ebook img

A Class of Infinitely Divisible Multivariate and Matrix Gamma Distributions and Cone-valued Generalised Gamma Convolutions PDF

0.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Class of Infinitely Divisible Multivariate and Matrix Gamma Distributions and Cone-valued Generalised Gamma Convolutions

A Class of Infinitely Divisible Multivariate and Matrix Gamma Distributions and Cone-valued Generalised Gamma Convolutions Victor Pérez-Abreu∗ Robert Stelzer† 2 1 Abstract 0 ClassesofmultivariateandconevaluedinfinitelydivisibleGammadistributionsare 2 introduced. Particularemphasisisputonthecone-valuedcase,duetotherelevance n of infinitely divisible distributions on the positive semi-definite matrices in applica- a J tions. Thecone-valuedclassofgeneralisedGammaconvolutionsisstudied. Inpartic- ular,acharacterisationintermsofanItô-Wienerintegralwithrespecttoaninfinitely 6 divisiblerandommeasureassociatedtothejumpsofaLévyprocessisestablished. ] AnewexampleofaninfinitelydivisiblepositivedefiniteGammarandommatrixis R introduced. Ithaspropertieswhichmakeitappealingformodellingunderaninfinite P divisibility framework. An interesting relation of the moments of the Lévy measure h. andtheWishartdistributionishighlightedwhichwesupposetobeimportantwhen t consideringthelimitingdistributionoftheeigenvalues. a m Keywords: infinitedivisibility;randommatrix;conevalueddistribution;Lévyprocess;matrix [ subordinator. 1 AMS2010SubjectClassification: Primary60E07;60G51,Secondary60B20;60G60. v 1 6 1 Introduction 4 1 TheclassicalexamplesofmultivariateandmatrixGammadistributionsintheprob- . 1 ability and statistics literature are not necessarily infinitely divisible [14], [19], [40]. 0 These examples are analogous to one-dimensional Gamma distributions and are ob- 2 tained by a direct generalisation of the one-dimensional probability densities; see for 1 : example [15], [23], [24]. Working in the domain of Fourier transforms, some infinitely v divisible matrix Gamma distributions have recently been considered in [5], [27]. Their i X Lévy measures are direct generalisations of the one-dimensional Gamma distribution. r The work of [27] arose in the context of random matrix models relating classical and a freeinfinitelydivisibledistributions. The study of infinitely divisible random elements in cones has been considered in [4], [25], [26], [31]andreferencestherein. Theyareimportantintheconstructionand modelingofconeincreasingLévyprocesses. Intheparticularcaseofinfinitelydivisible positive-definite random matrices, their importance in applications has been recently highlighted in [7], [8], [28] and [29]. This is due to the fact that infinite divisibility allowsmodellingbymatrixLévyandOrnstein-Uhlenbeckprocesses,whichareinthose ∗DepartmentofProbabilityandStatistics,CenterforResearchinMathematicsCIMAT,Apdo. Postal402, Guanajuato,Gto.36000México,Email: [email protected] †InstituteofMathematicalFinance,UlmUniversity,Helmholtzstraße18,D-89069Ulm,Germany. Email: [email protected],http://www.uni-ulm.de/mawi/finmath 2 InfinitelyDivisibleMultivariateGammaDistributions papersusedtomodelthetimedynamicsofad×dcovariancematrixtoobtainaso-called stochasticvolatilitymodel(forobservedseriesoffinancialdata). GeneralizedGammaConvolutions(GGC)isarichandinterestingclassofone-dimen- sional infinitely divisible distributions on the cone R+ = [0,∞). It is the smallest class ofinfinitelydivisibledistributionsonR+ thatcontainsallGammadistributionsandthat isclosedunderclassicalconvolutionandweakconvergence. Thisclasswasintroduced byO.Thorinin aseriesofpapersandfurtherstudiedbyL.Bondessoninhisbook[10]. The book of Steutel and Van Harn [39] contains also many results and examples about GGC.SeveralwellknownandimportantdistributionsonR+areGGC.Therecentsurvey paper by James, Roynette and Yor [16] contains a number of classical results and old andnewexamplesofGGC.ThemultivariatecasewasconsideredinBarndorff-Nielsen, MaejimaandSato[3]. There are three main purposes in this paper. We formulate and study multivariate and cone valued Gamma distributions which are infinitely divisible. Second, we con- sider and characterise the corresponding class GGC(K) of Generalised Gamma Con- volutions on a finite dimensional cone K. Finally, we introduce a new example of a positive definite random matrix with infinitely divisible Gamma distribution and with explicitLévymeasure. The main results and organisation of the paper are as follows. Section 2 briefly presents preliminaries on notation and results about one-dimensional GGC on R+ as wellassomematrixnotation. Section3introducesaclassofinfinitelydivisibled-variate GammadistributionsΓd(α,β),whoseLévymeasuresareanalogoustotheLévymeasure oftheone-dimensionalGammadistribution. Theparametersαandβ aremeasuresand functions on S (the unit sphere with respect to a prescribed norm), respectively. It is shown that the distribution does not depend on the particular norm under consider- ation. The characteristic function is derived and it is shown that the Fourier-Laplace transformonCd existsifβ isboundedawayfromzeroα−almosteverywhere. Further- more,thefinitenessofmomentsofallordersisstudiedandsomeinterestingexamples exhibitingessentialdifferencestounivariateGammadistributionsaregiven. Section4considersconevaluedGammadistributionsandtheircorrespondingclass GGC(K)ofGeneralisedGammaConvolutionsonaconeK,definedasthesmallestclass ofdistributionsonK whichisclosedunderconvolutionandweakconvergenceandcon- tains all the so-called elementary Gamma variables in K (and also all Gamma random variablesinK inournewdefinition). Thisclassischaracterisedasthestochasticinte- gralofanon-randomfunctionwithrespecttothePoissonrandommeasureofthejumps ofaGammaLévyprocessonthecone. Thisisanewrepresentationinthemultivariate case extending the Wiener-Gamma integral characterization of one-dimensional GGC onR+ =[0,∞),asconsidered,forexample,in[16]. Section 5 considers the special cone valued case of infinitely divisible positive- semidefinite d×d matrix Gamma distributions. New examples are introduced via an explicitformoftheirLévymeasure. Theyincludeasparticularcasestheexamplescon- sideredin[5],[27]. Adetailedstudyisdoneofthenewtwoparameterpositivedefinite matrix distribution AΓ(η,Σ), where η > (d−1)/2 and Σ is a d×d positive definite ma- trix. This special infinitely divisible Gamma matrix distribution has several modeling featuressimilartotheclassical(butnon-infinitelydivisible)matrixGammadistribution definedthroughadensity,inparticulartheWishartdistribution. Namely,momentsofall ordersexist,thematrixmeanisproportionaltoΣandthematrixofcovariancesequals the second moment of the Wishart distribution. When Σ is the d×d identity matrix Id, the distribution is invariant under orthogonal conjugations and the trace of a ran- dom matrix M with distribution AΓ(η,Id) has a one-dimensional Gamma