Astronomy&Astrophysicsmanuscriptno.Chrom_RM_sim_letter_ref_nobold (cid:13)cESO2017 January6,2017 A cautionary tale: limitations of a brightness-based spectroscopic approach to chromatic exoplanet radii H.M.Cegla1,2,3,C.Lovis2,V.Bourrier2,C.A.Watson1,andA.Wyttenbach2 1 AstrophysicsResearchCentre,SchoolofMathematics&Physics,Queen’sUniversityBelfast,UniversityRoad,BelfastBT71NN, UnitedKingdom 2 ObservatoiredeGenève,UniversitédeGenève,51chemindesMaillettes,1290Versoix,Switzerland 3 SwissNationalScienceFoundationNCCR-PlanetSCHEOPSFellow 7 Received31102016/Accepted23122016 1 0 2 ABSTRACT n Determiningwavelength-dependent exoplanetradiimeasurementsisanexcellentwaytoprobethecompositionofexoplanetatmo- a spheres.Inlightofthis,Borsaetal.(2016)soughttodevelopatechniquetoobtainsuchmeasurementsbycomparingground-based J transmissionspectratotheexpectedbrightnessvariationsduringanexoplanettransit.However,wedemonstratehereinthatthisisnot 5 possibleduetothetransitlightcurvenormalisationnecessarytoremovetheeffectsoftheEarth’satmosphereontheground-based observations.Thisisbecausetherecoverableexoplanetradiusissetbytheplanet-to-starradiusratiowithinthetransitlightcurve;we ] demonstratethisbothanalyticallyandwithsimulatedplanettransits,aswellasthroughareanalysisoftheHD189733bdata. P E Keywords. Methods:dataanalysis–Planetsandsatellites:atmospheres–Planetsandsatellites:fundamentalparameters–Planets andsatellites:HD189733b–Techniques:radialvelocities–Techniques:spectroscopic . h p - o1. Introduction curve to allow one to study the local, occulted stellar profiles r directly by subtracting the in- from out-of-transit observations tTransmission spectroscopy is an essential tool for charac- s (see,e.g.Ceglaetal.2016a).Sincethetransitlightcurveisde- aterising the atmospheres of transiting exoplanets (see e.g. pendentontheplanet-to-starradiusratio,itsetstheplanetradius [Charbonneauetal. 2002; Pontetal. 2013; Madhusudhanetal. thatisrecoverablewhenexaminingthebrightnessratiobetween 2014; Singetal. 2016, and references therein). Snellen (2004) 1 thelocalandout-of-transitprofiles(meaningonecannotrecover demonstratedthat narrowbandexoplanetfeatures(e.g. sodium) v newradiusvariationsfollowingB16). 1could be probed by analysing the shape of the stellar absorp- In this study,we first breakdown the physicalimplications 5tion lines as a planet occults its host star, that is, by studying of the B16 technique, and then simulate the planet transit of 2the chromaticRossiter-McLaughlin(RM) effect;more recently HD189733b to illustrate the impact of the technique’s short- 1DiGloriaetal. (2015) have shown that this effect can also be comingsonthemeasuredplanetradius;wealsoreapplytheB16 0used to probe broadband signatures (e.g. Rayleigh scattering). techniqueto HARPSdata,with a morerigorouserrorpropaga- .Recently, Borsaetal. (2016, hereafter B16) presented a new 1 tion. In Sect. 2, we demonstrate how the choice of the transit 0techniqueusing(aversionof)line-profiletomography,withthe lightcurvenormalisationsetstherecoverableplanetradius.We 7intent of studying chromatic changes in planetary radii. How- present the simulated planet transits, and our reanalysis of the 1ever,we demonstratein thisLetterthatthe techniquein B16 is HARPSdatainSect.3,andshowhowanunderestimationofthe :unfortunatelyflawed. v errorscanleadtospuriousclaimsofplanetaryradiusvariations. i In principle, the application of line-profile tomography is Finally,wesummariseourconclusionsinSect.4. Xwellmotivatedforexoplanetatmospherecharacterisationifcor- 2. Limitationsofabrightness-basedapproachto rrectlyimplemented.Thistechniqueisolatesthestarlightbehind a chromaticexoplanetradii the planet during transit (CollierCameronetal. 