ebook img

A channeled ion energy loss study of the surfactant-mediated growth of Ge on Si(100) PDF

222 Pages·1996·8.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A channeled ion energy loss study of the surfactant-mediated growth of Ge on Si(100)

ACHANNELEDIONENERGYLOSSSTUDY OFTHESURFACTANT-MEDIATEDGROWTHOFGEONSI(100) By MARKANDREWBOSHART ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1996 UNIVERSITYOFFLORIDALIBRARIES ACKNOWLEDGEMENTS Isimplycouldnothavemadeitthisfarwithoutthehelpandsupportofmany people. Iwouldfirstliketothankmyparentswhohaveprovidedinfinitepatience andunderstandingthroughout my life. Mygrandparentshavealso alwaysbeen there andprovidedforme, and “BigPop” has always shown aninterest in my research. Iwouldalsoliketothankmysisters,MaryEllenandDebbie, andmy nephewJasonforlotsofgoodtimes. Ofcourse,myadvisorLizSeiberlingdeservesspecialthanks. Heradviceand guidancearethereasonwhythisdissertationhasbeenwritten. Shehasprovided anexcellent workingenvironment, and has alwaysbeenextremely approachable whendifficultiesarose. IhaveenjoyedworkingwithMarkGrant,whotaughtme theropes,AllisonBailes,RickPiciullo,andJanaeAdams. AndrzejDygoinstilled inmetheneedtobeaspreciseaspossible. RolandJohns,DonMcNeill,andBob Litwinswerealsoextremelyhelpful. Finally, Iwanttothankmywife, MarthaKosa,whohasbeenashoulderto leanonformyentiregraduatecareer,especiallyduringthenumeroustimeswhen IthoughtthatIcouldn’tgoon. n TABLEOFCONTENTS page ACKNOWLEDGEMENTS ii ABSTRACT vi CHAPTERS 1 INTRODUCTION 1 ChanneledIonEnergyLoss 1 Surfactant-MediatedEpitaxialGrowth 2 Motivation 5 AdvantagesofUsingTransmissionIonChanneling 5 AdvantagesofUsingaMonteCarloSimulationofChanneling . . 5 AdvantagesofUsingEnergyDistributions 7 2 TRANSMISSIONIONCHANNELING 14 Equipment 14 MeVIonScattering 16 RutherfordBackscatteringSpectrometry 17 ChannelingandtheContinuumModel 27 YieldVersusTiltforAdsorbateLocation 30 3 ENERGYLOSSOFCHANNELEDMeVLIGHTIONSINSILICON 33 VandeGraaffCalibration 33 BeamtoSampleAlignment 35 HighVacuumScattering 35 AutoScan 36 BeamDirectionAlignment ... 37 GoniometerCalibrationandCoordinateTransformations.... 39 BeamtoGoniometerMisalignmentandSampleNormal ... 42 MonteCarloSimulationofChannelingandDataReduction 43 InteractionZones 45 ImpactParameterandIonDeflections 50 AdditionalFeatures 53 iii SimulatedEnergyDistributions 54 ExperimentalEnergyDistributions 55 EnergyLossModels 59 Three-ComponentModel 61 Semi-ClassicalApproximation 62 MeanExcitationEnergyApproximation 67 ValenceElectrons 70 H+Nearthe(100)and(110)Axes 75 Experiment 76 ResultsandDiscussion 79 He+ Nearthe(100)and(110)Axes 100 Experiment 101 ResultsandDiscussion 103 4 DATAACQUISTIONANDREDUCTION Ill BeamtoSampleAlignment Ill TransmissionEnergyAxisCalibration 114 ExperimentalEnergyDistributions 118 LinearBackgroundFit 121 5 SITEDETERMINATIONUSINGENERGYDISTRIBUTIONS. . 124 SimulationofAdsorbateEnergyDistributions 124 ObtainingMonteCarloOutput 124 ObtainingTrialSiteCoordinates 125 OverlapofTrialPositionwithMonteCarloOutput 135 ComparisonofSimulationandExperiment 137 PositionsintheSurfacePlane 138 PositionsNormaltotheSurfacePlane 140 AdsorbateVibrations 141 SiteProgramTest: SbonSi(100) 142 Experiment 143 CalculationofSiteDependentEnergyDistributions 148 ResultsandDiscussion 153 6 SURFACTANT-MEDIATEDGROWTHOFGeONSi(100)... 166 ModificationstoSiteDetermination 166 GeandSbPositionsAfterSiteExchange 169 Experiment 171 ResultsandDiscussion 176 GeandSbintheEarlyStagesofSurfactant-MediatedGrowth . . 