(l;r )= 0¥ duu|l|e0−uLl(u) w0 ! L|l|(cid:18)w20(cid:19)e−w20 (4) || R 1.000 1æ (a) 0.500 (b) æ æ 10-4 æ mission 00..015000 mission 10-8 æ æ æ ans 0.010 0 ans 10-12 æ æ Tr 0.005 12 Tr 10-16 æ æ 3 0.001 10-20 0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5 6 7 8 9 10 ApertureSizeHa0L OAMHlL Fig.4.Transmissionofthepinholespatialfilter(a)asafunctionofthenormalizedaperture sizea0,forOAMcomponentswithl0=0 3and(b)asafunctionofl0witha0=0.8. − 500 107 (a) |a|2 (b) 450 1.00 106 400 0.96 )350 0.95* )105 h 0.90 h ( ( atio300 atio104 R R 250 n n ctio200 ctio103 n n Exti150 Exti102 100 101 Dl 50 1 2 3 0 100 5 10 15 20 25 30 0.4 0.6 0.8 1 Number of Loops (N) Aperture Size (a ) 0 Fig. 5. (a) Extinction ratio h as a function of the number of loops N for various losses a 2.Solidsymbolsareforl0=1andopensymbolsareforl0=3.l0>3areessentially | | indistinguishablefroml0=3.Forthel0=0case,theextinctionratioisovera1000forall a 2valuesbecausenoprematuremeasurementsarepossible.Theadditionalgreencrosses |lab|eled as a 2=0.95 represents a 2=0.96 but including misalignment of the OAM ∗ filterandV|PP|asdiscussedinthetex|t.(|b)Extinctionratioh asafunctionofthenormalized aperture size a0 for l0=6, D l =1 3, N =8, and a 2 =0.96. Skipping OAM states − | | increasestheextinctionratiobyordersofmagnitude. WhereL(x)isthelthorderLaguerrePolynomial.ThusthetransmissionT(l)throughapinhole l witharadiusa (normalizedbythewaistofthel =0Gaussianbeam)is: 0 0 T(l,a )= a0 2p r dr df I (l;r ) ¥ 2p r dr df I (l;r ) (5) 0 LG LG 0 0 0 0 Z Z (cid:30)Z Z Figure 4(a) shows T(l,a ) vs. a for l =0 3. The transmission decreases sharply with 0 0 − increasinglwhena issmallerthan 0.8.Choosinga =0.8,weshowinFig.4(b)thenearly 0 0 ∼ exponentialdecreaseofT(l,a )withl.Thesevaluesarealsomarkedbytheredverticallines 0 inFig.3(a).DuetothefastdecreaseofT(l,a )froml=0tol 1,alargeextinctionratiois 0 ≥ 100 (a) 100 (b) 10-2 10-3 y ability1100-05 8910 10-6 Probabilit 10-4 Prob10-10 67 10-9 10-6 10-15 45 l0 10-12 OAM 0 3 1 0 2 4 6 8 10 2 3 4 5 6 12 10-15 10-8 2 4 6 8 10 12 14 16 l 7 8 0 Number of Loops (N) 9 10 Fig.6.(a)TheprobabilityofmeasuringanOAMvaluel foragiveninputstatel (Equa- 0 tion 2), using pinhole as the OAM filter, N =8, a 2=0.96, and misalignment of 10% | | and1%,respectively,atthepinholefilterandVPP.Despitethedecreaseinprobabilityfor thediagonal elementsatlargel ,theoff diagonal elementsdecreasemuch faster,asim- 0 pliedbythelargeextinctionratios.(b)Thediagonalelementsof(a)asafunctionofNfor l0=0 10. − readilyachieved,whichisverywellapproximatedby: h (l0)=P(l0;l0)/(cid:229) P(l6=l0;l0)≈ a out|pVp(V0)(|12)|p2H(1)|2. (6) | | h is essentially the same for all OAM components,and it is mainly determinedby how well theQZIcandistinguishbetweenstateswithOAMvaluesl =0andl =1.WeplotinFig.5(a) 0 0 h vs.N for a 2=0.9 1.Ingeneral,h increaseswithN butdecreaseswith a 2,resultingin anoptimalN| f|oreach−a 2 <1.Evenfor a 2=0.9,h >70canbereached|wi|thN =7.For a 2=0.96,h peaksat| |180. | | | | ∼ An additional source of error is due to the misalignment of the beam through two OAM- sensitivecomponents:theOAMfilter(e.g.apinhole)andtheVPP.Misalignmentatthepinhole filter leads to reduced coupling efficiency of the zero OAM state, increased transmission of non-zeroOAMstates,andthusreducedextinctionratio.MisalignmentontheVPPchangesthe desiredOAMstateintoasuperpositionwithneighboringOAMorders.However,theseneigh- boringordershaveverysmallamplitudes(e.g.<1%with1%misalignment)[4],andtheyare furtherfilteredoutthroughtheQZIloop,resultinginnegligiblereductionintheextinctionratio. ThemaineffectofmisalignmentatVPPistheslightlyreducedtransmissionofthecorrectOAM state,hencereducedoveralldetectionprobability.Weillustratetheeffectsofmisalignmenton theextinctionratioinFig.5(a)(thegreencrosses),assumingconservatively10%misalignment ofthefocusedbeamwaistatthepinholeand1%misalignmentofthecollimatedbeamwaistat theVPP.Extinctionratiosover100arestillreadilyachieved. Theextinctionratiocanbeincreasedbymanyordersofmagnitudeifweonlyneedtomea- sure every other order, or every third order of OAM (Figure 5(b)). Correspondingly,we can choose smaller aperture sizes and a VPP that reduces the l by D l = 2 or 3 per passing. A smaller aperture size also introduces extra loss, but only in the final QZI on the zero OAM state,andthusonlydecreasesthedetectionprobabilitybyaboutafactoroftwo. To evaluatetheoverallperformanceofthe OAM spectrometer,we plotinFig. 6(a)P(l;l ) 0 vs.l andl onthelogscale,includinglossandmisalignment.ThediagonalelementsP(l ;l ) 0 0 0 correspondtocorrectlydetectinganOAMcomponent.Theyaretwoordersofmagnitudehigher than neighboring off diagonal elements, consistent with the high extinction ratios calculated before.InFig.6(b),weshowP(l ;l )asafunctionofNfordifferentl .N 8givesthehighest 0 0 0 ∼ probability for detecting high order OAM components, while still maintaining an extinction ratioofabove100. Insummary,wepresentacompactOAMspectrometerthatdisperseslightofdifferentOAM valuesintime.LossissignificantforhighorderOAMcomponentswithcommerciallyavailable optical components. However, the high loss doesn’t have an appreciable effect on the signal to noise ratio; extinction ratios of >100 are readily achieved even after taking into account opticallossandmisalignments.Theextinctionratiocanbefurtherimprovedbymanyordersof magnitudebyskippingOAMorders,orbyusingabetterOAMfilterthanasimplepinhole.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.