A Compact Orbital Angular Momentum Spectrometer Using Quantum Zeno Interrogation PaulBierdz,HuiDeng* 4 DepartmentofPhysics,UniversityofMichigan,AnnArbor,USA 1 [email protected],[email protected] 0 2 n Abstract: We present a scheme to measure the orbital angular momen- a J tum spectrum of light using a precisely timed optical loop and quantum 1 non-demolition measurements. We also discuss the influence of imperfect 1 opticalcomponents. ] © 2014 OpticalSocietyofAmerica s c OCIScodes:050.4865Opticalvortices,120.4290Nondestructivetesting. i t p o Referencesandlinks . s 1. L.Allen,M.W.Beijersbergen,R.J.C.Spreeuw,andJ.P.Woerdman,“Orbitalangularmomentumoflightand c thetransformationofLaguerre-Gaussianlasermodes,”PhysicalReviewA45,8185(1992). i s 2. G.Molina-Terriza,J.P.Torres,andL.Torner,“Twistedphotons,”NatPhys3,305–310(2007). y 3. S.Franke-Arnold, L.Allen,andM.J.Padgett,“Advances inopticalangularmomentum,”Laser&Photonics h Review2,299–313(2008). p 4. G.Molina-Terriza,J.P.Torres,andL.Torner,“Managementoftheangularmomentumoflight:Preparationof [ photonsinmultidimensionalvectorstatesofangularmomentum,”PhysicalReviewLetters88,013,601(2001). 5. A.Mair,A.Vaziri,G.Weihs,andA.Zeilinger,“Entanglementoftheorbitalangularmomentumstatesofpho- 1 tons,”Nature412,313–316(2001). v 6. G.Molina-Terriza,A.Vaziri,R.Ursin,andA.Zeilinger,“Experimentalquantumcointossing,”PhysicalReview 9 Letters94,040,501(2005). 5 7. D.Kaszlikowski,P.Gnacinacuteski,M.Zdotukowski,W.Miklaszewski,andA.Zeilinger,“Violationsoflocal 5 realismbytwoentangledN-Dimensionalsystemsarestrongerthanfortwoqubits,”PhysicalReviewLetters85, 2 4418(2000). 8. N.J. Cerf, M. Bourennane, A.Karlsson, and N.Gisin, “Security of quantum key distribution using d-Level . 1 systems,”PhysicalReviewLetters88,127,902(2002). 0 9. B.P.Lanyon,M.Barbieri,M.P.Almeida,T.Jennewein,T.C.Ralph,K.J.Resch,G.J.Pryde,J.L.O’Brien, 4 A.Gilchrist,andA.G.White,“Simplifyingquantumlogicusinghigher-dimensionalhilbertspaces,”NatPhys 1 5,134–140(2009). : 10. J.T.Barreiro,T.Wei,andP.G.Kwiat,“Beatingthechannelcapacitylimitforlinearphotonicsuperdensecoding,” v NatPhys4,282–286(2008). Xi 11. J.M.Hickmann, E.J.S.Fonseca,W.C.Soares,andS.Cha´vez-Cerda, “Unveiling atruncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Physical Review Letters 105, r 053,904(2010). a 12. Z.Wang,Z.Zhang,andQ.Lin,“AnovelmethodtodeterminethehelicalphasestructureofLaguerre–Gaussian beams,”JournalofOpticsA:PureandAppliedOptics11,085,702(2009). 13. V.Bazhekov,M.Vasnetsov,andM.S.Soskin,“Laser-beamswithscrewdislocationintheirwave-fronts,”JETP Letters52,429–431(1990). 14. N. R. Heckenberg, R. McDuff, C. P.Smith, and A. G. White, “Generation of optical phase singularities by computer-generatedholograms,”OpticsLetters17,221–223(1992). 15. J.Arlt,K.Dholakia,L.Allen,andM.J.Padgett,“TheproductionofmultiringedLaguerre–Gaussianmodesby computer-generatedholograms,”JournalofModernOptics45,1231(1998). 16. J.Leach,J.Courtial,K.Skeldon,S.M.Barnett,S.Franke-Arnold,andM.J.Padgett,“Interferometricmethods tomeasureorbitalandspin,orthetotalangularmomentumofasinglephoton,”PhysicalReview Letters 92, 013,601(2004). 