2010), and the ratio of the integrated flux within the local profile (behind the In B16, the authors attempted to study passband-dependent planet) to the out-of-transitprofile is equalto the brightnessof planet radius variations by averaging together the cross- theoccultedstarlight.Inturn,theratioofthe occultedstarlight correlationfunctions(CCFs)forsubsetsofHARPSspectralor- is dependent on the planet-to-star radius ratio. As such, if one ders. All of these CCFs, regardless of passband, were contin- had space-based spectra then the planet radius could be recov- uumnormalisedandthenfurtherscaledusingaMandel&Agol ered fromthe spectra alone, anddoingso in variouspassbands (2002)transitlightcurvebasedonthesystemparametersdeter- wouldcharacterisetheplanetaryradiuswavelengthdependency. minedinthefullHARPSpassband,exceptforpassbanddepen- For ground-basedspectra this is notpossible due to, for exam- dentlimbdarkeningcoefficients. ple, transparency variations of the Earth’s atmosphere. To re- For each passband,theycreatedmaster out-of-transitCCFs move these effects, ground-based spectra must first be contin- byaveragingtogetheralltheindividualout-of-transitCCFsina uum normalised; they can then be multiplied by a transit light givennight,andthensubtractingtheout-fromthein-transitdata toobtainCCFsforthestarlightoccultedbytheplanet.Theau- Sendoffprintrequeststo:H.M.Cegla,e-mail:[email protected] thorsthenfittedGaussianfunctionstotherespectiveCCFs,pre- Articlenumber,page1of5 A&Aproofs:manuscriptno.Chrom_RM_sim_letter_ref_nobold sumablytoactasaproxyfortheintegratedfluxwithin,andar- (Borsa,PrivateComm.),suchthat guedthattheratiobetweentheareas(determinedfromtheGaus- CCFB16 =−CCFC16+β , (6) sianfits)ofthelocaltotheout-of-transitCCFscouldserveasa loc loc lc measure of the brightnessof the missing starlight, β, occulted whereCCFC16 is thelocalCCF obtainedfollowingC16.Since duringthein-transitobservations. loc thecontinuumisa freeparameterintheGaussianfits,theratio Theauthorsthencomparedthisempiricalβtotheexpected oftheareasisstillequaltothatinEq.4. brightness ratio based on an approximation to the solution for Assuch,thetechniqueimplementedbyB16representsacir- integratingthestarlightbehindtheplanetgiventheparticularge- cularargument.Moreover,ifonehadthebroadbandphotometry ometryofthesystem(andassumingaparticularfunctionforthe necessaryforthecorrectspectralnormalisation,thentheplanet limbdarkening).Sincethissolutionwasdependentontheplanet radiicouldbedetermineddirectlyfromthelightcurvesalone. radius, the authors argued that they were able to disentangle a We stress that a solely brightness-based approach to trans- planetradiusmeasurementforeachpassband. missionspectroscopyusesonlytheequivalentwidth,andthere- We demonstrate in Sect. 2.1 that the technique outlined by foreprecludesanyretrievalofinformationonexoplanetradii.It B16canonlyrecovertheplanetaryradiussetbythetransitlight istheinclusionofthespectraldimensionthatisnecessarytode- curveusedintheinitialnormalisation.However,weemphasise termineR (i.e.utilisingtheDopplerinformation,asisdonein p that such a limitation is set due to a flux-based approach and CollierCameronetal.2010;DiGloriaetal.2015). would not be present in an RV-based approach,such as that in 3. Systematiceffectsonchromaticradius DiGloriaetal.(2015)orthatintraditionallineprofiletomogra- phy(i.e.followingtheCollierCameronetal.2010formulation). measurements To try to understand how B16 obtained results mimicking 2.1.Transitlightcurvenormalisation Rayleighscattering,wesimulatedthetransitofHD189733band B16startedbydeterminingtheareaoftheirout-of-transitmaster applied their technique. To demonstrate that we could recover CCFs, Aout, for each passband. Since the out-of-transit master ourmodelinputs,wealsopresentresultswhereinweappliedthe CCFs (CCFout) were continuum normalised their area is equal normalisation from C16 with the correct planet radii for each totheirequivalentwidth,EWout,thatis, passband;indoingsowediscoveredtheapproximationsforβin