A Class of Infinitely Divisible Multivariate and Matrix Gamma Distributions and Cone-valued Generalised Gamma Convolutions Victor Pérez-Abreu∗ Robert Stelzer† 2 1 Abstract 0 ClassesofmultivariateandconevaluedinfinitelydivisibleGammadistributionsare 2 introduced. Particularemphasisisputonthecone-valuedcase,duetotherelevance n of infinitely divisible distributions on the positive semi-definite matrices in applica- a J tions. Thecone-valuedclassofgeneralisedGammaconvolutionsisstudied. Inpartic- ular,acharacterisationintermsofanItô-Wienerintegralwithrespecttoaninfinitely 6 divisiblerandommeasureassociatedtothejumpsofaLévyprocessisestablished. ] AnewexampleofaninfinitelydivisiblepositivedefiniteGammarandommatrixis R introduced. Ithaspropertieswhichmakeitappealingformodellingunderaninfinite P divisibility framework. An interesting relation of the moments of the Lévy measure h. andtheWishartdistributionishighlightedwhichwesupposetobeimportantwhen t consideringthelimitingdistributionoftheeigenvalues. a m Keywords: infinitedivisibility;randommatrix;conevalueddistribution;Lévyprocess;matrix [ subordinator. 1 AMS2010SubjectClassification: Primary60E07;60G51,Secondary60B20;60G60. v 1 6 1 Introduction 4 1 TheclassicalexamplesofmultivariateandmatrixGammadistributionsintheprob- . 1 ability and statistics literature are not necessarily infinitely divisible [14], [19], [40]. 0 These examples are analogous to one-dimensional Gamma distributions and are ob- 2 tained by a direct generalisation of the one-dimensional probability densities; see for 1 : example [15], [23], [24]. Working in the domain of Fourier transforms, some infinitely v divisible matrix Gamma distributions have recently been considered in [5], [27]. Their i X Lévy measures are direct generalisations of the one-dimensional Gamma distribution. r The work of [27] arose in the context of random matrix models relating classical and a freeinfinitelydivisibledistributions. The study of infinitely divisible random elements in cones has been considered in [4], [25], [26], [31]andreferencestherein. Theyareimportantintheconstructionand modelingofconeincreasingLévyprocesses. Intheparticularcaseofinfinitelydivisible positive-definite random matrices, their importance in applications has been recently highlighted in [7], [8], [28] and [29]. This is due to the fact that infinite divisibility allowsmodellingbymatrixLévyandOrnstein-Uhlenbeckprocesses,whichareinthose ∗DepartmentofProbabilityandStatistics,CenterforResearchinMathematicsCIMAT,Apdo. Postal402, Guanajuato,Gto.36000México,Email: [email protected] †InstituteofMathematicalFinance,UlmUniversity,Helmholtzstraße18,D-89069Ulm,Germany. Email: [email protected],http://www.uni-ulm.de/mawi/finmath 2 InfinitelyDivisibleMultivariateGammaDistributions papersusedtomodelthetimedynamicsofad×dcovariancematrixtoobtainaso-called stochasticvolatilitymodel(forobservedseriesoffinancialdata). GeneralizedGammaConvolutions(GGC)isarichandinterestingclassofone-dimen- sional infinitely divisible distributions on the cone R+ = [0,∞). It is the smallest class ofinfinitelydivisibledistributionsonR+ thatcontainsallGammadistributionsandthat isclosedunderclassicalconvolutionandweakconvergence. Thisclasswasintroduced byO.Thorinin aseriesofpapersandfurtherstudiedbyL.Bondessoninhisbook[10]. The book of Steutel and Van Harn [39] contains also many results and examples