ebook img

A Chandra X-ray study of the interacting binaries in the old open cluster NGC6791 PDF

3.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Chandra X-ray study of the interacting binaries in the old open cluster NGC6791

DraftversionJanuary14,2013 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 ACHANDRAX-RAYSTUDYOFTHEINTERACTINGBINARIESINTHEOLDOPENCLUSTERNGC6791 MaureenvandenBerg1,2,FrankVerbunt3,4,GianpieroTagliaferri5,TomasoBelloni5,LuigiR.Bedin6,andImantsPlatais7 1AstronomicalInstitute“AntonPannekoek”,UniversityofAmsterdam,SciencePark904,1098XHAmsterdam,TheNetherlands 2Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,02138MA,USA;[email protected] 3DepartmentofAstrophysics/IMAPP,RadboudUniversityNijmegen,POBox9010,6500GLNijmegen,TheNetherlands 4SRON,NetherlandsInstituteforSpaceResearch,Sorbonnelaan2,3584CAUtrecht,TheNetherlands 5INAF/OsservatorioAstronomicodiBrera,ViaE.Bianchi46,I-23807Merate(LC),Italy 6INAF/OsservatorioAstronomicodiPadova,Vicolodell’Osservatorio5,I-35122Padova,Italyand 7DepartmentofPhysicsandAstronomy,TheJohnsHopkinsUniversity,Baltimore,MD21218,USA DraftversionJanuary14,2013 3 1 ABSTRACT 0 WepresentthefirstX-raystudyofNGC6791,oneoftheoldestopenclustersknown(8Gyr). OurChandra 2 observationisaimedatuncoveringthepopulationofcloseinteractingbinariesdowntoL ≈ 1×1030 ergs−1 X n (0.3–7keV).Wedetect86sourceswithin8(cid:48)oftheclustercenter,including59insidethehalf-massradius. We a identifytwentysourceswithproper-motionclustermembers,whichareamixofcataclysmicvariables(CVs), J activebinaries(ABs),andbinariescontainingsub-subgiants. Withfollow-upopticalspectroscopyweconfirm 0 thenatureofoneCV.Wediscoveronenew,X-rayvariablecandidateCVwithBalmerandHeIIemissionlines 1 initsopticalspectrum; thisisthefirstX-ray–selectedCVconfirmedinanopencluster. ThenumberofCVs perunitmassisconsistentwiththefield,suggestingthatthe3–4CVsobservedinNGC6791areprimordial. ] WecomparetheX-raypropertiesofNGC6791withthoseofafewoldopen(NGC6819,M67)andglobular E clusters(47Tuc,NGC6397). ItispuzzlingthatthenumberofABsbrighterthan1×1030 ergs−1 normalized H byclustermassislowerinNGC6791thaninM67byafactor∼3–7. CVs, ABs, andsub-subgiantsbrighter . than1×1030 ergs−1 areunder-representedperunitmassintheglobularclusterscomparedtotheoldestopen h clusters,andthisaccountsforthelowertotalX-rayluminosityperunitmassoftheformer. Thisindicatesthat p - theneteffectofdynamicalencountersmaybethedestructionofevensomeofthehardest(i.e.X-ray–emitting) o binaries. r Subject headings: open clusters and associations: individual (NGC6791); X-rays: binaries; stars: activity; t s binaries: close;cataclysmicvariables a [ 1 1. INTRODUCTION enable a detailed comparison with theoretical models of the evolution of stellar clusters and of the binary population in v X-rayemissionoflate-typestarsarisesinhotgascontained them. To explain the large number of blue stragglers ob- 1 bymagneticloopsabovethestellarsurface. Theseloopsare 3 produced by the interaction of convective motion and differ- served in M67 (4 Gyr), the model by Hurley et al. (2005) 3 entialrotationinthestellarenvelope;hencethemagneticac- requires a large initial number of short-period binaries that 2 tivity of a late-type main-sequence star—and with it the X- act as seeds from which blue stragglers are formed. As the 1. ray emission—is found to be higher in rapidly rotating stars simulatedhard-binaryfractionandperioddistributiondonot evolve much, the close binaries remain abundant throughout 0 (see, for example, Pallavicini 1989). As stars age their rota- thelifetimeofthecluster. Geller&Mathieu(2012)pointout 3 tionslowsdown,anditwasasurprisethataROSATstudyof thatcomparisonwiththeobservedbinariesintheoldcluster 1 theoldopenclusterM67discoveredalargenumberofX-ray NGC188(6.5Gyr;Meibometal.2009)findsnoevidenceof : sources(Bellonietal.1993). Comparisonwithopticalobser- v such a high fraction of close binaries. The number of clus- vationsprovidedtheexplanation: inanoldclusterstarsmay i tersstudiedisstillsmall,asisthenumberofdetailedmodels, X rotate rapidly when tidal forces spin them up towards coro- andmorestudyisrequiredbeforeafinalverdictontheseand tationwiththebinaryrevolution(Bellonietal.1998). X-ray r otherdiscrepancies(seeGeller&Mathieu(2012)fordetails) a studiesofoldopenclustershelpinidentifyingsuch,otherwise canbemade. inconspicuous,activebinaries(ABs)inwhichtidalforcesare orhavebeeneffective,andcontributetotheunderstandingof Bynow,observationsofglobularclusterswiththeChandra X-ray Observatory have uncovered hundreds of faint (L (cid:46) tidalinteraction. Sincethetypicaltimescalefortidalinterac- X 1033ergs−1)closebinaries,onlypartofwhichhavebeenclas- tion rapidly increases with the ratio of the orbital separation sifiedsofar. Asthesebinariesareanimportantdriverofthe to stellar radius (Zahn 1989), only stars in binaries with rel- long-termevolutionofacluster,understandingtheproperties atively short periods or relatively large radii experience the effects of tidal locking. X-ray observations of ABs in old and frequency of the various binary classes is a major goal ofinvestigating(globular)clusterX-raysources. Sometimes clusters thus probe the populations of hard binaries, and the the outcome of a dynamical encounter is a binary or multi- relative number of such systems found in clusters with dif- ple system in a very unusual configuration, and this allows ferent properties is an important tool for understanding the effectsoftheclusterenvironmentonthebinarycontent. ustostudysourcetypesthatarenot,oronlyrarely,foundin thefield. BesidesABs,whicharethedominantX-raysource Thankstoprolongedopticalstudies,e.g.intheWIYNOpen class in old open clusters, globular-cluster X-ray sources in- Cluster Study (Mathieu 2000), our knowledge of the binary clude cataclysmic variables (CVs), low-mass X-ray binaries population in clusters is reaching completeness levels which 2 vandenBergetal. in quiescence (qLMXBs), and milli-second pulsars (MSPs). ThecorrelationofthenumbersofqLMXBsandCVswiththe stellarencounterfrequencyrevealstheimportantrolethatdy- namicalencountersplayinthecreationofsuchbinaries(Poo- ley&Hut2006;Heinkeetal.2006), butthenetbalancebe- tweenformationanddestructionislessclear. Foralargepart