B16underestimatedtheplanetradii,andthuswealsoexploreda Aout = EWout. (1) numericalapproachforcalculatingthisbrightnessratiothatwas moreaccuratethantheapproximationusedinB16. TheauthorsalsomeasuredtheareasofthelocalCCFsbehindthe planet,A .Sincethein-transitCCFs(CCF )arenormalisedby 3.1.Analyticalbrightnessratioapproximation loc in thetransitlightcurve,theareaofthelocalCCF(CCF )is loc Unfortunately,integrating the limb darkened brightness under- A =(1− f )EW =β EW , (2) neath a planet lying off stellar disc centre is not straightfor- loc lc loc lc loc ward and even approximate analytical expressions are quite where f is the flux from the light curve, EW is the equiva- complex(especially if considering ingress and egress regions). lc loc lent width of the local CCF, and β is the fraction of starlight For this reason, B16 used the β formalism presented in lc occultedbytheplanetundertheassumptionsofthetransitlight CollierCameronetal.(2010),whichwasbasedontheanalytical curveusedinthenormalisation. approximationsofOhtaetal.(2005)fortheRMeffect.Therein Inanidealcase,wherethelocalstellarphotosphericprofiles thebrightnessratioforafullyin-transitplanet(i.e.noingressor can be represented by constant Gaussian functions (assumed egressregionswereconsidered)wasdefined,underthestandard bothaboveandinB16),thentheonlydifferencebetweenthelo- linearlimbdarkeninglaw,as: calanddisc-integratedout-of-transitCCFsisthebroadeningby stellarrotationpresentinthedisc-integratedobservations.Since R 21−u +u ∗µ therotationalbroadeningpreservestheequivalentwidth,then β≈ p 1 1 , (7) R ! 1−u /3 ⋆ 1 EW =EW = EW , (3) out loc in whereR isthestellarradius,R istheplanetradius,u isthelin- ⋆ p 1 earlimbdarkeningcoefficient,andµisthecentre-to-limbplanet wheretheEW andtheEW arenotonlyequaltoeachother out loc butarealsoequaltothein-transitequivalentwidth,EW (since position.Wenotethatµ=cos(θ)= 1−x2 −y2,whereθisthe in p p itissimplyasummationoflocalprofilesofequalEW),andthe centre-to-limbangle, and x ,y is tqhe centre of the planet (see p p ratiooftheareasbecomes: CollierCameronetal.2010;Ceglaetal.2016a,fordetails).We alsonotethatOhtaetal.(2005)statethattheaccuracyofthisap- A loc =β . (4) proximationdiminisheswithincreasingR /R ,arguingthatthe A lc p ⋆ out additionalterms in the analytical solution contribute to ∼1% if R /R is≤0.1anduptofewpercentifR /R ∼0.3.Giventhat Hence, under the above assumptions one can only recover p ⋆ p ⋆ R /R isonlypredictedtovaryafewprecentinwavelengthfor the planetradiusinjected into the modeltransitlight curve,re- p ⋆ particularatmosphericcharacteristics,suchasRayleighscatter- gardlessofwhichpassbandisstudied.Thisisbecausethetran- ing, this approximationmay inject systematic errors that could sit light curve normalisation effectively sets the area of the lo- be misinterpreted as having a physical origin (even if the light cal profile. We note, that the transit light curve normalisation curvenormalisationisdonecorrectly). fortheabovefollowsCeglaetal.(2016a,hereafterC16),where CCF =CCF − f ∗CCF ;whereas,thetransitlightcurve loc out lc in 3.2.Numericalbrightnessratioapproximation normalisationinB16was ToinvestigatetheimpactoftheaccuracyofEq.7,wedecidedto CCFB16 =CCF f −CCF +(1− f ) (5) calculateβnumerically.Forthisapproach,thein-transitstarlight loc in lc out lc Articlenumber,page2of5 Ceglaetal.:Limitationsofabrightness-basedapproachtochromaticexoplanetradii Simulated Data HARPS Data 1 in 4 pts Oversampled Borsa 0.158 0.158 d e er v co 0.156 R*0.156 R/R Re*p R/p 0.160 Nightly (1 in 4 pts) 0.158 0.154 0.154 0.156 0.154 CB1166 TTeecchhnniiqquuee 00..115502 AJSuuelgp ‘0 ‘‘00776 Simulated R p 0.152 0.152 400 500 600 700 400 450 500 550 600 650 400 500 600 700 Wavelength (nm) Wavelength (nm) Fig. 1. Recovered average planet radius, R , from the simulated data Fig. 2. Recovered average planet radius, R , for