distribution. InfinitelyDivisibleMultivariateGammaDistributions 3 A relation of the moments of the Marchenko-Pastur distribution with the asymptotic momentsoftheLévymeasureisexhibited. Hence,thismatrixGammadistributionhas a special role when dealing with a random covariance matrix and its time dynamics, e.g. byspecifyingitasamatrixLévyorOrnstein-Uhlenbeckprocess. Asanapplication, thematrixNormal-Gammadistributionisintroduced,whichisamatrixextensionofthe one-dimensionalvarianceGammadistributionof[22]whichispopularinfinance. 2 Preliminaries For the general background in infinitely divisible distributions and Lévy processes werefertothestandardreferences,e.g. [36]. 2.1 One-dimensional GGC ApositiverandomvariableY withlawµ=L(Y)belongstotheclassofGeneralised Gamma Convolutions (GGC) on R+ = [0,∞), denoted by T(R+), if and only if there existsapositiveRadonmeasureυµ on(0,∞)anda>0suchthatitsLaplacetransform isgivenby: (cid:18) (cid:90) ∞ (cid:16) z(cid:17) (cid:19) Lµ(z)=Ee−zY =exp −az− ln 1+ s υµ(ds) (2.1) 0 with (cid:90) 1 (cid:90) ∞ υ (dx) |logx|υµ(dx)<∞, µx <∞. (2.2) 0 1 For convenience we shall work without the translation term, i.e. with a = 0. The mea- sure υµ is called the Thorin measure of µ. Its Lévy measure is concentrated on (0,∞) andissuchthat: νµ(dx)=x−1lµ(x)dx, (2.3) wherelµ isacompletelymonotonefunctioninx>0givenby (cid:90) ∞ lµ(dx)= e−xsυµ(ds). (2.4) 0 The class T(R+) can be characterized by Wiener-Gamma representations. Specif- ically, a positive random variable Y belongs to T(R+) if and only if there is a Borel functionh:R+ →R+ with (cid:90) ∞ ln(1+h(t))dt<∞, (2.5) 0 suchthatY =L Yh hastheWiener-Gammaintegralrepresentation (cid:90) ∞ Yh =L h(u)dγu, (2.6) 0 where(γt;t≥0)isthestandardGammaprocesswithLévymeasureν(dx)=e−xdxx.The relation between the Thorin function h and the Thorin measure υµ is as follows: υµ is the image of the Lebesgue measure on (0,∞) under the application : s → 1/h(s). That is, (cid:90) ∞ (cid:90) ∞ e−h(xs)ds= e−xzυµ(dz), x>0. (2.7) 0 0 Ontheotherhand,ifFυµ(x)=(cid:82)0xυµ(dy)forx≥0andFυ−µ1(s)isthetherightcontinuous generalised inverse of Fυµ(s), that is Fυ−µ1(s) = inf{t > 0;Fυµ(t) ≥ s} for s ≥ 0, then, h(s)=1/F−1(s)fors≥0. υµ 4 InfinitelyDivisibleMultivariateGammaDistributions ManywellknowndistributionsbelongtoT(R+). Thepositiveα-stabledistributions, 0 < α < 1, are GGC with h(s) = {sθΓ(α + 1)}−α1 for a θ > 0. In particular, for the 1/2−stable distribution, h(s) = 4(cid:0)s2π(cid:1)−1. Beta distribution of the second kind, lognor- malandParetoarealsoGGC,see[16]. FormoredetailsonunivariateGGCswereferto[10,16] 2.2 Notation Md(R) is the linear space of d×d matrices with real entries and Sd its subspace of symmetric matrices. By S+d and S+d we denote the open (in Sd) and closed cones of positive and nonnegative definite matrices in Md(R). SRd,(cid:107)·(cid:107) is the unit sphere on Rd withrespecttothenorm(cid:107)·(cid:107). TheFouriertransformµ(cid:98)ofameasureµonM=Rd orM=Md(R)isgivenby (cid:90) µˆ(z)= ei(cid:104)z,x(cid:105)µ(dx) z ∈M M where we use (cid:104)A,B(cid:105) = tr(A(cid:62)B) as the scalar product in the matrix case, where A(cid:62) denotes the transposed on Md(R). By Id we denote the d×d identity matrix and by |A| the determinant of a square matrix A. For a matrix A in the linear group GLd(R) we writeA−(cid:62) =(cid:0)A(cid:62)(cid:1)−1. Wesaythatthedistributionofasymmetricrandomd×dmatrixM isinvariantunder orthogonal conjugations