thisisduetothelackofareferencepointthatquantifiestheir numberdensitiesinadynamicallyinactiveenvironment. Ide- ally,thecomparisonshouldbemadeagainsttheGalacticfield wherestellardensitiesarelow,butthisiscomplicatedbecause of the generally limited information on distance and age for stars in the field, and the intrinsic scarcity of sources such asqLMXBs. Oldopenclustersprovideanalternativethatis worthwhile to explore, but so far only few have been stud- ied in detail in X-rays. Moreover, it should be kept in mind that dynamical encounters cannot be completely ignored in open clusters. Observational indications for the occurrence ofdynamicalinteractionshavecomefromindividualsystems whosepropertiesaredifficulttoexplainbybinaryevolutionas itwouldtakeplaceoutsideaclusterenvironment(e.g.vanden Bergetal.2001). Figure1. V-bandimageofNGC6791fromStetsonetal.(2003)showingin In this paper we present the results of the first X-ray ob- blacktheoutlineoftheACISchips(labelled)asinourChandraobservation. servation of NGC6791, which, at an age of about 8 Gyr, is Thesmallwhite,innermostcircleindicatestheclustercenterfromdeMarchi one of the oldest known open clusters in our Galaxy. Be- et al. (2007). The larger white circles mark the area inside the half-mass sidestheChandradata,weobtainedopticalspectratoclassify radiusrh (4.(cid:48)42), andtheareainside8(cid:48), whichwasanalyzedinthispaper. Northisup,easttotheleft. candidate optical counterparts to the detected X-ray sources. WeobservedNGC6791withtheAdvancedCCDImaging NGC6791 has been studied extensively in the optical. The Spectrometer (ACIS)1 on Chandra from 2004 July 1 20:51 richbodyofavailableliteraturehasproventobeveryuseful UTCuntilJuly210:49UTCforatotalexposuretimeof48.2 for the classification of our Chandra sources, and for sepa- ks (ObsID 4510). The observation was done in very faint, ratingcluster membersfromnon-members. Forthestudy of timed exposure mode with a single-frame exposure time of interactingbinariesitisapromisingtarget: beforethiswork 3.2 s. In order to achieve optimal sensitivity below ∼1 keV, it was known to harbor two of only three spectroscopically- we placed the central part of the cluster on the backside- confirmedCVsfoundinopenclusters(Kaluznyetal.1997), illuminated S3 chip; the neighboring S1, S2, S4, I2, and and many optical-variability studies have revealed dozens of I3 chips were used to cover the outer parts of the clus- close binaries in the field of the NGC6791 (see de Marchi ter. The cluster center lies at approximately α=19h20m53s, et al. (2007) and references therein). It is therefore interest- δ=+37◦46(cid:48)18(cid:48)(cid:48) (J2000;deMarchietal.2007);weshiftedthe ingtoinvestigateiftheX-raysourcecontentofNGC6791is center 0.(cid:48)5 away from the S3 aimpoint in the −Y (approxi- asrichandvariedaswasfoundforthefewoldopenclusters matelysouth-east)directionsothatalargerpartofthecluster studied previously, viz. M67 (Belloni et al. 1993, 1998; van couldbeimagedonasinglechip. Plataisetal.(2011)derive denBergetal.2004)andNGC188(Bellonietal.1998;Gon- doin2005). Theclusterliesatadistanceof∼4.0–4.3kpcand aclusterhalf-massradiusrh of4.(cid:48)42±0.(cid:48)02. Ourobservation is reddened by E(B−V)=0.09–0.16; see e.g. Carraro et al. coversalmosttheentireareainsiderh ((cid:38) 98.5%)witheither theS3ortheS2chip;onlythesouthernmosttipfallsoffthe (2006),Basuetal.(2011),andBrogaardetal.(2011)forre- detectorarea.Fig.1showstheoutlineoftheACISchipsover- centdeterminationsoftheclusterparameters.Throughoutthe layedonanopticalimageofthecluster. paperweadoptadistanceof4.1kpcandaconstantreddening E(B−V) = 0.14, which corresponds to a neutral-hydrogen Our data reduction started with the level-1 event file pro- column density N = 7.8 × 1020 cm−2 (Predehl & Schmitt duced by version 7.6.7.2 of the Chandra X-ray Center pro- H cessing pipeline. We used the CIAO 3.4 package with the 1995).Thereddeningcouldvaryacrosstheareaofthecluster (Plataisetal.2011;Brogaardetal.2012)buttheeffectistoo CALDB 3.3.0calibration filesfor furtherprocessing follow- ingstandardprocedures2,includingthevery-faintmodeback- small to have a significant impact on our results. NGC6791 ground cleaning. In order to improve the precision of the stands out in several ways, including its high age and large source positions we removed the randomization of event co- mass. Remarkably for such an old cluster, the metallicity is higherthansolar([Fe/H]≈+0.4). ordinatesthatisappliedinstandardprocessing. Towardsthe endoftheobservation,thebackgroundlevelbetween0.3and The X-ray and optical observations and data reduction are 7.0keVincreasedbyafactorof∼5asaresultofabackground describedinSect.2,followedbythedataanalysisinSect.3. flare. After removing this interval from the observation, the Wedetectedvarioustypesofsourcesintheclusterwhichare exposuretimeisreducedto42.9ks. presentedinSect.4. Ourresultsarediscussedinthecontext of the populations of interacting binaries in star clusters in 2.2. Opticalspectroscopy Sect.5. WefinishwithourconclusionsinSect.6. We obtained low-resolution spectra of candidate optical counterparts to guide the classification of the X-ray sources. 2. OBSERVATIONSANDDATAREDUCTION 1http://cxc.harvard.edu/proposer/POG/html/ACIS.html 2.1. X-rayobservations 2http://cxc.cfa.harvard.edu/ciao3.4/guides/acisdata.html AChandraX-raystudyofNGC6791 3 A total of 16 candidate counterparts brighter than V ≈ 18.3 tistical uncertainty in centroiding the spatial distribution of were observed with the FAST long-slit spectrograph on the thedetectedeventsofagivensource,butdonotincludesys- 1.5-m Tillinghast telescope on Mt. Hopkins on 9 nights be- tematicerrorsthatresultfromdataprocessingandPSFasym- tween 2005 June 7 to September 2. We used the 300 lines metries at large offset angles. To compute positional uncer- mm−1 grating,resultinginawavelengthcoveragefrom3480 taintieswethereforeadoptEq.5inHongetal.