17. G.C.G.Berkhout,M.P.J.Lavery,J.Courtial, M.W.Beijersbergen, andM.J.Padgett,“Efficientsortingof orbitalangularmomentumstatesoflight,”PhysicalReviewLetters105,153,601(2010). 18. A.Peres,“Zenoparadoxinquantumtheory,”AmericanJournalofPhysics48,931(1980). 19. A.C.ElitzurandL.Vaidman,“Quantummechanicalinteraction-freemeasurements,”FoundationsofPhysics7, 987–997(1993). 20. P.G.Kwiat,A.G.White,J.R.Mitchell,O.Nairz,G.Weihs,H.Weinfurter,andA.Zeilinger,“High-Efficiency quantuminterrogationmeasurementsviathequantumZenoeffect,”PhysicalReviewLetters83,4725(1999). 21. S0andS1areopticalswitchesthatcanbeswitchedfrombeentransmittivetoreflective.S0needstotransmitthe initialincidentlight,andbeswitchedtobereflectivebytheendofthefirstouter-loopcycle.Ahighrepetitionrate isnotrequiredanditcanbeimplemetedeithermechanicallyoropto-electrically.Alternativelyitcouldalsobea statichigh-reflectancemirror,iftheone-timetransmissionlossattheverybeginningcanbetolerated.S1needsto beswitchedeveryQZIloopcycle(D T)andneedtobepolarizationinsensitive.ThefastestswitchesarePockels cells,whichcanoperateat10-100GHzwith99%transmission.Onescheme,similartotheoneimplementedin Ref.[20],istoaninterferometerwithPockelscellsinoneofthearms.ThePockelscellsintroducep phaseshift inthearmwhenactivated,andthusswitchthebeambetweentwooutputportsoftheinterferometer.Usingtwo Pockelscellsrotatedrelativetoeachotherwillcancelthebirefringenteffect. 22. M.W.Beijersbergen,R.P.C.Coerwinkel,M.Kristensen,andJ.P.Woerdman,“Helical-wavefrontlaserbeams producedwithaspiralphaseplate,”OpticsCommunications112,321–327(1994). 23. B.MisraandE.C.G.Sudarshan,“TheZeno’sparadoxinquantumtheory,”JournalofMathematicalPhysics18, 756(1977). 24. Technically,each a 2isslightlydifferent,butthedifferenceiswellwithin1%.The a 2thatmattersmostisthe | | | | onecorrespondingtotheQZIloop(includingS1),which,withoutanyoptimization,consistsof4beamsplitters, 5mirrors,1waveplateanduptothreePockelscells.Assumingallopticsareanti-reflectioncoatedsothatlossis 1%ateachPockelscelland0.1%ateachothercomponent,wehave a 2 0.96. | | ≥ 25. J.Jang,“Opticalinteraction-freemeasurementofsemitransparentobjects,”PhysicalReviewA59,2322(1999). Lightcarriesquantizedorbitalangularmomentum(OAM)oflh¯ perphotonwhentheelectric field has an overall azimuthal dependence on phase, e ilf , where f is the azimuthal angle − aboutthe beam propagationaxis [1, 2, 3]. The OAM quantumnumberl takes integervalues from ¥ to +¥ . With an infinite number of states available, OAM can be utilized for qudit − (d-dimensional,d>2)systems[4]thatallow,forexample,higherdimensionalentanglement [5], quantumcoin-tossing[6],increasedviolationsoflocalrealism[7], improvedsecurityfor quantumkeydistribution[8],simplifiedquantumgates[9]andsuperdensecodingforquantum communicationswithincreasedchannelcapacity[10]. Determining OAM of light in an unknown state, however, is more challenging than measuring different polarizations or frequencies. Eigenstates of OAM can be deduced from thediffractioninterferencepatternwithjudiciouslychosenapertures[11,12].Butthemethod