179 Experiment 181 ResultsandDiscussion 183 IV 7 CONCLUSIONS 190 ChanneledIonEnergyLoss 190 SiteDeterminationofSbonSi(100) 191 Surfactant-MediatedGrowthofGeonSi(100) 192 APPENDICES A OXYGENBEAMIMPURITY 194 B PREPARATIONOFSILICONTHINWINDOWS 198 BoronDiffusion 198 ChemicalEtch 201 CleaningProcedure 201 REFERENCES 204 BIOGRAPHICALSKETCH 213 AbstractofDissertationPresentedtotheGraduateSchool OftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ACHANNELEDIONENERGYLOSSSTUDY OFTHESURFACTANT-MEDIATEDGROWTHOFGEONSI(100) By MarkAndrewBoshart August1996 Chairman: LucyElizabethSeiberling MajorDepartment: Physics Transmission ion channeling is used to investigate the surfactant-mediated growth ofGe on Si(100). The experimental scattered ion energy distributions for this system are comparedwith the simulated distributions for several mod- els. ThesimulateddistributionsareobtainedusingaMonteCarlosimulationof channelingthatincorporateschanneledMeVlightionenergyloss. A trialadsor- batesiteisthenoverlappedwiththeMonteCarlooutput(ionpositionandenergy withinthechannelattheexitsurface). Toobtainamodelforchanneledionenergyloss,theenergydistributionsfor 625keVH+and2.5MeVHe+ionsincidentonthin(~8000A)Sisinglecrystalsare studied. Detailedangularscansaretakenalonglow-indexdirections. Scatteringis fromanamorphousAulayer(~8A)onthebeam-exitsurface. Theexperimental distributionsarereproducedbyaMonteCarlosimulationusingthesemi-classical vi approximationmodelforenergylosstocoreelectrons(scaledup12%)andthe2- componentfree-electrongasmodelforenergylosstovalenceelectrons(scaleddown 6%andusingthesolid-statedensity). AprogramforgeneratingsimulatedenergydistributionsfromtheMonteCarlo outputwasdevelopedbystudyingSbonSi(100). TheSbsitefoundagreeswith previousexperimentsonthissystem,amodifiedbridgesitewithabondlengthof 2.80db0.10Aandadistanceabovethebulk-extrapolatedsiliconsurfaceof1.63± 0.10A. TheSbvibrationsappearanisotropic. Finally,thesurfactant-mediatedgrowthofthesystemGe/Sb/Si(100)isinves- tigated. Coveragesof0.15monolayer(ML)and0.68MLofGedepositedatroom temperature(RT)onSb-terminatedSi(100)arestudied,bothbeforeandafteran- nealingat350°C.WefindthatRTdepositionofGeforbothcoveragesisconsistent withamodeloflooselybondedGedimersadsorbedbetweenundisturbedSbdimer rows. Afterannealing,weobservebulk-likeGeunderneathSbdimersfor0.68ML Ge. For1MLGedepositedat350°,theenergydistributionsclearlyshowthatGe isbulk-like,andthequantitativesitesintheliteratureareconsistentwiththedata. Vll CHAPTER 1 INTRODUCTION ChanneledIonEnergyLoss Thestoppingofenergetic ions in crystallinematerialsis knownto strongly depend onthe directionofincidence. Inparticular, ionsmoving alongamajor crystallographicaxislosetheirenergyataratethatcanbeaslowas50%orlessof theso-callednormalorrandomvalue. Thisreducedstoppingisoneofthedominant featuresofthechannelingphenomenon[Morg73],andhasfueledintenseinterestin themechanismsofenergylossofchanneledions(i.e.,forimplantationapplications). Incontrast, the (well-studiedin amorphoustargets) randomstoppingoccursfor directionsfarfromanysignificantaxialorplanarchannels,wherethecrystallattice appearstotheionbeamasarandom-likearrangementofatoms. Thereducedstoppingofchanneledionsiseasilyunderstoodintermsofthe impact-parameterdependenceoftheenergylossthatoccursinasingleion-atom collision. Thechanneledionsmaintainlargedistancesfromtheatomrows and, therefore,canonlymakesmallenergytransferstotheatomiccores. Similarly,the contributionofvalence(outer-shell)electronstothestoppingisdiminished,astheir densityinthecentralregionofthechannelisreduced. Investigations ofenergy-loss processesfor ions interacting in