about GGC.SeveralwellknownandimportantdistributionsonR+areGGC.Therecentsurvey paper by James, Roynette and Yor [16] contains a number of classical results and old andnewexamplesofGGC.ThemultivariatecasewasconsideredinBarndorff-Nielsen, MaejimaandSato[3]. There are three main purposes in this paper. We formulate and study multivariate and cone valued Gamma distributions which are infinitely divisible. Second, we con- sider and characterise the corresponding class GGC(K) of Generalised Gamma Con- volutions on a finite dimensional cone K. Finally, we introduce a new example of a positive definite random matrix with infinitely divisible Gamma distribution and with explicitLévymeasure. The main results and organisation of the paper are as follows. Section 2 briefly presents preliminaries on notation and results about one-dimensional GGC on R+ as wellassomematrixnotation. Section3introducesaclassofinfinitelydivisibled-variate GammadistributionsΓd(α,β),whoseLévymeasuresareanalogoustotheLévymeasure oftheone-dimensionalGammadistribution. Theparametersαandβ aremeasuresand functions on S (the unit sphere with respect to a prescribed norm), respectively. It is shown that the distribution does not depend on the particular norm under consider- ation. The characteristic function is derived and it is shown that the Fourier-Laplace transformonCd existsifβ isboundedawayfromzeroα−almosteverywhere. Further- more,thefinitenessofmomentsofallordersisstudiedandsomeinterestingexamples exhibitingessentialdifferencestounivariateGammadistributionsaregiven. Section4considersconevaluedGammadistributionsandtheircorrespondingclass GGC(K)ofGeneralisedGammaConvolutionsonaconeK,definedasthesmallestclass ofdistributionsonK whichisclosedunderconvolutionandweakconvergenceandcon- tains all the so-called elementary Gamma variables in K (and also all Gamma random variablesinK inournewdefinition). Thisclassischaracterisedasthestochasticinte- gralofanon-randomfunctionwithrespecttothePoissonrandommeasureofthejumps ofaGammaLévyprocessonthecone. Thisisanewrepresentationinthemultivariate case extending the Wiener-Gamma integral characterization of one-dimensional GGC onR+ =[0,∞),asconsidered,forexample,in[16]. Section 5 considers the special cone valued case of infinitely divisible positive- semidefinite d×d matrix Gamma distributions. New examples are introduced via an explicitformoftheirLévymeasure. Theyincludeasparticularcasestheexamplescon- sideredin[5],[27]. Adetailedstudyisdoneofthenewtwoparameterpositivedefinite matrix distribution AΓ(η,Σ), where η > (d−1)/2 and Σ is a d×d positive definite ma- trix. This special infinitely divisible Gamma matrix distribution has several modeling featuressimilartotheclassical(butnon-infinitelydivisible)matrixGammadistribution definedthroughadensity,inparticulartheWishartdistribution. Namely,momentsofall ordersexist,thematrixmeanisproportionaltoΣandthematrixofcovariancesequals the second moment of the Wishart distribution. When Σ is the d×d identity matrix Id, the distribution is invariant under orthogonal conjugations and the trace of a ran- dom matrix M with distribution AΓ(η,Id) has a one-dimensional Gamma distribution. InfinitelyDivisibleMultivariateGammaDistributions 3 A relation of the moments of the Marchenko-Pastur distribution with the asymptotic momentsoftheLévymeasureisexhibited. Hence,thismatrixGammadistributionhas a special role when dealing with a random covariance matrix and its time dynamics, e.g. byspecifyingitasamatrixLévyorOrnstein-Uhlenbeckprocess. Asanapplication, thematrixNormal-Gammadistributionisintroduced,whichisamatrixextensionofthe one-dimensionalvarianceGammadistributionof[22]whichispopularinfinance. 