requires a large collection of photons to develop the pattern. Moreover it may become very complicatedforsuperpositionsof OAM states. An l-fold forkdiffractiongrating[13, 14, 15] can separate a pre-determined OAM component from others at the single photon level, but cannotbereadilyappliedtodeterminearbitraryOAMstateoflight.AcascadeMach-Zehnder interferometersetup,usingDoveprismstointroduceanl-dependentphaseshift,canseparate differentOAM componentsof lightinto differentoutputportsof the interferometers,even at thesingle-photonlevel[16].ButthesetuprequiresN 1mutuallystabilizedinterferometersto − detectNOAM-modes.Arecentlyproposedscheme[17]requiresonlyaspatiallightmodulator (oraspeciallydesignedhologram),whichconvertsthetwistingphasestructureofOAMstates intoalinearphasegradient,andalens,whichfocusesdifferentOAMcomponentstodifferent spatiallocationsonthefocalplane.However,themethodreliesonintricatespatialmodulation ofthephase,andthusmayhavelimitedapplicabilitytobroadbandultrafastpulses.Moreover, theextinctionratiobetweendifferentOAMstatesislimitedtoabout10.Toincreasetheextinc- tion ratio or to detect higher order OAM states will require larger and increasingly complex holograms. Inthispaper,wepresentacompactOAM-spectrometercomprisingofonlyoneinterferome- ternestedwithinanopticalloop(Fig.1).ItusesaQuantumZenoInterrogator(QZI)[18,19,20] Fig. 1. A schematic of the compact OAM spectrometer. The Quantum Zeno Interroga- tor (shaded region) distinguishes betweenzero andnonzero OAM states.Theouter loop decreasestheOAMvalueoflightbyoneperroundtrip.Allthebeamsplittersarepolariz- ingbeamsplitters(PBSs)thattransmitshorizontallypolarizedlightandreflectsvertically polarizedlight.TheOAMfiltertransmitsstateswithzeroOAM,butblocksstateswithnon- zeroOAM.S0andS1areswitchingmirrorsthateithertransmitsorreflectsincidentlight [21].R1andR2arefixedpolarizationrotators,whichcanbehalfwaveplates.P1andP2 arefastpolarizationswitches,suchasPockelscells.Whenactivated,P1andP2switches horizontalpolarizationtoverticalandviceversa.Whende-activated,theyaretransparent to light. The shaded region is a Quantum Zeno Interrogator [20] which separates OAM componentswithl=0andl=0intodifferentpolarizations.HenceatPBS3,zeroOAM 6 component issenttothedetectorwhilethenone-zeroOAMcomponent issentbackinto theouter-loop.TheouterloopdecreasedOAMbyoneperroundtripvia,forexample,a vortexphaseplate(VPP)[22]. (shadedregioninFig.1)toperformcounterfactualmeasurementsontheOAMstate,andthus mapsdifferentOAMcomponentsofanarbitraryinputlightpulseintodifferenttimebinsatthe output.ItcanachieveveryhighextinctionratiosbetweendifferentOAMstatesandcanwork forarbitrarilyhighOAMorderslimitedmainlybyopticallosses. We illustrate now how the spectrometer works by tracing, as an example, a horizontally polarized input pulse with an OAM value l = l 0, noted as y (0) = H,l . The input 0 0 ≥ | i | i pulse first transmits through optical switches S0 and S1 [21], and enters the QZI. The po- larizationrotatorR1rotatesitspolarizationbyD q =p /(2N),andthestatebecomes y (0) = | 1 i cos p H,l +sin p V,l . If l = 0, the horizontal and vertical components of y (0) 2N | 0i 2N | 0i | 1 i passes throughthe lower andupper armsof the interferometer,respectively.Theyrecombine (cid:0) (cid:1) (cid:0) (cid:1) into the same state y (0) at the polarizing beam splitter PBS2 (neglecting an overall phase | 1 i factor).S1isswitchedtobereflectiveattheendofthefirstQZIloop,andthecombinedbeam continuestoloopintheQZI.ThepolarizationisrotatedbyD q =p /(2N)eachloop.AfterN loops,thelightbecomesverticallypolarizedandentersonlytheupperpathoftheinterferom- eter. At this point, the polarization switch P1 is activated and switches the polarization into horizontal.HencethelighttransmitsthroughbothPBS2andPBS3,andarrivesatthedetector attimeT . 0 If l =0, however, the vertical component is sent to the upper path at PBS1, and is then 0 6 blockedbytheOAMfilter.OnlythehorizontalcomponentemergesafterPBS2,thestatecol- lapsesinto H,l withaprobabilitycos2 p .AfterNloops,afractionp=cos(p /(2N))2N of | 0i 2N thelightremainsinthehorizontalpolarizationinthelowerarmoftheinterferometer,whilea (cid:0) (cid:1) (babilitya) 111000--042 æìàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòôOAæìçàòôMæìçàòô æìçàòô ìæçàòô æìçàòô æìçàòô æìçàòô (babilityb) 111000--042 æìàò æìçàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòôOAæìçàòôMæìçàòô æìçàòô æìçàòô æìçàòô æìçàòô æìçàòô o o ô Pr 10-6 ç 0 2 4 6 8 10 Pr 10-6 0 2 4 6 8 10 æ à ì ò ô ç ç æ à ì ò ô ç 10-8 10-8 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 Number of Loops HNL Number of Loops HNL Fig. 2. The probability of detecting the correct OAM value as a function of the number of loops(N)intheQZIusingaperfect OAMfilter.(a)Neglect opticalloss.(b) Assume a 2=0.96basedoncommerciallyavailableoptics.Whenopticallossisincluded,there | | exists an optimal N for higher order OAM states, due to the compromise between the quantumZenoenhancementandopticalloss. fraction1 pofthelightislost(blockedbyOAMfilter).Atthispoint,thepolarizationswitch − P2 is activated and switches the polarization to vertical, and the light reflects off both PBS2 andPBS3,andenterstheouterloop.Bythistime,S0isswitchedtobereflective.Asthelight cycles in the outer loop, the polarization in rotated back to horizontal by R2, and the OAM value is decreased by D l =1 per cycle by a vortex phase plate (VPP) [22]. After l cycles, 0 l=0.WhenthelightenterstheQZIagain,itwillexitthespectrometertothedetector,atatime T(l )=T +l (NL +L )/c. Here L and L are the optical path lengths of the QZI 0 0 0 QZI out QZI out loop(fromS1toPBS2backtoS1)andtheouter-loop(fromS1toPBS2,toPBS3,toS0,back toS1).ThedetectedfractionofthelightintensityisP(l0)=pl0 =cos 2pN 2Nl0. Inshort,theOAMspectrometersortsdifferentOAMcomponentsintodifferenttimeintervals separated by D T = (NL +L )/c with a perfect extinction ratio.