single crystals havefocusedprimarilyonmajoraxialandplanardirections[Satt65;Satt67;Dell72; Eise75;Melv73;Cemb77;Carn78;Gehr85;Kita72;Dett74;Koma74;Dett75;Desa77; Esbe78; Bure80; Craw83; Kuhr83; Khod83; Gras85; Asco86; Gold86; Nami88; 1 2 Mort91], as thelargest reductioninenergyis achievedwhen aligned withthese highsymmetrydirections[Gemm74]. Theprimarymeansofanalysisoftheseearly studieshasbeenthehighenergypeakorleadingedgevalueoftheobservedfinalion energies(theenergydistributionoftheexitingions)[Kuma81]. Thisgivesanar- rowviewoftheimpact-parameterdependenceoftheenergylossasessentiallyonly impactparametersclosetothechannelradius(thebestchanneledions)axebeing explored. Inaddition,suchcomparisonsareoftenambiguousduetotheinability toresolvevariouscontributionstotheenergyloss[Belo78]. Further,anextraction oftheleadingedgevaluefromexperimentaldistributionsissubjecttouncertainties relatedtoenergystragglingaridenergyresolutionfactors[Stee81]. Amuchbettermethod is to modelindividual trajectories inthecrystalby the Monte Carlotechnique, attemptingtofit thefullexperimentaldistributions [Murt93; Dijk94], not just peak or leading edge values, allowing a study over abroaderrangeofimpactparameters. Furthermore, bytiltingthecrystalaway fromtheaxial(planar)direction,smallerimpactparametersplayanincreasingly importantrole,andcomplexstructurescanbeobtainedintheenergydistributions [Dygo94e], Theenergylossmodelthusproposedshouldbe validforimpact pa- rametersthat spanthechannelradiusratherthanjust nearthe channel center. AnaccuratedeterminationoftheenergylossprocessesforMeVlightionsforim- pact parameters spanningthechannelcanthenbeemployedbytechniques that involvechanneling. Surfactant-MediatedEpitaxialGrowth To understand the importance ofsurfactant-mediatedepitaxial growth, one mustfirstunderstandtheimportanceofandproblemsassociatedwithstrainedlayer 3 superlattices. Strainedlayersuperlattices(suchasGe/Siheterostructures)areof extremeinterest astheycanbeusedas toolsformodifyingthebandstructures ofmaterials. However, >2% strain(lattice mismatch) is requiredfor significant bandstructurealteration[Pear90]. Further,interfacesmustbelargelydefectfree, thin(~100A),andofuniformcomposition. Suchsuperlatticescanthenbetaken advantageofinlasers,bipolartransistorsandfieldeffecttransistorstotunelaser emissionwavelengthsandtoimprovetransistorperformancebytheconfinementof carriers[Pear90]. Togrowstrainedlayersuperlatticeswiththerequiredstrainanduniformityis notaneasyfeat. Growingonematerialonanotherofcourseintroducesstrainas thetwomaterialshavedifferent latticeconstants. Ifthesubstratefreeenergyis largerthantheinterfaceplusgrownlayerfreeenergy,thenthiselasticstraincan, ingeneral,beaccomodatedwithoutdefectformationtoacertainpoint,asittakes energytocreatedislocations. Thus, ifthe thicknessofthegrownlayerissmall enough,theenergyrequiredtorelievethestrainbydefectformationislargerthan simplymaintainingtheelasticstrain. Thistwo-dimensionalgrowthisreferredtoas Frank-vanderMerwegrowth. Whenacriticalthicknessisreached,defectswillbe producedtorelievethestrain. Onewayofrelievingthestrainisforthematerialto growinclusters,orislands,withitsnormallatticeconstant,ruiningtheuniformity ofthelayer. Thistwo-dimensionalfollowedbythree-dimensionalgrowthiscalled Stranski-Krastanovgrowth. Molecularbeam epitaxy (MBE) has been extremely successful at achieving two-dimensionalgrowthforupto4%latticemismatches,morethanadequatefor theapplicationsnotedabove[Pear90]. However,defectproduction(islanding)limits

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.