if the distribution of OMO(cid:62) equals the distribution of M for any non-random matrix O in the orthogonal group O(d). Note that M → OMO(cid:62) with O ∈O(d)arealllinearorthogonalmapsonS+d (orMd)preservingS+d. 3 Multivariate Gamma Distributions 3.1 Definition Definition 3.1.Let µ be an infinitely divisible probability distribution on Rd. If there existsafinitemeasureαontheunitsphereSRd,(cid:107)·(cid:107)withrespecttothenorm(cid:107)·(cid:107)equipped withtheBorelσ-algebraandaBorel-measurablefunctionβ :SRd,(cid:107)·(cid:107) →R+ suchthat (cid:32) (cid:33) (cid:90) (cid:90) (cid:16) (cid:17)e−β(v)r µˆ(z)=exp eirv(cid:62)z−1 drα(dv) (3.1) r SRd,(cid:107)·(cid:107) R+ for all z ∈ Rd, then µ is called a d-dimensional Gamma distribution with parameters α andβ,abbreviatedΓd(α,β)-distribution. Ifβ isconstant,wecallµa (cid:107)·(cid:107)-homogeneousΓd(α,β)-distribution. Observe that the notation Γd(α,β) implicitly also specifies which norm we use, be- cause α is a measure on the unit sphere with respect to the norm employed and β is a function on it. The parameters α and β play a comparable role as shape and scale parametersasintheusualpositiveunivariatecase. Remark 3.2.(i)ObviouslytheLévymeasureνµ ofµisgivenby (cid:90) (cid:90) e−β(v)r νµ(E)= 1E(rv) r drα(dv) (3.2) SRd,(cid:107)·(cid:107) R+ forallE ∈B(Rd). Thisexpressionisequivalentto e−β(x/(cid:107)x(cid:107))(cid:107)x(cid:107) νµ(dx)= (cid:107)x(cid:107) α(cid:101)(dx), x∈Rd (3.3) InfinitelyDivisibleMultivariateGammaDistributions 5 whereα(cid:101) isameasureonRd givenby (cid:90) (cid:90) ∞ α(cid:101)(E)= 1E(rv)drα(dv), E ∈B(Rd). (3.4) SRd,(cid:107)·(cid:107) 0 (ii) Likewise we define Md(R) and Sd-valued Gamma distributions with parameters αandβ (abbreviatedΓMd(α,β)andΓSd(α,β),respectively)byreplacingRd withMd(R) and Sd, respectively, and the Euclidean scalar product with (cid:104)Z,X(cid:105) =tr(X(cid:62)Z). All up- comingresultsimmediatelygeneralisetothismatrix-variatesetting. Weprovidefurther detailsinSection5. If d = 1 and α({−1}) = 0, then we have the usual one-dimensional Γ(α({1}),β(1))- distribution. In general it is elementary to see that for d = 1 a random variable X ∼ D Γ1(α,β)ifandonlyifX =X1−X2withX1 ∼Γ(α({1}),β(1))andX2 ∼Γ(α({−1},β(−1)) being two independent usual Gamma random variables, i.e. X has a bilateral Gamma distribution as analysed in [17, 18] and introduced in [11, 22] under the name vari- ance Gamma distribution. If α({1}) = α({−1}) and β(1) = β(−1), it indeed can be represented as the variance mixture of a normal random variable with an independent positiveGammaone(acomprehensivesummaryofthiscasecanbefoundin[39]where itiscalledsym-Gammadistribution). Nowweaddressthequestionofwhichα,β wecantaketoobtainaGammadistribu- tion. Proposition 3.3.Let α be a finite measure on SRd,(cid:107)·(cid:107) and β : SRd,(cid:107)·(cid:107) → R+ a measur- able function. Then (3.2) defines a Lévy measure νµ and thus there exists a Γd(α,β) probabilitydistributionµifandonlyif (cid:90) (cid:18) 1 (cid:19) ln 1+ α(dv)<∞. (3.5) β(v) SRd,(cid:107)·(cid:107) (cid:82) Moreover, Rd((cid:107)x(cid:107)∧1)νµ(dx)<∞holdstrue. The condition (3.5) is trivially satisfied, if β is bounded away from zero α-almost everywhere. Proof. (cid:90) (cid:90) (cid:90) 1 (cid:90) 1−e−β(v) (cid:107)x(cid:107)ν (dx)= e−β(v)rdrα(dv)= α(dv) µ β(v) (cid:107)x(cid:107)≤1 SRd,(cid:107)·(cid:107) 0 SRd,(cid:107)·(cid:107) ≤α(S )<∞ Rd,(cid:107)·(cid:107) using the elementary inequality 1 − e−x ≤ x,for each x ∈ R+. Denoting by E1 the exponentialintegralfunctiongivenbyE1(z)=(cid:82)z∞ e−ttdtforz ∈R+,weget (cid:90) (cid:90) (cid:90) ∞ e−β(v)r (cid:90) νµ(dx)= r drα(dv)= E1(β(v))α(dv) (3.6) (cid:107)x(cid:107)>1 SRd,(cid:107)·(cid:107) 1 SRd,(cid:107)·(cid:107) (cid:90) ∞ = E1(z)τ(dz), (3.7) 0 where we made the substitution z = β(v) and τ(E) = α(β−1(E)) for all Borel sets E in R+. Sinceτ isafinitemeasureand0≤E1(z)≤e−zln(1+1/z)∀z ∈R+(see[1,p. 229]), (cid:90) ∞ E (z)τ(dz)<∞. 1 1/2 6 InfinitelyDivisibleMultivariateGammaDistributions The series representation E1(z) = −γ − ln(z) − (cid:80)∞i=1 (−n1·)ni!zi with γ being the Euler- Mascheroniconstant([1,p. 229])impliesthatlimz↓0E1(z)/(−ln(z))=1. Hence, (cid:90) 1/2 (cid:90) 1/2 (cid:90) 1/2 E (z)τ(dz)<∞⇔ |ln(z)|τ(dz)<∞⇔ ln(1+1/z)τ(dz)<∞ 1 0 0 0 using ln(1+1/z) = ln(1+z)−ln(z) and the finiteness of τ in the second equivalence. Appealingtothefinitenessofτ oncemore,theaboveconditionsareequivalentto (cid:90) ∞ (cid:90) ln(1+1/z)τ(dz)= ln(1+1/β(v))α(dv)<∞. 0 SRd,(cid:107)·(cid:107) The next proposition shows that the definition of a Gamma distribution does not dependonthenorm,onlytheparametrisationchangeswhenusingdifferentnorms. Proposition3.4.Let(cid:107)·(cid:107)abeanormonRdandµbeaΓd(α,β)distributionwithαbeing a finite measure on SRd,(cid:107)·(cid:107)a and β : SRd,(cid:107)·(cid:107)a → R+ measurable. If (cid:107)·(cid:107)b is another norm on Rd, then µ is a Γd(αb,βb) distribution with αb being a finite measure on SRd,(cid:107)·(cid:107)b and βb :SRd,(cid:107)·(cid:107)b →R+ measurable. Moreover,itholdsthat (cid:90) (cid:18) v (cid:19) αb(E)= 1E (cid:107)v(cid:107) α(dv) ∀E ∈B(SRd,(cid:107)·(cid:107)b) (3.8) SRd,(cid:107)·(cid:107)a b (cid:18) (cid:19) v βb(vb)=β (cid:107)vb(cid:107) (cid:107)vb(cid:107)a ∀vb ∈SRd,(cid:107)·(cid:107)b. (3.9) b a The above formulae show that the mass in the different directions, which is given byα,doesnotchange,andβ onlyneedstobeadaptedforthescalechangesimpliedby thechangeofthenorm. Proof. Substitutingfirstvb =v/(cid:107)v(cid:107)b andthens=r/(cid:107)vb(cid:107)a gives: (cid:32) (cid:33) (cid:90) (cid:90) (cid:16) (cid:17)e−β(v)r exp eirv(cid:62)z−1 drα(dv) r SRd,(cid:107)·(cid:107)a R+ =exp(cid:90) (cid:90) (cid:16)ei(cid:107)vbr(cid:107)avb(cid:62)z−1(cid:17)e−β(cid:16)(cid:107)rvvbb(cid:107)a(cid:17)rdrαb(dvb) SRd,(cid:107)·(cid:107)b R+ =exp(cid:90) (cid:90) (cid:16)eisvb(cid:62)z−1(cid:17)e−β(cid:16)(cid:107)vvbb(cid:107)sa(cid:17)(cid:107)vb(cid:107)asdsαb(dvb). SRd,(cid:107)·(cid:107)b R+ 3.2 Properties InthissectionwestudyseveralfundamentalpropertiesofourGammadistributions. Proposition 3.5.AnyΓd(α,β)-distributionisself-decomposable. Proof. Thisfollowsimmediatelyfromthedefinitionand[36,Th. 15.10]. Later on we will considerably improve this result by showing that we are in a very special subset of the self-decomposable distributions. This result has important impli- cationsforapplicationswhereonelikestoworkwithdistributionshavingdensities,i.e. distributionswhichareabsolutelycontinuous(withrespecttotheLebesguemeasure). InfinitelyDivisibleMultivariateGammaDistributions 7 Proposition 3.6.Assumethatsuppαisoffulldimension,i.e. thatitcontainsdlinearly independentvectorsinRd. ThentheΓd(α,β)-distributionisabsolutelycontinuous. Proof. Itisimmediatethatthesupportof Γd(α,β)istheclosedconvexconegenerated by suppα. Hence, the support of