(cid:0)Th(cid:1)e total transmission QZI out efficiencyofthespectrometerisP(l )forthecomponentwithOAMofl h¯.P(l ) 1foralll 0 0 0 0 asN ¥ duetothequantumZenoeffect[23],asshownintheFig.2(a). → → In practice, optical components introduce loss. Assuming high quality, but commercially available optical components, we estimate a round trip transmission of a 2 0.96 [24] per cycle for both the outer loop (a ), the QZI loop (a ) and initial| a|nd∼final optics out QZI (a ).HencethetotaltransmissionefficiencyoftheOAMspectrometerbecomesP(l ) init,final 0 ≈ a (2N+2)(l0+1)cos 2pN 2Nl0 forthe l0-thorderOAM component.We plotinFig. 2(b)theP(l0) vs.N forOAMcomponentsl =0 10.WithincreasingN,thequantumZenoeffectleadsto 0 (cid:0) (cid:1) − anincreaseinP(l ),whilelossleadstoadecreaseinP(l ).Asaresult,anoptimalN isfound 0 0 atabout7 8forhighorderOAMcomponents.Notethattheextinctionratiobetweendifferent − OAMstatesremainsinfiniteeveninthepresenceofloss.Crosstalkwouldonlytakeplacewhen theOAMfilterisnotcompletelyopaquetononzeroOAMstates. To take into account imperfect OAM filters, we derive below the general expression for thetransmissionefficiencyandextinctionratio,withfiniteN andopticalloss.Weconsiderthe OAMfilterhavingacomplextransmissioncoefficient T(l)eif (l)forthelthOAMcomponent. Ifthestate y = H,l enterstheQZI,afterN cycles,itexitstheQZIloopinapolarization 0 | i | i p superpositionstate p H +p V [25],where p and p aregivenby: H V H V | i | i p p N p 1 0 cos sin 1 (cid:18) pHV (cid:19)=a QNZI(cid:20)(cid:18) 0 T(l)eif (l) (cid:19)(cid:18) sin(cid:0)22pNN(cid:1) −co(cid:0)s2N2pN(cid:1) (cid:19)(cid:21) (cid:18) 0 (cid:19). (1) p (cid:0) (cid:1) (cid:0) (cid:1) 1.000 (b) (a) 0.500 y 0.100 bilit 0.050 a b o 0.010 Pr 0.005 0.001 0.0 0.2 0.4 0.6 0.8 1.0 Transmission Fig.3.TheprobabilitiesofdifferentoutcomesofaQZIinterrogationasafunctionofthe transmissionoftheOAMfilter,neglectingopticalloss.Thebluesolidlinerepresentsde- tectingOAM=0,thereddashedlineisdetectingOAM=0,andtheorangedottedline,loss. 6 (a)N=8.(b)N=2 10. − Thepulsere-enterstheouterloopatPBS3withprobability p 2,correspondingtoasuccessful H interrogationbythe QZI (if l =0).With probably p 2,|the|pulse exitstowardthe detector, 0 V correspondingto an error(if l6 =0). The total loss|of t|his QZI interrogationis loss2 =1 0 6 | | − p 2 p 2.Intheouterloop,theOAMvalueofthepulseisloweredby1viatheVPP,and H V t|he|int−en|sity| ofthepulseisreducedbya factor a 2 perloop.Therefore,theprobabilityof out | | detectingtheOAMeigenstatel inthelthtimeinterval(or,measuredaswithOAMlh¯)isgiven 0 by: P(l;l )= a 2 p (l l)2 (cid:213) l0 a 2 p (m)2 . (2) 0 init,final V 0 out H | | | − | | | | | m=l0−l+1(cid:0) (cid:1) Andwedefinetheextinctionratioh as: h (l )=P(l ;l )/(cid:229) P(l;l ). (3) 0 0 0 0 l6=l0 WithanimperfectOAMfilter,lightwithnonzeroOAMhasafiniteprobabilityoftransmit- tingthroughthefilter inverticalpolarizationaftertheNth QZI-loop.Itwillthenbeswitched tohorizontalpolarizationbyP1andexitata timeintervalcorrespondingtocomponentswith alowerOAM.Consequently,theextinctionratioisreduced.Ifthelightistransmittedthrough thefilterbeforetheNthloop,itwillresultsinalargerloss.AnimperfectOAMfiltermayalso partiallyblocklightwithzeroOAM,whichwhichalsoresultsinloss. Figure3(a)shows,perquantumZenointerrogationoflightwithOAMoflh¯,theprobabilities ofthelightexitingtowardthedetector( p 2),re-enteringtheouter-loop( p 2)andbeinglost V H | | | | (1 p 2 p 2). These probabilitiesare plottedas a functionof transmissionT(l,a ) and V H 0 N.