2 Preliminaries For the general background in infinitely divisible distributions and Lévy processes werefertothestandardreferences,e.g. [36]. 2.1 One-dimensional GGC ApositiverandomvariableY withlawµ=L(Y)belongstotheclassofGeneralised Gamma Convolutions (GGC) on R+ = [0,∞), denoted by T(R+), if and only if there existsapositiveRadonmeasureυµ on(0,∞)anda>0suchthatitsLaplacetransform isgivenby: (cid:18) (cid:90) ∞ (cid:16) z(cid:17) (cid:19) Lµ(z)=Ee−zY =exp −az− ln 1+ s υµ(ds) (2.1) 0 with (cid:90) 1 (cid:90) ∞ υ (dx) |logx|υµ(dx)<∞, µx <∞. (2.2) 0 1 For convenience we shall work without the translation term, i.e. with a = 0. The mea- sure υµ is called the Thorin measure of µ. Its Lévy measure is concentrated on (0,∞) andissuchthat: νµ(dx)=x−1lµ(x)dx, (2.3) wherelµ isacompletelymonotonefunctioninx>0givenby (cid:90) ∞ lµ(dx)= e−xsυµ(ds). (2.4) 0 The class T(R+) can be characterized by Wiener-Gamma representations. Specif- ically, a positive random variable Y belongs to T(R+) if and only if there is a Borel functionh:R+ →R+ with (cid:90) ∞ ln(1+h(t))dt<∞, (2.5) 0 suchthatY =L Yh hastheWiener-Gammaintegralrepresentation (cid:90) ∞ Yh =L h(u)dγu, (2.6) 0 where(γt;t≥0)isthestandardGammaprocesswithLévymeasureν(dx)=e−xdxx.The relation between the Thorin function h and the Thorin measure υµ is as follows: υµ is the image of the Lebesgue measure on (0,∞) under the application : s → 1/h(s). That is, (cid:90) ∞ (cid:90) ∞ e−h(xs)ds= e−xzυµ(dz), x>0. (2.7) 0 0 Ontheotherhand,ifFυµ(x)=(cid:82)0xυµ(dy)forx≥0andFυ−µ1(s)isthetherightcontinuous generalised inverse of Fυµ(s), that is Fυ−µ1(s) = inf{t > 0;Fυµ(t) ≥ s} for s ≥ 0, then, h(s)=1/F−1(s)fors≥0. υµ 4 InfinitelyDivisibleMultivariateGammaDistributions ManywellknowndistributionsbelongtoT(R+). Thepositiveα-stabledistributions, 0 < α < 1, are GGC with h(s) = {sθΓ(α + 1)}−α1 for a θ > 0. In particular, for the 1/2−stable distribution, h(s) = 4(cid:0)s2π(cid:1)−1. Beta distribution of the second kind, lognor- malandParetoarealsoGGC,see[16]. FormoredetailsonunivariateGGCswereferto[10,16] 2.2 Notation Md(R) is the linear space of d×d matrices with real entries and Sd its subspace of symmetric matrices. By S+d and S+d we denote the open (in Sd) and closed cones of positive and nonnegative definite matrices in Md(R). SRd,(cid:107)·(cid:107) is the unit sphere on Rd withrespecttothenorm(cid:107)·(cid:107). TheFouriertransformµ(cid:98)ofameasureµonM=Rd orM=Md(R)isgivenby (cid:90) µˆ(z)= ei(cid:104)z,x(cid:105)µ(dx) z ∈M M where we use (cid:104)A,B(cid:105) = tr(A(cid:62)B) as the scalar product in the matrix case, where A(cid:62) denotes the transposed on Md(R). By Id we denote the d×d identity matrix and by |A| the determinant of a square matrix A. For a matrix A in the linear group GLd(R) we writeA−(cid:62) =(cid:0)A(cid:62)(cid:1)−1. Wesaythatthedistributionofasymmetricrandomd×dmatrixM isinvariantunder orthogonal conjugations if the distribution of OMO(cid:62) equals the distribution of M for any non-random matrix O in the orthogonal group O(d). Note that M → OMO(cid:62) with O ∈O(d)arealllinearorthogonalmapsonS+d (orMd)preservingS+d. 3 Multivariate Gamma Distributions 3.1 Definition Definition 3.1.Let µ be an infinitely divisible probability distribution on Rd. If there existsafinitemeasureαontheunitsphereSRd,(cid:107)·(cid:107)withrespecttothenorm(cid:107)·(cid:107)equipped withtheBorelσ-algebraandaBorel-measurablefunctionβ :SRd,(cid:107)·(cid:107) →R+ suchthat (cid:32) (cid:33) (cid:90) (cid:90) (cid:16) (cid:17)e−β(v)r µˆ(z)=exp eirv(cid:62)z−1 drα(dv) (3.1) r SRd,(cid:107)·(cid:107) R+ for all z ∈ Rd, then µ is called a d-dimensional Gamma distribution with parameters α andβ,abbreviatedΓd(α,β)-distribution. Ifβ isconstant,wecallµa (cid:107)·(cid:107)-homogeneousΓd(α,β)-distribution. Observe that the notation Γd(α,β) implicitly also specifies which norm we use, be- cause α is a measure on the unit sphere with respect to the norm employed and β is a function on it. The parameters α and β play a comparable role as shape and scale parametersasintheusualpositiveunivariatecase. Remark 3.2.(i)ObviouslytheLévymeasureνµ ofµisgivenby (cid:90) (cid:90) e−β(v)r νµ(E)= 1E(rv) r drα(dv) (3.2) SRd,(cid:107)·(cid:107) R+ forallE ∈B(Rd). Thisexpressionisequivalentto e−β(x/(cid:107)x(cid:107))(cid:107)x(cid:107) νµ(dx)= (cid:107)x(cid:107) α(cid:101)(dx), x∈Rd (3.3) InfinitelyDivisibleMultivariateGammaDistributions 5 whereα(cid:101) isameasureonRd givenby (cid:90) (cid:90) ∞ α(cid:101)(E)= 1E(rv)drα(dv), E ∈B(Rd). (3.4) SRd,(cid:107)·(cid:107) 0 (ii) Likewise we define Md(R) and Sd-valued Gamma distributions with parameters αandβ (abbreviatedΓMd(α,β)andΓSd(α,β),respectively)byreplacingRd withMd(R) and Sd, respectively, and the Euclidean scalar product with (cid:104)Z,X(cid:105) =tr(X(cid:62)Z). All up- comingresultsimmediatelygeneralisetothismatrix-variatesetting. Weprovidefurther detailsinSection5. If d = 1 and α({−1}) = 0, then we have the usual one-dimensional Γ(α({1}),β(1))- distribution. In general it is elementary to see that for d = 1 a random variable X ∼ D Γ1(α,β)ifandonlyifX =X1−X2withX1 ∼Γ(α({1}),β(1))andX2 ∼Γ(α({−1},β(−1)) being two independent usual Gamma random variables, i.e. X has a bilateral Gamma distribution as analysed in [17, 18] and introduced in [11, 22] under the name vari- ance Gamma distribution. If α({1}) = α({−1}) and β(1) = β(−1), it indeed can be represented as the variance mixture of a normal random variable with an independent positiveGammaone(acomprehensivesummaryofthiscasecanbefoundin[39]where itiscalledsym-Gammadistribution). Nowweaddressthequestionofwhichα,β wecantaketoobtainaGammadistribu- tion. Proposition 3.3.Let α be a finite measure on SRd,(cid:107)·(cid:107) and β : SRd,(cid:107)·(cid:107) → R+ a measur- able function. Then (3.2) defines a Lévy measure νµ and thus there exists a Γd(α,β) probabilitydistributionµifandonlyif (cid:90) (cid:18) 1 (cid:19) ln 1+ α(dv)<∞. (3.5) β(v) SRd,(cid:107)·(cid:107) (cid:82) Moreover, Rd((cid:107)x(cid:107)∧1)νµ(dx)<∞holdstrue. The condition (3.5) is trivially satisfied, if β is bounded away from zero α-almost everywhere. Proof. (cid:90) (cid:90) (cid:90) 1 (cid:90) 1−e−β(v) (cid:107)x(cid:107)ν (dx)= e−β(v)rdrα(dv)= α(dv) µ β(v) (cid:107)x(cid:107)≤1 SRd,(cid:107)·(cid:107) 0 SRd,(cid:107)·(cid:107) ≤α(S )<∞ Rd,(cid:107)·(cid:107) using the elementary inequality 1 − e−x ≤ x,for each x ∈ R+. Denoting by E1 the exponentialintegralfunctiongivenbyE1(z)=(cid:82)z∞ e−ttdtforz ∈R+,weget (cid:90) (cid:90) (cid:90) ∞ e−β(v)r (cid:90) νµ(dx)= r drα(dv)= E1(β(v))α(dv) (3.6) (cid:107)x(cid:107)>1 SRd,(cid:107)·(cid:107) 1 SRd,(cid:107)·(cid:107) (cid:90) ∞ = E1(z)τ(dz), (3.7) 0 where we made the substitution z = β(v) and τ(E) = α(β−1(E)) for all Borel sets E in R+. Sinceτ isafinitemeasureand0≤E1(z)≤e−zln(1+1/z)∀z ∈R+(see[1,p. 229]), (cid:90) ∞ E (z)τ(dz)<∞. 