Γd(α,β) is of full dimension and so the distribution is non-degenerate. Thus[35]concludes. It follows along the same lines that in the degenerate case the Γd(α,β)-distribution is absolutely continuous with respect to the Lebesgue measure on the subspace gen- erated by suppα. If suppα consists of exactly d linearly independent vectors, Γd(α,β) equalsthedistributionofalineartransformationofavectorofdindependentunivariate Gammarandomvariableswithappropriateparametersandthusthedensitycanbecal- culated easily using the density transformation theorem with an invertible linear map. Ifsuppαisafinitesetoffulldimension,onecancalculatethedensityfromthedensityof independent univariate Gamma random variables by using the density transformation theoremwithaninvertiblelinearmapandintegratingoutthenon-relevantdimensions. Ingeneralthedensitycanbedeterminedviasolvingapartialintegro-differentialequa- tion(see[37]). Moreover,criteriaforqualitativepropertiesofthedensitylikecontinuity and continuous differentiability can be deduced from the results of [33, 34], but look- ing at the simple case of a vector of independent univariate Gamma distributions one immediately sees that the sufficient conditions given there are far from being sharp. Thereforewerefrainfromgivingmoredetails. Next we show that our d-dimensional Gamma distribution has the same closedness propertiesregardingscalingandconvolutionastheusualunivariateone. Proposition 3.7.(i)LetX ∼Γd(α,β)andc>0. ThencX ∼Γd(α,β/c). (ii)LetX1 ∼Γd(α1,β)andX2 ∼Γd(α2,β)betwoindependentd-dimensionalGamma variables. ThenX1+X2 ∼Γd(α1+α2,β). Proof. Followsimmediatelyfromconsideringthecharacteristicfunctions. Likewiseitisimmediatetoseethefollowingdistributionalpropertiesoftheinduced Lévyprocess. Proposition 3.8.Let L be a Γd(α,β) Lévy process, i.e. L1 ∼ Γd(α,β). Then Lt ∼ Γd(tα,β)forallt∈R+. Of high importance for applications is that the class of Γd distributions is invariant underinvertiblelineartransformations. Proposition3.9.LetX ∼Γd(α,β)(withrespecttothenorm(cid:107)·(cid:107))andAbeaninvertible d×dmatrix. ThenAX ∼Γd(αA,βA)withrespecttothenorm(cid:107)·(cid:107)A =(cid:107)A−1·(cid:107)and (cid:90) αA(E)= 1E(Av)α(dv) =α(A−1E) ∀E ∈B(SRd,(cid:107)·(cid:107)A) (3.10) SRd,(cid:107)·(cid:107) βA(v)=β(cid:0)A−1v(cid:1) ∀v ∈SRd,(cid:107)·(cid:107)A. (3.11) Proof. Wehaveforallz ∈Rd E(cid:0)ei<z,AX>(cid:1)=(cid:90) ei<z,Ax>µ(dx)=(cid:90) (cid:90) (cid:16)eirv(cid:62)A(cid:62)z−1(cid:17)e−β(v)rdrα(dv) r Rd SRd,(cid:107)·(cid:107) R+ (cid:90) (cid:90) (cid:16) (cid:17)e−β(A−1u)r = eiru(cid:62)z−1 drα(A−1du) r SRd,(cid:107)·(cid:107)A R+ =(cid:90) (cid:90) (cid:16)eiru(cid:62)z−1(cid:17)e−βA(u)rdrα (du) r A SRd,(cid:107)·(cid:107)A R+ 8 InfinitelyDivisibleMultivariateGammaDistributions wherewesubstitutedu=Av. It is easy to see that the above proposition can be extended to m×d matrices of full rank with m > d. Obviously, such a result cannot hold in general for a linear transformation A with ker(A) (cid:54)= {0}, since combinations of one dimensional Gamma distributionsareingeneralnotunivariateGammadistributions. Nextwepresentanalternativerepresentationofthecharacteristicfunction. Proposition 3.10.Let µ be Γd(α,β) distributed. Then the characteristic function is givenby (cid:32)(cid:90) (cid:18) β(v) (cid:19) (cid:33) µˆ(z)=exp ln α(dv) forall z ∈Rd (3.12) β(v)−iv(cid:62)z SRd,(cid:107)·(cid:107) wherelnisthemainbranchofthecomplexlogarithm. Proof. Followsfromthedefinitionandthewellknownfact (cid:90) ∞(cid:16) (cid:17)e−β(v)r (cid:18) β(v) (cid:19) e−r(−iv(cid:62))z−1 dr =ln . r β(v)−iv(cid:62)z 0 Notethatifαhascountablesupport{vj}j∈N,then (cid:32) (cid:33)α({vj}) µˆ(z)= (cid:89) β(vj) . β(v )−iv(cid:62)z j∈N j j We now show that the Fourier-Laplace transform of a Gamma distribution exists if andtoacertainextentonlyifβ isboundedawayfromzeroαalmosteverywhere. Theorem 3.11.