−Th|ec|ro−ssi|ng|of p 2 and p 2 separatestheregimeswhentheinterrogationresultismore H V | | | | likely(totherightside)orlesslikely(totheleftside)tobecorrectthanincorrect. AsapracticalexampleofanimperfectOAMfilter,weconsiderapinholespatialfilter.Light with OAM of lh¯ =0 has zero intensity at the center of the beam, while light without OAM 6 hasmaximumintensityatthecenter.Henceaverysimplepinholeefficientlydistinguisheslight with and without OAM. The intensity distribution of a Laguerre-Gaussian beam, a paraxial beampossessingOAMlh¯,isgivenby[1]: I √2r |l| 2r r2 ILG(l;r )= 0¥ duu|l|e0−uLl(u) w0 ! L|l|(cid:18)w20(cid:19)e−w20 (4) || R 1.000 1æ (a) 0.500 (b) æ æ 10-4 æ mission 00..015000 mission 10-8 æ æ æ ans 0.010 0 ans 10-12 æ æ Tr 0.005 12 Tr 10-16 æ æ 3 0.001 10-20 0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5 6 7 8 9 10 ApertureSizeHa0L OAMHlL Fig.4.Transmissionofthepinholespatialfilter(a)asafunctionofthenormalizedaperture sizea0,forOAMcomponentswithl0=0 3and(b)asafunctionofl0witha0=0.8. − 500 107 (a) |a|2 (b) 450 1.00 106 400 0.96 )350 0.95* )105 h 0.90 h ( ( atio300 atio104 R R 250 n n ctio200 ctio103 n n Exti150 Exti102 100 101 Dl 50 1 2 3 0 100 5 10 15 20 25 30 0.4 0.6 0.8 1 Number of Loops (N) Aperture Size (a ) 0 Fig. 5. (a) Extinction ratio h as a function of the number of loops N for various losses a 2.Solidsymbolsareforl0=1andopensymbolsareforl0=3.l0>3areessentially | | indistinguishablefroml0=3.Forthel0=0case,theextinctionratioisovera1000forall a 2valuesbecausenoprematuremeasurementsarepossible.Theadditionalgreencrosses |lab|eled as a 2=0.95 represents a 2=0.96 but including misalignment of the OAM ∗ filterandV|PP|asdiscussedinthetex|t.(|b)Extinctionratioh asafunctionofthenormalized aperture size a0 for l0=6, D l =1 3, N =8, and a 2 =0.96. Skipping OAM states − | | increasestheextinctionratiobyordersofmagnitude. WhereL(x)isthelthorderLaguerrePolynomial.ThusthetransmissionT(l)throughapinhole l witharadiusa (normalizedbythewaistofthel =0Gaussianbeam)is: 0 0 T(l,a )= a0 2p r dr df I (l;r ) ¥ 2p r dr df I (l;r ) (5) 0 LG LG 0 0 0 0 Z Z (cid:30)Z Z Figure 4(a) shows T(l,a ) vs. a for l =0 3. The transmission decreases sharply with 0 0 − increasinglwhena issmallerthan 0.8.Choosinga =0.8,weshowinFig.4(b)thenearly 0 0 ∼ exponentialdecreaseofT(l,a )withl.Thesevaluesarealsomarkedbytheredverticallines 0 inFig.3(a).DuetothefastdecreaseofT(l,a )froml=0tol 1,alargeextinctionratiois 0 ≥ 100 (a) 100 (b) 10-2 10-3 y ability1100-05 8910 10-6 Probabilit 10-4 Prob10-10 67 10-9 10-6 10-15 45 l0 10-12 OAM 0 3 1 0 2 4 6 8 10 2 3 4 5 6 12 10-15 10-8 2 4 6 8 10 12 14 16 l 7 8 0 Number of Loops (N) 9 10 Fig.6.(a)TheprobabilityofmeasuringanOAMvaluel foragiveninputstatel (Equa- 0 tion 2), using pinhole as the OAM filter, N =8, a 2=0.96, and misalignment of 10% | | and1%,respectively,atthepinholefilterandVPP.Despitethedecreaseinprobabilityfor thediagonal elementsatlargel ,theoff diagonal elementsdecreasemuch faster,asim- 0 pliedbythelargeextinctionratios.