(2005). This to 7400 Å and a 3-Å resolution. Exposure time was chosen formularelatesthe95%confidenceradiusonthesourceposi- toachieveasignal-to-noiseratioS/N (cid:38)20forV (cid:46)17.5,and tionr95tothewavdetectcountsandoffsetanglefromtheaim- 10 (cid:46) S/N (cid:46) 20 for fainter sources. FAST spectra were ex- point, andisbasedonextensivesimulateddetectionsofarti- tractedandwavelength-calibratedwithadedicatedreduction ficialsources. Combinationofthebroad,soft,andhard-band pipeline3. Flux standards were observed on the same nights source lists results in a master catalog of 86 distinct sources asthesciencetargets. within8(cid:48) ofthe clustercenter, ofwhich 59lieinside rh. Ta- Candidate optical counterparts fainter than V ≈ 17 were ble 1 summarizes their basic properties. To investigate the observed with the fiber-fed multi-object spectrograph Hec- validity of the sources, we also ran wavdetect with a thresh- tospeconthe6.5-mMulti-MirrorTelescope. Useofthe270 oldof10−7oranexpectednumberofspurioussourcesof1.6. linesmm−1gratingresultedinspectrathatcover3700to9150 Thefourteensourcesnotdetectedinthisrunaremarkedwith anasteriskinTable1. Inthispaperweadoptashortversion Å with a resolution of 6 Å. A total of 16 candidate counter- of the source names to refer to the sources instead of using parts were observed on the nights of 2005 May 13 and July their official CXO names; see columns 1 and 2 in Table 1. 4–6. Each setup was repeated 4 to 5 times with individual Theshorthandnamesareassignedbyfirstsortingthesources exposuresof900s. Exposureswerecombined,andthespec- withinr onnetcounts,andthenthesourcesbetweenr and tra extracted and wavelength-calibrated, with the Hectospec h h reduction pipeline4. Sky background spectra for each setup 8(cid:48). Weusedtheacis extractpackage(version3.107.2; Broos were created by combining the spectra of fibers positioned at off-source locations. Hectospec observations did not in- et al. 2002) to measure net source counts. Events between 0.3and7.0keVwereextractedfromaregioncorresponding cludefluxstandards. Tocorrectfortheinstrumentalresponse to 90% of the PSF at 1.5 keV; for a few sources this region weconstructedsensitivitycurvesusingthespectraofthesub- wasreducedtoavoidcontaminationbyacloseneighbor. The dwarfB (sdB)starsB4, B5andB3in NGC6791 (Kaluzny backgroundwasdeterminedfromasource-freeannuluscen- &Udalski1992),includedintheMay13,July4andJuly5– tered on the source position. We convert net count rates to 6 setups, respectively. We assumed that their intrinsic spec- tracanbedescribedbyblackbodieswithtemperaturesasde- fluxeswithinSherpa5 witharfandrmfresponsefilesappro- termined for these sdB stars by Liebert et al. (1994). The priateforthechiplocationandsource-extractionareaofeach blackbodyspectrawerethennormalizedtoreproducetheob- source. Column 7 of Table 1 lists absorption-corrected (u) servedV magnitudes(Stetsonetal.2003)aftercorrectionfor fluxes FX,u computed under the assumption that the under- theclusterreddening. Thiswayweachievedanapproximate lying spectrum is an optically thin plasma (described by the absolute-flux calibration of the target spectra after applying xsmekalmodel)withkT = 2keV.ForsourceCX29thatlies theresultingsensitivitycurves. neartheaimpoint1counts−1 correspondsto6.8×10−12 erg Flux-calibrated target spectra were assigned spectral types cm−2 s−1. This temperature is appropriate for the most ac- bycomparisontostandardspectrawithsimilarresolution(e.g. tive ABs in the cluster (see e.g. van den Berg et al. 2004), Jacobyetal.1984). while too high for the least active ABs and too low for most CVs. For a 1-keV Mekal model, a power-law spec- 3. ANALYSIS trum (powlaw1d) with photon index Γ = 2, and a 10-keV 3.1. X-raysourcedetectionandextraction thermal-bremsstrahlungmodel(xsbremss)theconversionfac- tor is 24% smaller, and 30% and 42% larger, respectively. Werestricttheanalysistotheareawithin8(cid:48) ofthecluster In each case we account for a column density equal to the center. Sources further away have relatively large positional cluster value using the xsphabs model. For the adopted dis- errors, which complicates the optical identification. We fo- tancetoNGC6791of4.1kpc, a3-countdetectionlimitcor- cusontheareainsider whichisclosetothelargestcircular h responds to a limiting unabsorbed X-ray luminosity L of area around the cluster center that is entirely covered by the X,u (0.7−1.4)×1030 ergs−1 cm−2 (0.3–7keV)wheretherange observation. correspondstothechoiceofmodelsspecifiedabove. We performed source detection in a broad (0.3–7.0 keV), Acis extract performs a Kolmogorov-Smirnov test on the soft(0.3–2.0keV)andhard(2.0–7.0keV)energyband, also eventarrivaltimestotestforvariability. Twosourcesarethus usedinourChandrastudyofM67(vandenBergetal.2004), found to be potentially variable, with probabilities that their tofacilitatecomparison. TheCIAOdetectionroutinewavde- count rates are constant (p ) smaller than 2.5%: CX19 tectwasrunforscalesof1.0to11.3pixels,instepsincreasing K−S √ (a candidate CV, see Sect. 4.2) for which 15 of a total of byafactor 2,withthelargerscalesappropriateforlargeoff- 19 counts are detected within 5.5 hours (p = 0.018), K−S axis angles where the point-spread function (PSF) becomes and CX37 (no optical counterpart found) for which all 9 significantly broader. We computed exposure maps for the counts are detected in the first 7 hours of the observation responseat1keVtoaccountforspatialvariationsofthesen- (p =0.024). K−S sitivity. The wavdetect detection threshold was set to 10−6, from which we expect two spurious detections per detection 3.2. X-rayspectralproperties scale(sosixteenspuriousdetectionsintotal)intheareathat Only CX1 has sufficient counts to allow a constraining weconsiderhere. Wavdetectpositionalerrorsreflectthesta- spectral fit. A spectrum was extracted from the acis extract 3http://tdc-www.harvard.edu/instruments/fast 4 http://tdc-www.harvard.edu/instruments/hectospec/ 5http://cxc.harvard.edu/sherpa 4 vandenBergetal. Table1 Chandrasourceswithin8(cid:48)ofthecenterofNGC6791 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) CX CXOUJ α(J2000) δ(J2000) r95 Offset Counts FX,u E50 Opt (deg) (deg) ((cid:48)(cid:48)) ((cid:48)) (ergcm−2s−1) (keV) Sourcesinsidethehalf-massradiusrh 1 192044.9+374640 290.187175 +37.777870 0.32 1.64 213±15 318.0 1.3±0.1 + 2 192039.8+374354 290.165914 +37.731752 0.39 3.54 151±13 242.9 1.00±0.03 + 3 192035.7+374452 290.148996 +37.747852 0.39 3.70 125±12 260.1 1.4±0.1 + 4 192056.3+374613 290.234628 +37.770331 0.34 0.66 116±11 170.7 1.4±0.1 + 5 192047.3+374318 290.197161 +37.721768 0.43 3.20 72±9 118.0 1.4±0.1 − 6 192114.4+374530 290.310342 +37.758603 0.63 4.32 72±9 112.0 1.4±0.1 − 7 192052.3+374550 290.218110 +37.764148 0.35 0.47 53±8 77.9 1.2±0.1 + 8 192038.2+374441 290.159518 +37.744838 0.46 3.33 48±7b 221.7 1.6±0.2 + 9 192058.4+375008 290.243732 +37.835590 0.56 3.98 37±7 59.8 1.6±0.3 + 10 192037.3+374612 290.155726 +37.770073 0.43 3.09 34±6 69.3 1.4±0.2 − Note. —Columns: 1)sourcenumber; 2)sourcename; 3and4)sourcecoordinatesindecimaldegreesafterapplyingtheboresightcorrectionof∆α = −0(cid:48).