1 1/2 6 InfinitelyDivisibleMultivariateGammaDistributions The series representation E1(z) = −γ − ln(z) − (cid:80)∞i=1 (−n1·)ni!zi with γ being the Euler- Mascheroniconstant([1,p. 229])impliesthatlimz↓0E1(z)/(−ln(z))=1. Hence, (cid:90) 1/2 (cid:90) 1/2 (cid:90) 1/2 E (z)τ(dz)<∞⇔ |ln(z)|τ(dz)<∞⇔ ln(1+1/z)τ(dz)<∞ 1 0 0 0 using ln(1+1/z) = ln(1+z)−ln(z) and the finiteness of τ in the second equivalence. Appealingtothefinitenessofτ oncemore,theaboveconditionsareequivalentto (cid:90) ∞ (cid:90) ln(1+1/z)τ(dz)= ln(1+1/β(v))α(dv)<∞. 0 SRd,(cid:107)·(cid:107) The next proposition shows that the definition of a Gamma distribution does not dependonthenorm,onlytheparametrisationchangeswhenusingdifferentnorms. Proposition3.4.Let(cid:107)·(cid:107)abeanormonRdandµbeaΓd(α,β)distributionwithαbeing a finite measure on SRd,(cid:107)·(cid:107)a and β : SRd,(cid:107)·(cid:107)a → R+ measurable. If (cid:107)·(cid:107)b is another norm on Rd, then µ is a Γd(αb,βb) distribution with αb being a finite measure on SRd,(cid:107)·(cid:107)b and βb :SRd,(cid:107)·(cid:107)b →R+ measurable. Moreover,itholdsthat (cid:90) (cid:18) v (cid:19) αb(E)= 1E (cid:107)v(cid:107) α(dv) ∀E ∈B(SRd,(cid:107)·(cid:107)b) (3.8) SRd,(cid:107)·(cid:107)a b (cid:18) (cid:19) v βb(vb)=β (cid:107)vb(cid:107) (cid:107)vb(cid:107)a ∀vb ∈SRd,(cid:107)·(cid:107)b. (3.9) b a The above formulae show that the mass in the different directions, which is given byα,doesnotchange,andβ onlyneedstobeadaptedforthescalechangesimpliedby thechangeofthenorm. Proof. Substitutingfirstvb =v/(cid:107)v(cid:107)b andthens=r/(cid:107)vb(cid:107)a gives: (cid:32) (cid:33) (cid:90) (cid:90) (cid:16) (cid:17)e−β(v)r exp eirv(cid:62)z−1 drα(dv) r SRd,(cid:107)·(cid:107)a R+ =exp(cid:90) (cid:90) (cid:16)ei(cid:107)vbr(cid:107)avb(cid:62)z−1(cid:17)e−β(cid:16)(cid:107)rvvbb(cid:107)a(cid:17)rdrαb(dvb) SRd,(cid:107)·(cid:107)b R+ =exp(cid:90) (cid:90) (cid:16)eisvb(cid:62)z−1(cid:17)e−β(cid:16)(cid:107)vvbb(cid:107)sa(cid:17)(cid:107)vb(cid:107)asdsαb(dvb). SRd,(cid:107)·(cid:107)b R+ 3.2 Properties InthissectionwestudyseveralfundamentalpropertiesofourGammadistributions. Proposition 3.5.AnyΓd(α,β)-distributionisself-decomposable. Proof. Thisfollowsimmediatelyfromthedefinitionand[36,Th. 15.10]. Later on we will considerably improve this result by showing that we are in a very special subset of the self-decomposable distributions. This result has important impli- cationsforapplicationswhereonelikestoworkwithdistributionshavingdensities,i.e. distributionswhichareabsolutelycontinuous(withrespecttotheLebesguemeasure). InfinitelyDivisibleMultivariateGammaDistributions 7 Proposition 3.6.Assumethatsuppαisoffulldimension,i.e. thatitcontainsdlinearly independentvectorsinRd. ThentheΓd(α,β)-distributionisabsolutelycontinuous. Proof. Itisimmediatethatthesupportof Γd(α,β)istheclosedconvexconegenerated by suppα. Hence, the support of Γd(α,β) is of full dimension and so the distribution is non-degenerate. Thus[35]concludes. It