(i) The Fourier-Laplace transform µˆ of a Γd(α,β) distribution µ exists for all z in a neighborhood U ⊆ Cd of zero, if β(v) ≥ κ for v ∈ SRd,(cid:107)·(cid:107) α-a.e. with κ > 0. µˆ isanalyticthereandgivenbyformula (3.12). (ii)Ifthereexistsasequence(vn)n∈N inSRd,(cid:107)·(cid:107) withlimn→∞β(vn)=0andα({vn})> 0foralln∈N,thentheFourier-Laplacetransformµˆ existsinnoneighborhoodU ⊆Cd ofzero. Proof. Using Proposition 3.4 we can assume w.l.o.g. that the Euclidean norm (cid:107)·(cid:107)2 is usedforthedefinitionoftheΓd(α,β)distribution. (i) We will now show (i) for U = Bκ(0) ⊆ Cd, where Bκ(0) := {x ∈ Cd : (cid:107)x(cid:107)2 < κ}. FromProposition3.10itisclearthatµˆ(z)existsforallz ∈Bκ(0)⊆Cd,ifandonlyif (cid:90) (cid:18) β(v) (cid:19) (cid:90) (cid:18) iv(cid:62)z(cid:19) ln α(dv)=− ln 1− α(dv) β(v)−iv(cid:62)z β(v) SRd,(cid:107)·|2 SRd,(cid:107)·(cid:107)2 exists for all z ∈ Bκ(0). Consider now an arbitrary δ ∈ (0,1) and z ∈ Bδκ(0). Then the Cauchy-Schwarz inequality implies |iv(cid:62)z| ≤ (cid:107)z(cid:107)2 ≤ δκ and hence |(iv(cid:62)z)/β(v)| ≤ δ. (cid:16) (cid:17) Thereforeln 1− iβv((cid:62)vz) existsandisboundedonBδκ(0)α-a.e. Thisimpliesthat (cid:90) (cid:18) iv(cid:62)z(cid:19) − ln 1− α(dv) β(v) SRd,(cid:107)·(cid:107)2 existsonBδκ(0). Sinceδ ∈(0,1)wasarbitrary,thisconcludestheproofof(i),sincethe analyticityfollowsimmediatelyfromtheappendixof[12]. InfinitelyDivisibleMultivariateGammaDistributions 9 (ii)W.l.o.g. assumeβ(vn)<1/n. Forn∈Nsetzn =−iβ(vn)vn. Then(cid:107)zn(cid:107)2 =β(vn)< 1/nand1−(ivn(cid:62)zn)/β(vn)=0. Hence, (cid:90) (cid:18) iv(cid:62)z (cid:19) ln 1− n α(dv) β(v) {vn} andthereby (cid:90) (cid:18) iv(cid:62)z (cid:19) ln 1− n α(dv) β(v) SRd,(cid:107)·(cid:107)2 do not exist. This implies that µˆ is not defined on B (0). Since n ∈ N was arbitrary, 1/n thisshows(ii). Remark3.12.Toextendthisresulttothematrixcase,onesimplyhastousetheFrobe- nius or trace norms and the scalar product Z,X (cid:55)→ tr(X(cid:62)Z) instead of the Euclidean normandscalarproduct. WeconsiderthisinSection5. Proposition 3.13.A Γd(α,β) distribution µ has a finite moment of order k > 0, i.e. (cid:82) (cid:107)x(cid:107)kµ(dx)<∞,ifandonlyif Rd (cid:90) β(v)−kα(dv)<∞. (3.13) SRd,(cid:107)·(cid:107) Moreover, if m is the mean vector and Σ = (σij)i,j=1,...,d is the covariance matrix of Γ (α,β) d (cid:90) m= β(v)−1vα(dv). (3.14) SRd,(cid:107)·(cid:107) and (cid:90) Σ= β(v)−2vv(cid:62)α(dv) (3.15) SRd,(cid:107)·(cid:107) Proof. If β is bounded away from zero, (3.13) holds trivially and Theorem 3.11 implies that µ has finite moments of all orders k > 0. So w.l.o.g. assume that β is not bounded awayfromzerointhefollowing. By[36,p. 162]µhasafinitemomentoforderk,ifand onlyif (cid:90) (cid:90) ∞ e−β(v)r rk drα(dv)<∞. r SRd,(cid:107)·(cid:107) 1 Substitutings=rβ(v)thisisequivalentto (cid:90) (cid:90) ∞ β(v)−k sk−1e−sdsα(dv)<∞. (3.16) SRd,(cid:107)·(cid:107) β(v) Assumingwithoutlossofgeneralitythatβ(v)≤1forallv ∈SRd,(cid:107)·(cid:107),wehavethat (cid:90) ∞ (cid:90) ∞ 0<C(k):= sk−1e−sds≤ sk−1e−sds≤Γ(k). 