(cid:48)06±0(cid:48).(cid:48)06,∆δ=−0(cid:48).(cid:48)21±0(cid:48).(cid:48)04(Chandraminusoptical);5)95%uncertaintyradiusonthesourceposition;6)angularoffsetfromtheclustercenter;7)net countsinthe0.3–7keVband;8)unabsorbedflux(×10−16ergs−1cm−2)inthe0.3–7keVbandfortheassumptionthatthesourcespectrumisa2-keVMekal plasmaseenthroughaneutral-hydrogencolumnofdensity7.8×1020cm−2;9)medianenergyinthe0.3–7keVband(onlyforsourceswith>5counts);10)flag forthedetectionofacandidateopticalcounterpart.Table1isavailableinitsentiretyinamachine-readableformintheonlinejournal.Aportionisshownhere forguidanceregardingitsformandcontent. sourceregionwiththeCIAOtoolpsextract,andwasgrouped trometric reference frame of any given Chandra observation tohaveatleast20countsbin−1towarrantuseoftheχ2statis- as a whole is aligned to the ICRS with a typical 0(cid:48).(cid:48)6 accu- tic; the background contribution (<1 count) can be ignored. racy(90%uncertainty6).Wemeasuretheboresightcorrection GiventheclassificationofCX1asanactivegalacticnucleus using matches with optical variables only. This minimizes (AGN)basedonitsopticalspectrum(Sect.4.6),wetrytofit thenumberofchancealignmentsasthelightcurvesofmany the data with an absorbed power-law and find an acceptable variablesrevealthemasclosebinariesandthereforeasplau- result for a photon index Γ = 1.9±0.3 and a column den- sible X-ray emitters. A list of variables was compiled from sity NH < 1.2×1021 cm−2 (1-σupperlimit; χ2 = 9.5, 6de- the studies of Kaluzny & Rucinski (1993), Rucinski et al. greesoffreedom).ThelimitonNHisconsistentwiththeinte- (1996), Mochejska et al. (2002, 2003, 2005), Bruntt et al. gratedGalacticcolumndensityinthedirectionofNGC6791 (2003), Hartman et al. (2005), and de Marchi et al. (2007); (9×1020 cm−2,Schlegeletal.1998)whilethevalueforΓis we only selected variables that we could identify with ob- typicalforanAGN(e.g.Tozzietal.2006). jects in the S03 catalog so that we could use the S03 posi- Theremainingsourceshavetoofewcountsforusefulcon- tions for the boresighting. The boresight correction is com- straintsbyspectralfitting.Insteadweusethemethodofquan- puted iteratively. We looked for matches to X-ray sources tileanalysisdevelopedbyHongetal.(2004),wheretheme- withmorethan10netcountsandr ≤ 1(cid:48)(cid:48). Foreachsource, 95 dianenergy(E50)andthe25%and75%energyquartiles(E25 the match radius is set to be the quadratic sum of the error andE75)ofthesourcephotonsareusedtocharacterizespec- on its X-ray position, and the typical 1-σ error on the opti- tral properties. The advantage of using energy quantiles as calpositions(0(cid:48).(cid:48)27)scaledtoa95%errorradiusassuminga opposedtocomparingcountsinpre-definedenergybandsby 2Dgaussianerrordistribution. Theboresightissettobethe meansofhardnessratiosisthattheerrorsonthediagnostics weighted (with r−2) mean of the X-ray–optical offsets of all 95 arelesssensitivetotheunderlyingspectralshape matches found. Next, the X-ray positions are corrected for the boresight, and the matching is repeated, now including 3.3. Opticalidentification thestatisticalerroronthemeanboresightinthematchradius. Thisprocedurequicklyconvergestoaboresightcorrectionof 3.3.1. Cross-identificationagainsttheStetsoncatalog ∆α=−0(cid:48).(cid:48)06±0(cid:48).(cid:48)06,∆δ=−0(cid:48).(cid:48)21±0(cid:48).(cid:48)04(Chandraminusop- Welookedforopticalcounterpartsinthedeep BVI photo- tical)basedontenmatcheswithopticalvariables. Matching metriccatalogofNGC6791compiledbyStetsonetal.(2003; the boresight-corrected X-ray catalog to the clean S03 cata- S03hereafter),whichcoverstheentireareastudiedhere. The logresultsin51opticalmatches(including26variables)for limiting magnitude is V ≈ 24 for the central area but the 47sources,outofthe86X-raysourcesintotal. sensitivity is lower for the outer regions. In an attempt to TheprobabilitytofindamatchintheS03catalogbychance eliminateartifactsfromthecatalog,weremovedentrieswith depends on the projected star density (which decreases with photometric-quality indicators that flag them as suspicious, distance from the cluster center r) and on the match radius viz. sources with |sharpness| > 1, and separation index < 0; (which typically increases with r because r increases). To 95 see S03 for an explanation of these indicators and a motiva- estimatetheexpectednumberofspuriousmatches,wedivide tionforthesecriteria. the cluster in a central area defined by r ≤ r , and an outer h Wefirstmeasureandcorrectfortheboresight,i.e.apossi- areaofr < r ≤ 8(cid:48). ThecleanS03cataloggivesaprojected blesystematicoffsetbetweentheastrometricreferenceframes densityohf0.030opticalsourcesarcsec−2 and0.0092sources of the Chandra and optical positions. The optical posi- tionsaretiedtotheInternationalCelestialReferenceSystem (ICRS)withanrmsaccuracyofabout0(cid:48).(cid:48)27(S03),buttheas- 6http://cxc.harvard.edu/cal/ASPECT/celmon/ AChandraX-raystudyofNGC6791 5 arcsec−2 for the central and outer area, respectively. If we multiplythisbythetotalareacoveredbythematchcirclesof the X-ray sources, we find that the expected number of ran- dom matches is 5.9 (center), and 3.8 (outer annulus). This amountsto15%and29%ofthematchesfoundintherespec- tive regions. On the other hand, a similar calculation shows thatallmatcheswithvariablestarsarelikelytobereal,with the average number of chance alignments < 0.1 both for the centralandouterregions. In order not to overlook any matches, we repeated the matching using the entire S03 catalog, and inspected the re- gions around the Chandra sources in the optical fits image from S03 to discard matches with image artifacts or dubi- ous detections. We thus found nine extra candidate coun- terparts for eight Chandra sources, which are not included in the clean catalog because the values of the quality flags Figure2. ACS/WFCfindingcharts,eachmeasuring3(cid:48).