each passband as a p p foreachpassbandasafunctionofwavelength(plottedusingthemid- functionofwavelengthfortheobservedHARPSdata.ResultsfromB16 dlewavelengthinthepassband).Filledcirclesrepresentwhenthesim- areshowningreen(wherethewavelengtherrorbarsrepresentthepass- ulated R was constant, and hollow circles represent when the simu- band wavelength region), and those from our reanalysis are shown in p latedR varied;inbothcasestheseareshowninredwiththeerrorbars red when using the oversampled CCF and in black when using only p reported byB16 for comparison purposes only. Resultsfromthe B16 everyoneinfourpointsintheCCF.Subplot:thenightlyrecoveredR p procedureareshowninblack,whilethosefromthenumericalapproxi- whenusingonlyeveryoneinfourpointsintheCCF(nightindicatedby mationhereinandtheC16formulationareinblue.Thelinesrepresent colour).ThehorizontaldashedlinesshowthemeanR recoveredbythe p linearfitstothesimulatedR shownforviewingease. B16methodonthesimulateddata(i.e.thesolidblackpointsinFig.1). p blocked by the planet is still defined as β = Floc/F⋆, with F⋆ 3.3.Simulatedstar-planetsystem andF definedasthefluxesofthetotalstellardiscandthestel- loc lardiscundertheplanet,respectively.Notetheobservedbright- WeusedthesimulatedstellargridofCeglaetal.(2015,2016b) ness of the un-occulted star can be analytically determined by and injected into each grid cell a Gaussian profile with a full- integratingagivenlimbdarkeninglawovertheprojectedstellar width half-maximum(FWHM) of 5 km s−1 (note this width is disc;foralinearlimbdarkeningthisis similartotheexpectedvalueforthestellarphotosphere).Inthe simulatedstarwedidnotconsideranyastrophysicaleffects(i.e. granulationor starspots etc.) other than rigid body stellar rota- tion,whichwas set to the valueobtainedbyC16, 3.25kms−1. F =R2 2π 1I(µ)µdµdφ=πR2 1− u1 , (8) Wealsoassumedanedge-on(i⋆ =90◦)alignedorbit. ⋆ ⋆Z Z ⋆ 3 ! The transit was sampled in 21 equal steps in phase from 0 0 −0.02−0.02,centredaboutmid-transit,withanadditionalsam- whereφistheazimuthalangle.Aspreviouslystated,calculating ple at phase = 0.03 to serve as a completely out-of-transitref- the flux behind the planet analytically is not trivial. Hence, we erence. We simulated a transit for each of the seven passbands calculatedF numericallybyconstructingasquarestellargrid (from400−700nm)usedinB16,andappliedalinearlimbdark- loc with a width of 2R centred about the planet position (x ,y ), ening using the coefficients (for each passband) these authors p p p withnequalstepsintheverticalandhorizontaldirection.Con- provided.Foreachofthesevenpassbandtransitswe injecteda tributionsfromstepsthatdidnotliebeneaththeplanetand/oron planetwithaconstantradiusequaltothevalueassumedbyB16 the stellar disc were excluded.Thus, we approximatedthe flux for the whole HARPS passband (Rp = 0.1581R⋆, hereafterre- behindtheplanetas ferred to as the broadband Rp), but varied the limb darkening accordingly. 2R 2 Forthissetoftransits,wetestedtheimpactofthetransitlight F ≈ I p , (9) curvenormalisation.Inthefirstcase,wefollowedtheprocedure loc xy X n ! in B16, and in the second case we normalised the data follow- ing C16 and used the numerical approximation in Sect. 3.2 to whereIxyisthelimbdarkenedintensityatagivenpositioninthe estimateRp.Examiningthefirstcaseallowedustoexamineany aforementionedgridand(2R /n)2isthecorrespondingarea. errorsintroducedusingtheβapproximationand/ortheB16nor- p OuraimwastotrytorecoverR asafunctionofwavelength, malisation.Ontheotherhand,thesecondcaseofferedatestcase p wherein the injected R was only used to construct the correct toensurewecouldrecoverthemodelinputs. p lightcurves(actingasifwehadsimultaneousmulti-colourpho- For a secondtest, we repeatedthe above,butvariedthe ra- tometry).Hence,whentryingtorecoverR ,westartedwiththe diusofthesimulatedplanet;forthisweselectedR equaltothe p p broadbandplanetradiusandthen