(b)Thediagonalelementsof(a)asafunctionofNfor l0=0 10. − readilyachieved,whichisverywellapproximatedby: h (l0)=P(l0;l0)/(cid:229) P(l6=l0;l0)≈ a out|pVp(V0)(|12)|p2H(1)|2. (6) | | h is essentially the same for all OAM components,and it is mainly determinedby how well theQZIcandistinguishbetweenstateswithOAMvaluesl =0andl =1.WeplotinFig.5(a) 0 0 h vs.N for a 2=0.9 1.Ingeneral,h increaseswithN butdecreaseswith a 2,resultingin anoptimalN| f|oreach−a 2 <1.Evenfor a 2=0.9,h >70canbereached|wi|thN =7.For a 2=0.96,h peaksat| |180. | | | | ∼ An additional source of error is due to the misalignment of the beam through two OAM- sensitivecomponents:theOAMfilter(e.g.apinhole)andtheVPP.Misalignmentatthepinhole filter leads to reduced coupling efficiency of the zero OAM state, increased transmission of non-zeroOAMstates,andthusreducedextinctionratio.MisalignmentontheVPPchangesthe desiredOAMstateintoasuperpositionwithneighboringOAMorders.However,theseneigh- boringordershaveverysmallamplitudes(e.g.<1%with1%misalignment)[4],andtheyare furtherfilteredoutthroughtheQZIloop,resultinginnegligiblereductionintheextinctionratio. ThemaineffectofmisalignmentatVPPistheslightlyreducedtransmissionofthecorrectOAM state,hencereducedoveralldetectionprobability.Weillustratetheeffectsofmisalignmenton theextinctionratioinFig.5(a)(thegreencrosses),assumingconservatively10%misalignment ofthefocusedbeamwaistatthepinholeand1%misalignmentofthecollimatedbeamwaistat theVPP.Extinctionratiosover100arestillreadilyachieved. Theextinctionratiocanbeincreasedbymanyordersofmagnitudeifweonlyneedtomea- sure every other order, or every third order of OAM (Figure 5(b)). Correspondingly,we can choose smaller aperture sizes and a VPP that reduces the l by D l = 2 or 3 per passing. A smaller aperture size also introduces extra loss, but only in the final QZI on the zero OAM state,andthusonlydecreasesthedetectionprobabilitybyaboutafactoroftwo. To evaluatetheoverallperformanceofthe OAM spectrometer,we plotinFig. 6(a)P(l;l ) 0 vs.l andl onthelogscale,includinglossandmisalignment.ThediagonalelementsP(l ;l ) 0 0 0 correspondtocorrectlydetectinganOAMcomponent.Theyaretwoordersofmagnitudehigher than neighboring off diagonal elements, consistent with the high extinction ratios calculated before.InFig.6(b),weshowP(l ;l )asafunctionofNfordifferentl .N 8givesthehighest 0 0 0 ∼ probability for detecting high order OAM components, while still maintaining an extinction ratioofabove100. Insummary,wepresentacompactOAMspectrometerthatdisperseslightofdifferentOAM valuesintime.LossissignificantforhighorderOAMcomponentswithcommerciallyavailable optical components. However, the high loss doesn’t have an appreciable effect on the signal to noise ratio; extinction ratios of >100 are readily achieved even after taking into account opticallossandmisalignments.Theextinctionratiocanbefurtherimprovedbymanyordersof magnitudebyskippingOAMorders,orbyusingabetterOAMfilterthanasimplepinhole.