(cid:48)4×3(cid:48).(cid:48)4insize,made slightly exceeded the adopted cutoff limits, the object is re- fromthestackedGO-9815F814Wimagerepresenting7024sofexposure timeintotal. ThecombinedX-ray/optical95%errorcirclesareshownas allyextended,orbecausetheobjectisfaintandliesclosetoa circles centered around the boresighted X-ray positions, while tick marks relativelybrightstar.Sinceselectionoftheseadditionalcoun- indicatetheopticalmatches. Exceptforthebrightcandidatecounterpartto terparts was not done in a very systematic way but relies on CX21ontheedgeoftheerrorcircle,thesematchesarefoundintheHSTdata visual inspection, it is not trivial to estimate the number of only,andnotintheStetsonetal.(2003)catalog.Northisup,easttotheleft. randomcoincidencesamongthenewmatches. Twonewcan- thesevenHSTcandidatecounterpartsarematchedtoChandra didate counterparts are matched to a single Chandra source sourceswithanothercandidatecounterpart, weestimatethat outside rh, so at least one of the two must be spurious. The anappreciablefractionofHSTmatchescouldberandom,on other seven are uniquely matched to seven Chandra sources theorderof2/7(≈29%)orevenmore.Astheastrometrically- insiderh.BasedonthehighersourcedensityintheentireS03 calibrated image is not readily available, we show the find- catalogcomparedtothecleanS03catalog,onewouldexpect ing charts of these additional identifications in Fig. 2. This tofind∼1.5extraspuriousmatchesinthecentralarea. Keep- bringsthefinaltallyoftheopticalidentificationto53candi- inginmindthatsomeoftheseoptical“sources”arenotreal, datecounterpartsfor48ofthe57X-raysourcesinsider ,and h weestimatethatatmostoneortwoofthesevennewmatches 14 candidate counterparts for 12 of the 29 sources between insiderharespurious. rh and 8(cid:48). The properties of the candidate counterparts are In total the S03 optical survey provides 60 astrometric summarizedinTables2and3,andtheirlocationsintheopti- matchesfor55sources. calcolor-magnitudediagrams(CMDs)areshowninFigures3 and4. Moreinformationonthelight-curvepropertiesofthe 3.3.2. HSTimaging opticalvariables(column10ofTable2)canbefoundbycon- Bedin et al. (2006) used Hubble Space Telescope (HST) sultingtheoriginalreferences. Variableswithnameslistedin multi-epochimagingwiththeWideFieldChannelontheAd- theformatnnnnn *werefirstdiscoveredbydeMarchietal. vanced Camera for Surveys (ACS) to measure proper mo- (2007); Table1indeMarchietal.(2007)givesanoverview tions of objects in a central 3.(cid:48)4 × 3.(cid:48)4 region of NGC6791. ofthediscoverypapersforvariableswithnamesstartingwith We make use of their results to establish cluster member- a’V’or’B’,althoughupdatedlightcurvescansometimesbe ship of candidate counterparts included in the ACS images foundinmorerecentpapersmentionedinthattable. (Sect. 4.1), and refer to Bedin et al. (2006) for details of the data and the proper-motion analysis. We also use these 3.3.3. Sourceswithmultiplecounterparts deep images to look for additional faint candidate counter- For seven X-ray sources we find two candidate counter- parts. The data set consists of F606W and F814W images parts. In four cases—CX27, CX57, CX78, CX84—one of takenon2003July16and17(GO-9815),andon2005Jul13 the two is an optical variable, and given the low probability (GO-10471). Anastrometricreferenceframewascreatedby for a chance coincidence we consider the variables to be the combiningtheGO-9815F814WimageswiththeSTScIMul- truematches. ThevariablesalllieclosertotheX-raysource tidrizzle software, which removes artifacts like cosmic rays than the alternative match. We also tentatively list the clos- and bad pixels, and corrects for the geometric distortion of estmatchtotheotherthreeX-raysourcesasthelikelycoun- ACS images. In order to align the coordinate system to the terpart in Table 2, but more information is needed to firmly ICRS,wecomputedanastrometricsolutionbasedontheposi- establish which, if any, of the two is the true match. For tionsof273unsaturatedstarsfromtheS03catalogthatcould completeness we list the properties of the alternative identi- beidentifiedinthestackedimage.Fittingforzeropoint,plate ficationsinTable3. CX34islikelyanextra-galacticsource, scale,androtationresultedinasolutionwherethermsresidu- asbothHSTcounterpartsareextended. Theclosestmatchto alsofindividualstarsare0(cid:48).(cid:48)035inrightascensionand0(cid:48).(cid:48)032 CX21 is a faint point source that is unrelated to the cluster; indeclination; thisisnegligiblecomparedtotheX-rayposi- itsHSTpropermotionistypicalforabackgroundgalaxy.The tional errors. The boresighted X-ray positions and error cir- othermatchisaproper-motionmemberonthemainsequence cleswereoverlayedonthisimage,andphotometryandproper (see also Fig. 2). CX82 matches with two bright (V < 15) motionsfortheastrometricmatcheswereextractedfromthe stars.Thenearestisaproper-motionnon-memberandalikely sourcecatalogcreatedfromtheentireHSTdataset. Wefind foregroundKdwarf. sevennewcandidatecounterpartsforsixX-raysources. The new matches are all likely extra-galactic, given their proper 3.4. Sourceclassification motion or extended morphology. From the fact that two of 6 vandenBergetal. Con72655856493628251918 868179776857a54504441393330...23221715943 CX(1) tin u11 1 1 1 1 1 1 1 111 1 edon3270460259134436591067510837562721166697 477311853737746556173971278800123907011588306113626...1111269526526371005093152893 OID(2) n extpa1.311.110.350.070.230.900.560.240.400.13 1.930.790.211.200.920.200.390.280.620.230.381.300.31...0.210.750.260.160.340.090.23 ()(cid:48)(cid:48)OXd(3) g e 99 9 ............45............... 