allowedit to varyby upto ± valuesreportedbyB16foreachpassband.Againwetestedtwo 0.005R instepsof0.0001R .Therecoveredplanetradiusthen cases: first followingthe B16 procedure(where the lightcurve ⋆ ⋆ corresponded to the planet radii that minimised the difference limb darkeningvaries in each passband, but the light curve ra- betweenβandA /A . dius remains fixed at the broadbandR ), and the second using loc out p Articlenumber,page3of5 A&Aproofs:manuscriptno.Chrom_RM_sim_letter_ref_nobold theC16normalisation(wenotetheassumedlightcurvehasthe Table1.Bestfitstoobserveddata correctR here)andthenumericalapproximationinSect.3.2. p Data Function BIC χ2 Function BIC χ2 r r 3.3.1. Obtainingtheplanetradiusandsystematicerrors 1in4pts Flat 13.9 2.0 Linear 11.7 1.6 Oversamp. Flat 65.4 10.6 Linear 29.1 5.0 WeexaminedtherecoveredR asafunctionofstellardiscposi- p B16 Flat 13.1 1.9 Linear 5.2 0.3 tion,andfoundonlyaslightdependanceondiscpositionwhen following B16. However, if one point each at the ingress and planetradii(inblack)areconsistentwithaflatline(within1−3σ egressregionswereincludedthenthedependenceondiscposi- of the mean R recovered in the simulated data, i.e. the solid p tion was strong, and including such data would systematically blackpointsinFig.1),asexpectedfromSect.2.Webelievethe decrease the recovered Rp (as the β formulationis not valid in reason B16 report a trend with wavelength, and we do not, is theseregions). largelyduetodifferencesinourerroranalysisandGaussianfit- Moreover,wefoundthat,regardlessoftheB16orC16nor- tingtechniques. malisation, using the β approximation always underestimated InB16,therecoveredR foreachstellardiscpositionandall p the limb darkeningbehind the planet and thereforealso under- threetransitswereaveragedtogethertoprovideoneR foreach p estimated the true planet radius. This is because the analytical passband, and the reported errors came from the rms of these approximationassumesthelimbdarkeningbehindtheplanetis individualplanetradii(i.e.thestandarddeviationdividedbythe constant,andequaltothevaluebehindthecentreoftheplanet.In squarerootofthetotalnumberinthepassband).Inouranalysis, reality,thestellarphotospherebehindtheplanetexhibitsarange wereporttheweightedmeanforeachpassband,withtheweights oflimbdarkening.ThisiswhythenumericalmodelinSect.3.2 being the inverse square of the error for each individualplanet isnecessarytorecovertheR injectedintothesimulateddata. p radii(wheretheerrorwascalculatedbypropagatingtheerrorson The Rp reportedin B16 comesfromaveragingtogetherthe theCCFareasasreportedfromtheGaussianfitsfollowingC16, planet radii recovered across the stellar disc. If the limb dark- andassumingnegligibleerroronthelimbdarkeningandstellar ening effects are sufficiently removed(and the stellar profile is discpositions).Theerrorontheweightedmeanthenwassimply constant), then this providesa goodmeans to boost the signal- thesquarerootoftheinversesumoftheweightssquared.Ifthe to-noise in the reported Rp. In Fig. 1, we present the average errors on individual Rp were all exactly equal to the standard recoveredRp asafunctionofwavelengthfromthesimulations, deviation,thenthetwoapproacheswouldyieldthesameresult. forbothtests(whenR wasconstantandwhenitvaried).Asex- p In addition to this slight difference in error analysis, B16 pectedfromSect.2.1,theB16procedurealwaysresultsinnearly also applied their Gaussian fits to the oversampled CCF grid thesameR ,regardlessofwhetherthetrueR variedornot. p p provided by the HARPS pipeline (Borsa, Private Comm.). We For ournumericalapproachand the C16 normalisation,we cautionagainstsuchanapproach,astheoversamplingwilllead demonstrate accurate recovery of Rp (regardless of whether or toasignificantunderestimationoftheerrors.Hence,wealsofit notweincludeingressandegressdata),butonlyifthelightcurve Gaussianstodatacomposedofeveryoneinfourpointsfromthe normalisationisdonewiththecorrectRpforeachpassband(us- originalCCFs (to compensate for the originalsampling rate of ing the broadband Rp for all passbands meant only the broad- 0.25kms−1forameanpixelwidthof0.82kms−1);theseresults bandRp wasrecovered).Hence,regardlessofthenormalisation areshowninblackinFig.2. (i.e.B16orC16)orthebrightnessformulation(i.e.