follows along the same lines that in the degenerate case the Γd(α,β)-distribution is absolutely continuous with respect to the Lebesgue measure on the subspace gen- erated by suppα. If suppα consists of exactly d linearly independent vectors, Γd(α,β) equalsthedistributionofalineartransformationofavectorofdindependentunivariate Gammarandomvariableswithappropriateparametersandthusthedensitycanbecal- culated easily using the density transformation theorem with an invertible linear map. Ifsuppαisafinitesetoffulldimension,onecancalculatethedensityfromthedensityof independent univariate Gamma random variables by using the density transformation theoremwithaninvertiblelinearmapandintegratingoutthenon-relevantdimensions. Ingeneralthedensitycanbedeterminedviasolvingapartialintegro-differentialequa- tion(see[37]). Moreover,criteriaforqualitativepropertiesofthedensitylikecontinuity and continuous differentiability can be deduced from the results of [33, 34], but look- ing at the simple case of a vector of independent univariate Gamma distributions one immediately sees that the sufficient conditions given there are far from being sharp. Thereforewerefrainfromgivingmoredetails. Next we show that our d-dimensional Gamma distribution has the same closedness propertiesregardingscalingandconvolutionastheusualunivariateone. Proposition 3.7.(i)LetX ∼Γd(α,β)andc>0. ThencX ∼Γd(α,β/c). (ii)LetX1 ∼Γd(α1,β)andX2 ∼Γd(α2,β)betwoindependentd-dimensionalGamma variables. ThenX1+X2 ∼Γd(α1+α2,β). Proof. Followsimmediatelyfromconsideringthecharacteristicfunctions. Likewiseitisimmediatetoseethefollowingdistributionalpropertiesoftheinduced Lévyprocess. Proposition 3.8.Let L be a Γd(α,β) Lévy process, i.e. L1 ∼ Γd(α,β). Then Lt ∼ Γd(tα,β)forallt∈R+. Of high importance for applications is that the class of Γd distributions is invariant underinvertiblelineartransformations. Proposition3.9.LetX ∼Γd(α,β)(withrespecttothenorm(cid:107)·(cid:107))andAbeaninvertible d×dmatrix. ThenAX ∼Γd(αA,βA)withrespecttothenorm(cid:107)·(cid:107)A =(cid:107)A−1·(cid:107)and (cid:90) αA(E)= 1E(Av)α(dv) =α(A−1E) ∀E ∈B(SRd,(cid:107)·(cid:107)A) (3.10) SRd,(cid:107)·(cid:107) βA(v)=β(cid:0)A−1v(cid:1) ∀v ∈SRd,(cid:107)·(cid:107)A. (3.11) Proof. Wehaveforallz ∈Rd E(cid:0)ei<z,AX>(cid:1)=(cid:90) ei<z,Ax>µ(dx)=(cid:90) (cid:90) (cid:16)eirv(cid:62)A(cid:62)z−1(cid:17)e−β(v)rdrα(dv) r Rd SRd,(cid:107)·(cid:107) R+ (cid:90) (cid:90) (cid:16) (cid:17)e−β(A−1u)r = eiru(cid:62)z−1 drα(A−1du) r SRd,(cid:107)·(cid:107)A R+ =(cid:90) (cid:90) (cid:16)eiru(cid:62)z−1(cid:17)e−βA(u)rdrα (du) r A SRd,(cid:107)·(cid:107)A R+ 8 InfinitelyDivisibleMultivariateGammaDistributions wherewesubstitutedu=Av. It is easy to see that the above proposition can be extended to m×d matrices of full rank with m > d. Obviously, such a result cannot hold in general for a linear transformation A with ker(A) (cid:54)= {0}, since combinations of one dimensional Gamma distributionsareingeneralnotunivariateGammadistributions. Nextwepresentanalternativerepresentationofthecharacteristicfunction. Proposition 3.10.Let µ be Γd(α,β) distributed. Then the characteristic function is givenby (cid:32)(cid:90) (cid:18) β(v) (cid:19) (cid:33) µˆ(z)=exp ln α(dv) forall z ∈Rd (3.12) β(v)−iv(cid:62)z SRd,(cid:107)·(cid:107) wherelnisthemainbranchofthecomplexlogarithm. Proof. Followsfromthedefinitionandthewellknownfact (cid:90) ∞(cid:16) (cid:17)e−β(v)r (cid:18) β(v) (cid:19) e−r(−iv(cid:62))z−1 dr =ln . r β(v)−iv(cid:62)z 0 Notethatifαhascountablesupport{vj}j∈N,then (cid:32) (cid:33)α({vj}) µˆ(z)= (cid:89) β(vj) . β(v )−iv(cid:62)z j∈N j j We now show that the Fourier-Laplace transform of a Gamma distribution exists if andtoacertainextentonlyifβ isboundedawayfromzeroαalmosteverywhere. Theorem 3.11.