9999909,m9,m776,mm9999999999...9899999999m... µp(4) 2212222222 1121111211111 1111122 2.9:3.058.380.830.820.142.714.093.713.99 7.557.741.067.967.659.279.912.727.898.277.209.577.96...7.137.807.867.276.512.700.64 V(5) ...0.4:−0.931.291.470.53...0.4:0.212.4:− 1.040.971.451.35...1.151.071.310.931.060.891.041.15...0.990.940.271.151.210.240.82− BV−(6) 0.5:0.540.931.691.790.920.382.121.301.45 1.030.961.931.391.531.321.352.481.011.120.941.201.29...1.071.020.261.411.220.880.63 VI−(7) (1 0 5.49.01.11.11.83.23.83.85.95.9 3.53.52.74.512.71.11.41.72.22.32.63.34.8...4.65.46.47.712.034.352.3 erg30Xu,L(8) So s− u 1 rc ) O 0.1:...−0.10.10067010±2.60.3...−±1.70.3017249−±1.50.2...−±1.50.2...−±0.40.2...−±0.20.1...±0.20.1...±0.30.1...± eswithuncertainornomemb 2.50.3V12−±2.40.2V7−±1.20.2...−±2.20.2V59−±1.90.10143110−±2.30.3V41−±1.90.3...−±0.70.2...−±2.50.2V80−±2.40.2V76−±2.80.2V5−±1.70.2V42−±2.80.2V17−±......2.50.1V100−±2.20.1V16−±2.10.1B7−±2.240.09V9−±2.350.08...−±0.580.04062899±0.060.04B8−± Proper-motionclusterm XuVlog()Var/FF(9)(10) pticalpropertiesofcandidateTable2 .........1.613.................. ershipinform 1.5230.488...13.8337.6400.482......4.8864.0920.3130.5066.366or23.94712.5222.266...3.187......... embers (days)P(11) counterparts ............midK,Hemissionα.........BalmerandHeIIemission... ation midGearlymidG/...midK,weakHemissionα......K;filled-inHαlateKearlyM;Hemissionα/...lateG,earlyKmidG...lateG,filled-inH?α...lateGearlyK/...Balmerabs.lineswithems.cearlymidK,filled-inHα/early-Kgiantemissionlines... Opticalspectrum(12) o re s FBFBAB?ABAB?FBFBFBCV?FB ABABABSSGSSGABAB?ABABSSGABABSSG...ABABCVSSGRGCVCV Clas(13) s ...long-termvariableonmainsequencespottedvariableonbinarymainseque............... eclipsingbinaryeclipsingbinaryonbinarymainseque...spottedbinaryeclipsingorspottedbonbinarymainVI−onbinarymainsequeeclipsingbinary...contactbinaryspottedbinary......spottedvariable?eclipsingorspottedb...eclipsingbinary......... Comments(14) nce nce inaryseq.nce inary AChandraX-raystudyofNGC6791 7 (13)(14)ClassComments EG...ABeclipsingbinarySirregularvariableEG...Slong-periodvariableEGextendedEG?propermotionconsistent...withbackgroundgalaxyABforegroundcontactbinaryEGextendedABforegroundcontactbinaryS...EG...EGextendedS...S...EGextendedStooredtobeamemberEGextendedS...EGextendedABeclipsingbinaryS...EGextendedEGextendedEG?extendedABspottedvariable?ABforegroundcontactbinaryS...S...Slong-termvariable magesor(forCX55only)byvisualinspectionnumericvaluesarebasedontheproper-motionmbers”)and“nm”(“(non)-members”)arebased−heF606WmagnitudeandtheF606WF814WV0.3–7keV)tobandfluxesaftercorrectingfor=CVandCV?(candidate)cataclysmicvariable,==onofbinarity,EGextra-galacticsource,FB(1993),Rucinskietal.(1996),Mochejskaetal. Table2(Continued) (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)−−dpVBVVILFFP/CXOIDlog()VarOpticalspectrumVµ,OXXuXu(cid:48)(cid:48)−301()(10ergs)(days) Sourceslikelynotassociatedwiththecluster −±≈z.153610.195920.360.650.76...0.090.03......AGN,116−±α238860.14016.221.091.35...1.860.04V331.173midK,Hemission−±778780.17015.391.211.49...2.680.06V19...late-G,early-Kforegrounddwarf−±≈z.834720.17...20.220.240.69...0.300.07......AGN,236−±12129010.92016.061.231.38...2.650.09V6650.498early-Kforegrounddwarf>13...0.25...............2.1.........a±21...0.08nm23.96...1.12...0.20.1.............................................−±2462710.292716.320.891.01...2.90.1V10.268...±26...0.22...28.5...1.5...1.90.2.........a−±27113760.04015.970.660.81...3.00.1V60.279...−±2973280.18013.600.871.26...4.00.2......midK−±≈z.31112120.25...22.270.510.75...0.60.2......AGN,153a>34...0.33...............1.6.........−±3545710.28014.621.381.35...3.70.2......mid-Kgiant−±3875340.1211,nm21.041.572.29...1.20.2.........±42...0.15...26.6...0.7...1.00.3.........−±4336290.789822.111.752.94...0.60.2.........−±≈z.4543530.37018.981.451.57...1.70.2......0092−±46100880.21011.541.101.10...5.10.2......mid-Gforegroundgiant−−±47109670.32nm23.880.22.09...0.20.2.........−±4824260.66019.531.041.15...1.80.2V110.883earlyG/−±51120370.41014.010.710.74...4.20.2......late-Fearly-Gdwarf±52...0.18...27.68...2.32...1.20.3.........−±5387050.20nm23.70.31.3...0.40.3.........b−±55...0.80...18.76.........2.40.3.........−±76148332.37016.481.001.05...2.90.2V548.314mid-G,early-Kforegrounddwarfa−±785532.58016.851.031.10...2.70.2V230.272...−±8010312.05020.360.850.94...1.30.2.........a−±82134040.03014.470.870.89...3.90.2......early-Kforegrounddwarfa−±10......84154341.49021.2:...2.9:...1.20.301225 aThissourcehasanothercandidatecounterpart,seeTable3.b(cid:48)gThecounterpartisnotincludedintheS03catalog.Thelistedvalueisthemagnitudeintheband(Plataisetal.2011). /NoteHST.—Columns:1)sourcenumber;2)numberofcandidateopticalcounterpartintheS03catalog,sourceswithoutanumberwerefoundintheACSiaftercorrectingforboresightoftheS03clusterimage;3)angularseparationbetweentheX-rayandopticalsource;4)probabilityforclustermembership,wherestudiesofPlataisetal.(2011)(thecaseofCX3isdescribedinmoredetailinSect.4.2)andK.Cudworthetal.(privatecommunication),andthelabels“m”(“me/HSTHSTontheACSstudydescribedinBedinetal.(2006);5–7)opticalmagnitudesandcolorsfromS03,exceptforthe(unnumbered)counterpartswherewelistt−301colorifavailable;8)unabsorbedX-rayluminosity(0.3–7keV)inunitsof10ergsassumingadistanceof4.1kpcandthefluxesinTable1;9)ratioofX-ray(extinction;10)nameoftheassociatedopticalvariable;11)periodofvariability;12)spectroscopicpropertiesofthecandidateopticalcounterpart;13)sourceclass:====ABandAB?likelyorcandidateactivebinary,SSGsub-subgiant,RGredgiant,SlikelyforegroundstarnotassociatedwiththeclusterwithoutanyindicatiFaintobjecttotheBlueofthemainsequence;14)comments.Informationonopticalvariabilitywasgatheredfromthefollowingreferences:Kaluzny&Rucinski(2002,2003,2005),Brunttetal.(2003),Hartmanetal.(2005),deMarchietal.(2007),Brogaardetal.(2011) 8 vandenBergetal. Figure3. (V,B−V)and(V,V−I)color-magnitudediagramsofNGC6791withthecandidateopticalcounterpartsthatareassociated,orpossiblyassociated, withtheclustermarkedinred.Candidatecounterpartsthatareproper-motionmembersareindicatedwithlargefilledsymbols,andsourceswithoutmembership informationwithlargeopensymbolsorcrosses:diamondsare(candidate)CVs,circlesare(candidate)ABs,trianglesaresub-subgiants,squaresarestarswithout anyindicationofbinarity,andcrossesmarkunclassifiedfaintsourcesawayfromthemainsequence. StarsinthefieldofNGC6791areplottedasdots,while starswithaproper-motionmembershipprobability>50%(K.Cudworth,privatecommunication)areshownassmallfilledblackcircles.Theinsetszoominon thecrowdedregionsofthediagrams.PhotometryisfromStetsonetal.