βorournu- TotestthesignificanceofatrendinR withwavelength,we merical approximation),we could only retrieve the parameters p fitted the data with both a flat line and a linear regression, and injectedintothesystemviathetransitlightcurvenormalisation, calculatedthereducedchi-squared,χ2, andtheBayesian Infor- asexpectedfromSect.2. r mation Criterion (BIC); the results are shown in Table 1. We notethatevenifawavelength-dependentR isfound,itdoesnot 3.4.ReanalysisoftheHARPSdata p confirm the B16 technique is valid, as we have already shown OurapplicationoftheB16procedureonthesimulateddatacan- it is not mathematically possible to retrieve radius variations. not explain the wavelength-dependent planet radii reported in Rather, it would serve as a red flag that we do not fully char- B16. To further investigate this aspect, and to ensure we have acterise the interplayof the variouscomplexitiespresentin the appliedtheB16methodcorrectly,wehavereanalysedthesame observations.Inparticular,stellaractivitycanaltertheobserved threetransitsofHD189733bfollowingtheirtechnique,butus- stellar line shapes and their equivalent widths – which in turn ing the Levenberg-Marquardt least-squares minimisation from couldleadtospuriousradiusvariationsfollowingSect.2.Since MPFIT (Markwardt 2009, and references therein) rather than HD189733isaknownactivestarthisislikelyscenario;andin IDL’s GAUSSFIT1. The results are plotted in Fig. 2, alongside agreementwithFig.5fromB16,whereinthesinglenightanal- thosefromB162.Wedemonstratewecanreproduce(redpoints ysis with the most apparent slope, July 2007, is also the most inFig.2)resultsin1-2σagreementwithB16(ingreen);hence, magneticallyactive(Ceglaetal.2016a).Moreover(andasnoted we are confident we have applied their technique properly (in byB16),McCulloughetal.(2014)havearguedthattheapparent boththe simulatedandobserveddata).However,we arguethat wavelengthdependencyintheirindependentobservationsofthis with the correct treatment of the uncertainties the recovered system are best explained by un-occulted starspots rather than theplanetatmosphere. 1 MPFIT did not produce significantly different results compared to When using the oversampled CCFs, both our analysis and IDL’sGAUSSFIT,butitdidallowustopropagateourerrorsmorethor- B16’sindicate a slight improvementin fit for the modelwith a oughly(seeC16fordetails). wavelength-dependent slope. However, we find a much worse 2 WenotethatweusedthesametransitparametersasB16,butthere fit to the data than that found with the B16 results. The high is a slight difference in the template mask used to obtain the CCFs. χ2 from our reanalysis indicates an underestimation of the un- B16 used the archival data available from the ESO website, where 2 r nights used theG2 mask and 1night used the K5mask, whereasour certaintyinthedata,asonewouldexpectwhenusingtheover- dataalwaysusedtheK5mask.However,thisdifferenceisunlikelyto sampledCCFs. We cannotexplainthe verylow χ2r forthe B16 impacttheanalysissinceeachnighthaditsownmasterCCF . wavelength-dependentfit, which indicatesthe modelis overfit- out Articlenumber,page4of5 Ceglaetal.:Limitationsofabrightness-basedapproachtochromaticexoplanetradii ting the data. We note these tests were only performed on our Charbonneau, D.,Brown,T.M.,Noyes,R.W.,&Gilliland, R.L.2002,ApJ, reanalysisoftheoversampleddataforcomparisonwithB16;for 568,377 ourconclusionsonthebest-fit,wereferthereadertotheanalysis Collier Cameron, A.,Bruce, V. A., Miller, G. R. M., Triaud, A.H. M. J., & Queloz,D.2010,MNRAS,403,151 ontheCCFssampledeveryoneinfourpoints. DiGloria,E.,Snellen,I.A.G.,&Albrecht,S.2015,A&A,580,A84 Fortheproperlysampleddataset,wefoundonlyamarginal Madhusudhan, N.,Knutson,H.,Fortney, J.J.,&Barman, T.2014,Protostars improvement in the fit for the wavelength-dependent model, andPlanetsVI,739 anddonotdeemthisimprovementtobestatisticallysignificant Mandel,K.