1 β(v) Hence, (3.16) is equivalent to (3.13). Finally, (3.14) and (3.15) follow from Example 25.12 in [36] and observing that that the infinitely divisible distribution Γd(α,β) with (cid:82) Fouriertransform(3.1)hasLévytriplet(ζ,0,νµ),whereζ = (cid:107)x(cid:107)≤1xνµ(dx). Corollary 3.14.A (cid:107)·(cid:107)-homogeneous Γd(α,β) distribution has an analytic Fourier-La- placetransforminBβ(0)andfinitemomentsofallorders. 10 InfinitelyDivisibleMultivariateGammaDistributions Hence,anyhomogeneousGammadistributionbehaveslikeonewouldexpectitfrom the univariate case. However, the behaviour in the non-homogeneous case may be drasticallydifferent,asthefollowingexamplesillustrate. Example 3.15.Considerd=2. Letαbeconcentratedon{vn}n∈N with v =(sin(n−1),cos(n−1)) n and set α({vn}) = e−n and β(vn) = 1/n for all n ∈ N. Then by Theorem 3.11 (ii) the Fourier-Laplacetransformexistsinnoneighbourhoodofzero. (cid:82)SRd,(cid:107)·(cid:107)2 β(v)−kα(dv)=(cid:80)n∈Nnke−n isfiniteforallk >0usingthequotientcriterion, because (n+1)ke−(n+1) lim =e−1 <1. n→∞ nke−n Thus,wehavemomentsofallorders,buttheFourier-Laplacetransformexistsinno complexneighbourhoodofzero. Example3.16.Considertheset-upofExample3.15,butsetnowα({vn})=1/n1+m for somerealm>0. (cid:82)SRd,(cid:107)·(cid:107)2 β(v)−kα(dv)=(cid:80)n∈N n1n+km isfiniteifandonlyifk <m. Itiseasytoseethatcondition(3.5)issatisfiedifcondition(3.13)holdsforsomek > 0. Hence, the Γ2(α,β) distribution exists indeed, but only moments of orders smaller thanmarefinite. Example 3.17.Consider again the set-up of Example 3.15. Set now α({vn}) = (ln(1+ n)3(n+1))−1. (cid:16) (cid:17) Then (cid:82)SRd,(cid:107)·(cid:107)2 ln 1+ β(1v) α(dv) = (cid:80)n∈N ln(1+n1)2(1+n) < ∞ (see [32, Theorem 3.29] andthustheΓ2(α,β)distributioniswell-defined. Yet, (cid:82)SRd,(cid:107)·(cid:107)2 β(v)−kα(dv) = (cid:80)n∈N ln(1+nn)k3(1+n) = ∞ for all real k > 0 and so the Γ2(α,β)distributionhasnofinitemomentsofpositiveordersatall. 4 Gamma and Generalised Gamma Convolutions on Cones 4.1 Cone-valued infinitely divisible random elements Wefirstreviewseveralfactsaboutinfinitelydivisibleelementswithvaluesinacone of a finite dimensional Euclidean space B with norm (cid:107)·(cid:107) and inner product (cid:104)·,·(cid:105). A nonempty convex set K of B is said to be a cone if λ ≥ 0 and x ∈ K imply λx ∈ K. A cone is proper if x = 0 whenever xand −xare in K. The dual cone K(cid:48) of K is defined as K(cid:48) = {y ∈B(cid:48) :(cid:104)y,s(cid:105)≥0foreverys∈K}. A proper cone K induces a partial order on B by defining x1 ≤K x2 whenever x2−x1 ∈ K for x1 ∈ B and x2 ∈ B. Examples of properconesareR+,Rd+ =[0,∞)d,S+d andS+d. A random element X in K is infinitely divisible (ID) if and only if for each integer p≥1thereexistpindependentidenticallydistributedrandomelementsX1,...,Xp inK law suchthatX = X1+...+Xp.AprobabilitymeasureµonK isIDifitisthedistribution of an ID element in K. It is known (see [38]) that such a distribution µ is concentrated (cid:82) on a cone K if and only if its Laplace transform Lµ(Θ) = Kexp(−(cid:104)Θ,x(cid:105))µ(dx) is given bytheregularLévy-Khintchinerepresentation (cid:26) (cid:90) (cid:16) (cid:17) (cid:27) Lµ(Θ)=exp −(cid:104)Θ,Ψ0(cid:105)− 1−e−(cid:104)Θ,x(cid:105) νµ(dx) forallΘ∈K(cid:48), (4.1) K whereΨ0 ∈K andtheLévymeasureissuchthatνµ(Kc)=0and (cid:90) ((cid:107)x(cid:107)∧1)νµ(dx)<∞. (4.2) K

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.