(2003).SeetheelectroniceditionoftheJournalforacolorversionofthisfigure. light curve constrain the nature and period of a close bi- Table3 nary. Proper-motion information, and to some extent opti- Alternativeopticalcounterparts cal colors, can establish cluster membership and puts limits onthedistance. Todistinguishbetweenclustermembersand CX OID dOX V B−V V−I comment non-memberswemainlyrelyontheproper-motionstudyby ((cid:48)(cid:48)) Plataisetal.(2011),whichincludes41ofourcandidatecoun- 21 11098 0.78 18.48 0.93 0.97 pµ=90 terparts. Fornineadditionalcandidatecounterpartsmember- 27 11365 0.68 16.58 0.76 0.94 pµ=0,Fstar ship could be established from the HST study by Bedin et 34 ... 0.68 ... ... ... extended al.(2006,seeSect.3.3.2)andfromtheresultsoftheproper- 57 7395 0.76 21.02 1.47 1.96 non-member,Kstar motionstudybyK.Cudworth(privatecommunication). 78 569 3.12 16.50 0.95 1.03 pµ=0 WeusetheenergyquantilestoconstraintheunderlyingX- 82 13395 0.70 14.66 0.96 0.98 ... rayspectrumforsourceswithmorethan15netcounts(0.3–7 84 15442 3.01 20.64 ... 1.7 ... keV). For fainter sources the errors on the quantiles are too Note.—SeeTable2fortheclosestastrometricopticalmatchtotheX-ray largetomeaningfullysayanythingabouttheirspectra. Quan- source,andforthemeaningofthecolumns. tilecolor-colordiagrams(QCCDs)areshowninFig.5. Each panelshowstwotypesofmodelgrids,whichindicatetheex- Many factors contribute to the classification of the X-ray pectedlocationsofasourceintheQCCDforemissionfrom sources. An extended morphology of the candidate opti- aMekalplasma(blue/yellow)andforapower-lawspectrum calcounterpartseparatesextra-galacticfromgalacticsources. (black/gray). Theformerisappropriatefortheemissionfrom Based on optical spectra one can immediately distinguish hotcoronaearoundactivestarsforwhichtheplasmatemper- between AGN, accreting binaries with substantial accretion ature kT can reach up to several keV. CVs can be anywhere disks, and ordinary stars. Period and shape of the optical AChandraX-raystudyofNGC6791 9 Atotalof30sourcesarenot,orlikelynot,associatedwith thecluster. Thesearestarsandbinarieswithpropermotions that clearly set them apart from the members, background galaxies,andstarswhoseveryredcolorsclassifythemasun- likely members. They are shown in Fig. 4 and briefly dis- cussedinSects.4.5,4.6,and4.7. For ten candidate counterparts membership information is lacking or inconclusive. These sources include (candidate) ABs, a new candidate CV, and faint optical sources that lie to the blue of the main sequence; the latter are discussed in Sect.4.7. OpensymbolsandcrossesmarktheminFig.3. In the following we discuss the sources by type of X-ray emitter. Unless stated otherwise, X-ray luminosities quoted inthetextrefertothe0.3–7keVband. 4.2. Cataclysmicvariables We have detected three CVs that belong to the cluster and discovered one CV candidate without membership informa- tion. Forallfour,theX-raycolorsandluminositiesareinthe expected rangefor CVs. While the X-ray–to-opticalflux ra- tios in Table 2 are also typical for CVs, their values can be misleading: theX-rayandopticaldataarenotcontemporane- Figure4. Color-magnitudediagramofNGC6791withcandidatecounter- ous,whileCVsmayshowlargevariationsinbrightnessona partsthatarelikelynotassociatedwiththeclustermarkedinred.Downward- timescaleofweekstomonths. pointingtrianglesarebackgroundgalaxies,circlesare(candidate)ABs,and CX4 is matched to the faint cluster member and optical squaresarelikelyforegroundstarswithoutanyindicationofbinarity. HST variable 06289 9 that lies to the blue of the cluster main se- counterparts,forwhichphotometryinVandIisnotavailable,arenotshown. SeetheelectroniceditionoftheJournalforacolorversionofthisfigure. quence. Based on its optical colors and the detection of an . outburst-likeevent,deMarchietal.(2007)alreadysuggested between soft or very hard; the spectrum of a typical dwarf thatthisstarisadwarfnova.ToourknowledgetheHectospec novahaskT ≈2−10keV(e.g.Bycklingetal.2010). Power- spectrum in Fig. 6, which shows the Balmer lines clearly in lawspectraareappropriatefortheharderemissionfromAGN emission,isthefirstspectroscopicconfirmationofitsCVna- (Γ=1−2).GridsarecomputedwithSherpausingtheenergy ture. The X-ray quantiles suggest that the X-ray emission response of the source closest to the aimpoint. Variations in arises in a kT ≈ 4 − 10 keV plasma (Fig. 5). Thus L in X theshapeofthegridsasfunctionofchippositionaretypically Table2, whichwascomputedfortheassumptionofa2-keV smallerthantheerrorsonthemeasurements,andareignored. plasma,canbeupto∼40%toolow(seeSect.3.2). The ratio of the fluxes in the X-ray and optical (V) band, ThenewcandidateCVistheX-rayvariableCX19,which or limits thereon, can help to classify a source, even in the is matched to a faint blue object with a Hectospec spectrum absence of an optical match down to the limit of the obser- that shows HeII 4686 Å and Hβ emission lines (Fig. 6), vations. We compute this ratio as follows: log(F /F ) = X opt u and hints of Hα and Hδ in emission. The X-ray luminosity log(Fx)u + (V − AV)/2.5 + 5.44. The zeropoint for the V- (L ≈ 6×1030 ergs−1),thehardspectrumassuggestedby bandfluxistakenfromBesseletal.(1998). Thetotalextinc- X,u its quantile values (Fig. 5), and the high (F /F ) ratio, are tion A was assumed to be equal to the cluster value, which X V V all consistent with a classification as CV. HeII 4686 Å is of underestimates (overestimates) the flux ratio for foreground comparablestrengthasHβ. Thisisseeninhighmass-transfer (background) objects. Typically, stars and active binaries rate systems (nova-like CVs), and in CVs containing white havelog(F /F ) (cid:46) −1,whileAGN,CVsorotheraccreting X V u dwarfswithmuchstrongermagneticfields(i.e.