(i) The Fourier-Laplace transform µˆ of a Γd(α,β) distribution µ exists for all z in a neighborhood U ⊆ Cd of zero, if β(v) ≥ κ for v ∈ SRd,(cid:107)·(cid:107) α-a.e. with κ > 0. µˆ isanalyticthereandgivenbyformula (3.12). (ii)Ifthereexistsasequence(vn)n∈N inSRd,(cid:107)·(cid:107) withlimn→∞β(vn)=0andα({vn})> 0foralln∈N,thentheFourier-Laplacetransformµˆ existsinnoneighborhoodU ⊆Cd ofzero. Proof. Using Proposition 3.4 we can assume w.l.o.g. that the Euclidean norm (cid:107)·(cid:107)2 is usedforthedefinitionoftheΓd(α,β)distribution. (i) We will now show (i) for U = Bκ(0) ⊆ Cd, where Bκ(0) := {x ∈ Cd : (cid:107)x(cid:107)2 < κ}. FromProposition3.10itisclearthatµˆ(z)existsforallz ∈Bκ(0)⊆Cd,ifandonlyif (cid:90) (cid:18) β(v) (cid:19) (cid:90) (cid:18) iv(cid:62)z(cid:19) ln α(dv)=− ln 1− α(dv) β(v)−iv(cid:62)z β(v) SRd,(cid:107)·|2 SRd,(cid:107)·(cid:107)2 exists for all z ∈ Bκ(0). Consider now an arbitrary δ ∈ (0,1) and z ∈ Bδκ(0). Then the Cauchy-Schwarz inequality implies |iv(cid:62)z| ≤ (cid:107)z(cid:107)2 ≤ δκ and hence |(iv(cid:62)z)/β(v)| ≤ δ. (cid:16) (cid:17) Thereforeln 1− iβv((cid:62)vz) existsandisboundedonBδκ(0)α-a.e. Thisimpliesthat (cid:90) (cid:18) iv(cid:62)z(cid:19) − ln 1− α(dv) β(v) SRd,(cid:107)·(cid:107)2 existsonBδκ(0). Sinceδ ∈(0,1)wasarbitrary,thisconcludestheproofof(i),sincethe analyticityfollowsimmediatelyfromtheappendixof[12]. InfinitelyDivisibleMultivariateGammaDistributions 9 (ii)W.l.o.g. assumeβ(vn)<1/n. Forn∈Nsetzn =−iβ(vn)vn. Then(cid:107)zn(cid:107)2 =β(vn)< 1/nand1−(ivn(cid:62)zn)/β(vn)=0. Hence, (cid:90) (cid:18) iv(cid:62)z (cid:19) ln 1− n α(dv) β(v) {vn} andthereby (cid:90) (cid:18) iv(cid:62)z (cid:19) ln 1− n α(dv) β(v) SRd,(cid:107)·(cid:107)2 do not exist. This implies that µˆ is not defined on B (0). Since n ∈ N was arbitrary, 1/n thisshows(ii). Remark3.12.Toextendthisresulttothematrixcase,onesimplyhastousetheFrobe- nius or trace norms and the scalar product Z,X (cid:55)→ tr(X(cid:62)Z) instead of the Euclidean normandscalarproduct. WeconsiderthisinSection5. Proposition 3.13.A Γd(α,β) distribution µ has a finite moment of order k > 0, i.e. (cid:82) (cid:107)x(cid:107)kµ(dx)<∞,ifandonlyif Rd (cid:90) β(v)−kα(dv)<∞. (3.13) SRd,(cid:107)·(cid:107) Moreover, if m is the mean vector and Σ = (σij)i,j=1,...,d is the covariance matrix of Γ (α,β) d (cid:90) m= β(v)−1vα(dv). (3.14) SRd,(cid:107)·(cid:107) and (cid:90) Σ= β(v)−2vv(cid:62)α(dv) (3.15) SRd,(cid:107)·(cid:107) Proof. If β is bounded away from zero, (3.13) holds trivially and Theorem 3.11 implies that µ has finite moments of all orders k > 0. So w.l.o.g. assume that β is not bounded awayfromzerointhefollowing. By[36,p. 162]µhasafinitemomentoforderk,ifand onlyif (cid:90) (cid:90) ∞ e−β(v)r rk drα(dv)<∞. r SRd,(cid:107)·(cid:107) 1 Substitutings=rβ(v)thisisequivalentto (cid:90) (cid:90) ∞ β(v)−k sk−1e−sdsα(dv)<∞. (3.16) SRd,(cid:107)·(cid:107) β(v) Assumingwithoutlossofgeneralitythatβ(v)≤1forallv ∈SRd,(cid:107)·(cid:107),wehavethat (cid:90) ∞ (cid:90) ∞ 0<C(k):= sk−1e−sds≤ sk−1e−sds≤Γ(k). 