&Agol,E.2002,ApJL,580,L171 (see Table 1). Moreover,the best-fitflat model(R = 0.1569± Markwardt,C.B.2009,inAstronomicalSocietyofthePacificConferenceSe- p ries,Vol.411,AstronomicalDataAnalysisSoftwareandSystemsXVIII,ed. 0.0003)lieswithin3σofthemeanR predictedbythesimula- p D.A.Bohlender,D.Durand,&P.Dowler,251 tions.Theslightimprovementfortheslopedmodelisalsoheav- McCullough, P.R.,Crouzet, N.,Deming,D.,&Madhusudhan, N.2014,ApJ, ilyinfluencedbyonlyacoupledatapointsfromasingletransit, 791,55 inAugust2007,asshowninthesubplotofFig.2.Ifthebest-fit Ohta,Y.,Taruya,A.,&Suto,Y.2005,ApJ,622,1118 Pont,F.,Sing,D.K.,Gibson,N.P.,etal.2013,MNRAS,432,2917 modelis robust, itshould withstandremovingthe Augusttran- Sing,D.K.,Fortney,J.J.,Nikolov,N.,etal.2016,Nature,529,59 sit; however, doing so means the data is then best-fit by a flat Snellen,I.A.G.2004,MNRAS,353,L1 line(χ2 =1.6,BIC=11.1andχ2 =1.7,BIC=12.6forflatand r r sloped line, respectively).Consequently,we believe B16 likely reportawavelength-dependenttrendinR duetoinsufficienter- p ror analysis, and that its agreement with the literature may be purelycoincidental. 4. Conclusions Weoutlineourconclusionsonapoint-by-pointbasisbelow. – Thetechniquepresentedin B16 usingthe ratioof the areas ofthelocal(starlightbehindtheplanet)totheout-of-transit CCFcannotbeusedtodetermineR ,asR mustbeknown p p aprioriforthetransitlightcurvenormalisationrequiredfor ground-based spectra. This is shown both analytically and usingasimulatedstar-planetsystem. – TheanalyticalβapproximationusedinB16alsointroduces (slight) systematic trends with planet position due to inad- equately accounting for limb darkening and fractional area occultationeffects,andunderestimatesthevalueofR . p – WepostulatethattheR variationsreportedinB16arelikely p duetounderestimatederrors(largelyoriginatingfromuseof oversampled CCFs), as our reanalysis of the HD189733b transitsfurtherdemonstratesthattheonlyR recoverableis p thatinjectedintothetransitlightcurvenormalisation. – Chromatic RM measurements from ground-based spec- tra are not possible without taking the Doppler informa- tion into account. Hence, for future measurements, we ad- vise readers to either follow the works of Snellen (2004); DiGloriaetal. (2015) or to apply the line-profile tomogra- phyof CollierCameronetal. (2010) directly on each spec- tralpassband. Acknowledgements. We thank the referees, I. A. G. Snellen and S. Albrecht, fortheircarefulreadingandconstructivecomments,whichimprovedtheclarity ofthemanuscript.WealsothankF.Borsaforusefuldiscussions.Additionally, HMCthanksE.deMooijforsuggestingweusesimulatedstarstotestthework herein. HMCandCAWgratefully acknowledge supportfromtheLeverhulme Trust(grantRPG-249).HMC,VB,CLandAWacknowledgethefinancialsup- portoftheNationalCentreforCompetenceinResearch“PlanetS”supportedby theSwissNationalScienceFoundation(SNSF).CAWalsoacknowledges sup- portfromSTFCgrantST/L000709/1,andAWacknowledgesadditionalfinancial supportdirectlyfromtheSNSF.ThisresearchhasmadeuseofNASA’sAstro- physicsDataSystemBibliographicServices. References Borsa,F.,Rainer,M.,&Poretti,E.2016,A&A,590,A84 Cegla,H.M.,Lovis,C.,Bourrier,V.,etal.2016a,A&A,588,A127 Cegla,H.M.,Oshagh,M.,Watson,C.A.,etal.2016b,ApJ,819,67 Cegla,H.M.,Watson,C.A.,Shelyag,S.,&Mathioudakis,M.2015,inCam- bridgeWorkshoponCoolStars,StellarSystems,andtheSun,Vol.18,18th CambridgeWorkshoponCoolStars,StellarSystems,andtheSun,ed.G.T. vanBelle&H.C.Harris,567–574 Articlenumber,page5of5