(cid:38)1MG)than binaries with unevolved late-type companions, and very ac- in dwarf novae systems. If we assume cluster membership tivelate-typedwarfscanhavehigherratios(e.g.Stockeetal. wefindanabsolutemagnitude M ≈ 10.2, whichfavorsthe 1991). V explanationasamagneticCV. CX3 and CX17 are the known, spectroscopically- 4. RESULTS confirmed CVs B8 and B7 (Kaluzny et al. 1997). With 4.1. Clustermembersversusnon-members L ≈ 5.2×1031 erg s−1, B8 is the brightest X-ray source X,u Twentycandidatecounterpartsarepropermotionmembers. in the cluster. The actual value of L is likely higher, as the X Of these, all but one (CX9) show signs of binarity. On this X-ray quantiles suggest a plasma temperature (∼4 keV) that basisweconsideratleast19ofthemasthetruecounterparts is higher than our nominal value. B8 has been classified as totheChandrasources. Wederivethebinarystatusandtype aSUUMadwarfnovabasedonthedetectionofseveralout- ofbinaryfromtheopticalspectra,theopticallightcurves,ora bursts of 1–2 mag in amplitude, and a recent superoutburst locationintheCMDonthebinarymainsequence,indicating (∼3 mag) in the Kepler light curve (Mochejska et al. 2003; thatanunresolved multiplesystemisresponsiblefor thede- Garnavich et al. 2011). We include B8 among the cluster tectedlight. TheclusterbinariesareamixofCVs,ABs,and members. Plataisetal.(2011)estimateda10%membership binariesbelowthesub-giantbranch,andarediscussedfurther probability from proper motion, but closer inspection of the inSects.4.2, 4.3, and4.4, respectively. CX9isdiscussedin data reveals that a few detections of this star were contam- Sect.4.5. Clustermembersaremarkedwithfilledsymbolsin inated by a fainter close neighbor. When the affected data theCMDsofFig.3. pointsarenotconsidered,thepropermotionofB8isconsis- 10 vandenBergetal. Figure5. Quantilecolor-colordiagramswithmodelgridsrepresentingaMekalplasma(blue/yellow)andapower-lawspectrum(black/grey). Foracertain choiceofmodel,theplasmatemperatureorspectralindex,andthecolumndensitycanbeestimatedfromthelocationofasourceinsidethegrid. Themedian energyE50canbereadofffromthetopx-axis. SymbolsareasinFigures3and4,whileblackfilledcirclesmarksourceswithoutopticalcounterparts. Dueto theirdifferentenergyresponses,sourcesonthebackground-illuminated(BI)S3chipandforeground-illuminated(FI)S2andS4chipsareshowninseparate panels.Weincludesourceswithmorethan15netcounts(0.3–7keV);errorbarsareshownonlyforthesourceswiththehighestandlowestnumberofcounts. tentwithclustermembership. troscopicbinariesinthe6.5-GyroldopenclusterNGC188it CX17 or B7 is a solid cluster member. The X-ray quan- is expected that, for main-sequence binaries, orbits up to at tiles indicate that kT ≈ 2 keV. Most reports in the literature least15dayshavebeencircularizedattheageofNGC6791 find B7 to be relatively bright with V ≈ 18, which suggests (Mathieuetal.2004). Therefore,sincetidalsynchronization a high mass-transfer rate; occasional small (0.5–1 mag) out- operatesonashortertimescalethantidalcircularization(Hut bursts, and a drop in brightness of ∼3 mag in V have also 1981; Zahn 1989), main-sequence binaries with periods be- beenseen. Mochejskaetal.(2003)proposethatB7isanova- low15daysarealsoexpectedtobetidallylocked. Allofour like variable of the VY Scl type, or perhaps a ZCam dwarf main-sequenceABswithmeasuredphotometricperiodshave nova mostly seen during periods of standstill between mini- periods shorter than 4.9 d; in Sect. 5.2 we discuss how this mum and maximum brightness. Our Hectospec spectrum is couldbeduetotheperiodversusX-rayluminosityrelationof qualitativelysimilartothespectruminKaluznyetal.(1997), ABsandourdetectionsensitivity. CX50,CX54,andCX79 andlikelytakenwhenthemass-transferratewashighandthe arenotidentifiedwithknownvariables,buttheylieonthebi- disk optically thick: the spectrum shows broad Balmer ab- nary main sequence or have Hα in emission in their spectra, sorptionlineswithnarrowemissioncores,withtheemission whichisasignatureofenhancedmagneticactivity. Wenote componentdominantinHα(Fig.6). that in the V versus B−V CMD, CX54 lies slightly to the TheX-ray–to–opticalfluxratiosandblueopticalcolorsof blueofthemainsequence. Thisisnotexpectedforthecom- CX18, CX25, CX28, CX36, CX65, and CX72 resemble binedlightoftwomain-sequencestars,soitsclassificationas thoseofCVs, andthesesourcesareprimetargetsforoptical ABislesssecure. Perhapsthisstarisanon-memberafterall, follow-upspectroscopy. withapropermotionthatissimilartothatoftheclusterstars. Radial-velocitymeasurementscanprovidemoreclarity. 4.3. Activebinaries Stars that have evolved past the turnoff, i.e. have evolved Weclassifyatotaloftwentysourcesaslikelyorcandidate to larger radii, can in principle circularize wider orbits than ABs. Thanks to the extensive photometric variability stud- main-sequence stars within a given time span as the circu- iesofNGC6791,theorbitalperiodsofmanyofthesecanbe larization time scale is very sensitive to radius. For the sub- inferred from the light curves, either through eclipses, ellip- giant AB CX23 the eccentricity is unknown, and estimates soidalvariations,orspotactivity.Amongtheclustermembers of the binary period are only known from photometric vari- wefindelevenABs,includingeightwithphotometricperiods ability. Brunttetal.(2003)quoteaperiodof∼12.5d, while (Table 2). Most have colors that place them near the main Mochejskaetal.(2005)findnearlytwicethatvalue,∼23.9d. sequenceor,inthecaseoftheWUMacontactbinaryCX39, FromtheVandB−Vmeasurementsoftheopticalcounterpart, rightattheturnoff.ForCX86,the1-sigmaerrorsonB−Vand weestimatethattheradiusoftheprimaryisatmost∼2.8R(cid:12) V −I aresuchthatitcouldlieanywherefromjustbelowthe (Flower1996); asbothcomponentsofthebinarylikelycon- turnofftothebaseofthered-giantbranch.CX23liessecurely tribute to the measured optical light, the actual radius of the above the sub-giant branch, and we discuss it separately be- primaryissmaller. Ifwenowlookatthediagnosticdiagram low. NGC6791isatleast8Gyrold;bycomparisontotheor- in Verbunt & Phinney (1995, Fig. 5a; appropriate for a pri- bitalperiodversuseccentricitydistributionofsolar-typespec- mary mass of 1.25 M(cid:12), i.e. somewhat larger than the turnoff

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.