1 β(v) Hence, (3.16) is equivalent to (3.13). Finally, (3.14) and (3.15) follow from Example 25.12 in [36] and observing that that the infinitely divisible distribution Γd(α,β) with (cid:82) Fouriertransform(3.1)hasLévytriplet(ζ,0,νµ),whereζ = (cid:107)x(cid:107)≤1xνµ(dx). Corollary 3.14.A (cid:107)·(cid:107)-homogeneous Γd(α,β) distribution has an analytic Fourier-La- placetransforminBβ(0)andfinitemomentsofallorders. 10 InfinitelyDivisibleMultivariateGammaDistributions Hence,anyhomogeneousGammadistributionbehaveslikeonewouldexpectitfrom the univariate case. However, the behaviour in the non-homogeneous case may be drasticallydifferent,asthefollowingexamplesillustrate. Example 3.15.Considerd=2. Letαbeconcentratedon{vn}n∈N with v =(sin(n−1),cos(n−1)) n and set α({vn}) = e−n and β(vn) = 1/n for all n ∈ N. Then by Theorem 3.11 (ii) the Fourier-Laplacetransformexistsinnoneighbourhoodofzero. (cid:82)SRd,(cid:107)·(cid:107)2 β(v)−kα(dv)=(cid:80)n∈Nnke−n isfiniteforallk >0usingthequotientcriterion, because (n+1)ke−(n+1) lim =e−1 <1. n→∞ nke−n Thus,wehavemomentsofallorders,buttheFourier-Laplacetransformexistsinno complexneighbourhoodofzero. Example3.16.Considertheset-upofExample3.15,butsetnowα({vn})=1/n1+m for somerealm>0. (cid:82)SRd,(cid:107)·(cid:107)2 β(v)−kα(dv)=(cid:80)n∈N n1n+km isfiniteifandonlyifk <m. Itiseasytoseethatcondition(3.5)issatisfiedifcondition(3.13)holdsforsomek > 0. Hence, the Γ2(α,β) distribution exists indeed, but only moments of orders smaller thanmarefinite. Example 3.17.Consider again the set-up of Example 3.15. Set now α({vn}) = (ln(1+ n)3(n+1))−1. (cid:16) (cid:17) Then (cid:82)SRd,(cid:107)·(cid:107)2 ln 1+ β(1v) α(dv) = (cid:80)n∈N ln(1+n1)2(1+n) < ∞ (see [32, Theorem 3.29] andthustheΓ2(α,β)distributioniswell-defined. Yet, (cid:82)SRd,(cid:107)·(cid:107)2 β(v)−kα(dv) = (cid:80)n∈N ln(1+nn)k3(1+n) = ∞ for all real k > 0 and so the Γ2(α,β)distributionhasnofinitemomentsofpositiveordersatall. 4 Gamma and Generalised Gamma Convolutions on Cones 4.1 Cone-valued infinitely divisible random elements Wefirstreviewseveralfactsaboutinfinitelydivisibleelementswithvaluesinacone of a finite dimensional Euclidean space B with norm (cid:107)·(cid:107) and inner product (cid:104)·,·(cid:105). A nonempty convex set K of B is said to be a cone if λ ≥ 0 and x ∈ K imply λx ∈ K. A cone is proper if x = 0 whenever xand −xare in K. The dual cone K(cid:48) of K is defined as K(cid:48) = {y ∈B(cid:48) :(cid:104)y,s(cid:105)≥0foreverys∈K}. A proper cone K induces a partial order on B by defining x1 ≤K x2 whenever x2−x1 ∈ K for x1 ∈ B and x2 ∈ B. Examples of properconesareR+,Rd+ =[0,∞)d,S+d andS+d. A random element X in K is infinitely divisible (ID) if and only if for each integer p≥1thereexistpindependentidenticallydistributedrandomelementsX1,...,Xp inK law suchthatX = X1+...+Xp.AprobabilitymeasureµonK isIDifitisthedistribution of an ID element in K. It is known (see [38]) that such a distribution µ is concentrated (cid:82) on a cone K if and only if its Laplace transform Lµ(Θ) = Kexp(−(cid:104)Θ,x(cid:105))µ(dx) is given bytheregularLévy-Khintchinerepresentation (cid:26) (cid:90) (cid:16) (cid:17) (cid:27) Lµ(Θ)=exp −(cid:104)Θ,Ψ0(cid:105)− 1−e−(cid:104)Θ,x(cid:105) νµ(dx) forallΘ∈K(cid:48), (4.1) K whereΨ0 ∈K andtheLévymeasureissuchthatνµ(Kc)=0and (cid:90) ((cid:107)x(cid:107)∧1)νµ(dx)<∞. (4.2) K