ebook img

A Cauchy problem in nonlinear heat conduction PDF

5 Pages·2006·0.082 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Cauchy problem in nonlinear heat conduction

INSTITUTEOFPHYSICSPUBLISHING JOURNALOFPHYSICSA:MATHEMATICALANDGENERAL J.Phys.A:Math.Gen.39(2006)7299–7303 doi:10.1088/0305-4470/39/23/008 A Cauchy problem in nonlinear heat conduction SDeLillo1,GLupo2andGSanchini1 1IstitutoNazionalediFisicaNucleare,SezionediPerugia,Perugia,Italy 2DipartimentodiMatematicaeInformatica,Universita`degliStudidiPerugia, ViaVanvitelli,1,06123Perugia,Italy E-mail:[email protected] Received14March2006 Published23May2006 Onlineatstacks.iop.org/JPhysA/39/7299 Abstract A Cauchy problem on the semiline for a nonlinear diffusion equation is considered, withaboundaryconditioncorrespondingtoaprescribedthermal conductivity at the origin. The problem is mapped into a moving boundary problem for the linear heat equation with a Robin-type boundary condition. SuchaproblemisthenreducedtoalinearintegralVolterraequationofIItype whichadmitsauniquesolution. PACSnumbers: 02.30.Ik,02.60.Lj Thenonlineardiffusionequation (cid:1) (cid:2) u u = x u=u(x, t) (1) t u2 x is a well-known mathematical model for heat conduction in high polymer systems [1] and in simple monoatomic metals of Storm type [2]. Fixed and moving boundary problems for equation (1)have beensolvedinthepastthroughalinearizingtransformationwhichallows us to reduce equation (1) to the linear heat equation [3, 4]. In the following we limit our consideration to materials of Storm type and consider for equation (1) an initial/boundary valueproblemonthesemilinewithaprescribedthermalconductivityattheorigin. Weshow that the corresponding problem for the linear heat equation is a semiline problem with a moving boundary and a Robin-type boundary condition. Such problem is then solved, i.e. reducedtoalinearintegralequationofVolterraIItypewhichadmitsauniquesolution. An explicitexampleisalsodiscussed. Westartouranalysisbyobservingthatthethermalvariableuinequation(1)isrelatedto thetemperaturedistributionofthesystemthroughtherelation[3] (cid:3) T u= ρc (T(cid:1))dT(cid:1), (2) p T0 where ρ and c (T) represent in turn the density (assumed to be constant) and the specific p heatofthesystem. Inourmodelthethermalvariableurepresentsthereforetheheatenergy 0305-4470/06/237299+05$30.00 ©2006IOPPublishingLtd PrintedintheUK 7299 7300 SDeLilloetal (quantity of heat for unitary length) propagating through a semi-infinite one-dimensional metallicrod. MoreoverweobservethatformaterialsofStormtypewecanwrite (cid:1) (cid:2) u x =k(T), (3) u2 x k(T)beingthethermalconductivityofthematerial. Letusnowanalyseforequation(1)theinitial/boundaryvalueproblemonthesemiline 0(cid:1)x <∞,characterizedbythefollowinginitialandboundarydata: u(x,0)=u (x), 0(cid:1)x <∞ (4a) 0 u(∞,t)=γ >0, u (∞,t)=0, t (cid:2)0 (4b) x u (0,t) x =α >0, (4c) u2(0,t) whereα andγ arepositiveconstants. Dueto(3), theboundarycondition(4c)corresponds, fromthephysicalpointofview,toaprescribedconstantthermalconductivityattheorigin. Nextweintroducethehodographtransform u(x,t)=[v(z,t)]−1 (5a) with ∂z =u(x,t) (5b) ∂x (cid:4) (cid:5) ∂z 1 =− (5c) ∂t u(x,t) x whosecompatibility, ∂2z = ∂2z ,isguaranteedby(1). ∂x∂t ∂t∂x Undertheabovetransformationequation(1)ismappedinto v =v (6) t zz overthedomainαt (cid:1)z<∞,withtheinitialdatum v(z,0)≡v (z )=[u (x)]−1, (7a) 0 0 0 where (cid:3) x z ≡z (x)= dx(cid:1)u (x(cid:1)). (7b) 0 0 0 0 Moreover,theboundaryconditions(4b),(4c)become 1 v(∞, t)= , v (∞, t)=0 (7c) z γ αv(αt, t)+v (αt, t)=0. (7d) z Theinitial/boundaryvalueproblemforthenonlineardiffusionequation(1),withtheinitial datum (4a) and the boundary conditions (4b), (4c) is then mapped into an initial/boundary valueproblemforthelinearheatequation(6)overadomainwithalinearlymovingboundary, characterized by the initial datum (7a) and boundary conditions (7c), (7d). We observe that(7d)isaRobin-typeboundaryconditionatthemovingboundary. Inordertosolvethis problemweintroducethefundamentalkerneloftheheatequation (cid:6) (cid:7) 1 1 1(z−ξ)2 K(z−ξ,t −t(cid:1))= √ √ exp − (8) 2 π t −t(cid:1) 4 (t −t(cid:1)) ACauchyprobleminnonlinearheatconduction 7301 andintegrateGreen’sidentityfortheheatequation (cid:4) (cid:5) ∂ ∂v ∂K ∂ K −v − (Kv)=0 (9) ∂ξ ∂ξ ∂ξ ∂t(cid:1) over the domain αt(cid:1) < ξ < ∞, ε < t(cid:1) < t − ε and let ε → 0. Using (7d) and K(z−ξ,0)=δ(z−ξ),weobtain (cid:3) (cid:3) +∞ t v(z,t)= dξK(z−ξ,t)v (ξ)+ dt(cid:1)K (z−αt,t −t(cid:1))v(αt(cid:1),t(cid:1)). (10) 0 ξ 0 0 From (10) it follows that v(z, t) has to be determined in terms of the boundary value v(αt,t)whichisunknown;itisthereforeconvenienttoevaluate(10)atz = αt. Byputting v(αt,t)=w(t),weobtain (cid:3) t w(t)=G(t)+ dt(cid:1)R(t −t(cid:1))w(t(cid:1)), (11a) 0 with (cid:3) (cid:6) (cid:7) 1 +∞ (αt −ξ)2 G(t)= √ dξexp − v (ξ) (11b) 0 2 πt 4t 0 and α 1 α2 R(t)= √ √ e−βt, β = . (11c) 4 π t 4 Equation (11a) is a linear Volterra integral equation of the convolution type with a mildly singular kernel; it admits a unique solution under the assumption that G(t) is an integrable, boundedfunctionofitsargument[5]. Thesolutionof(11a)canbewrittenas (cid:3) t w(t)=G(t)+ dt(cid:1)S(t −t(cid:1))G(t(cid:1)), (12a) 0 whereS(t)istheresolventkernelof(11a)givenby (cid:8) √ (cid:6) (cid:4)√ (cid:5)(cid:7)(cid:9) 1 β βt S(t)=e−βt √ + eβt/4 1+Erf , (12b) πt 2 2 withG(t)givenby(11b)and (cid:3) 2 y Erf(y)= √ dτe−τ2. (12c) π 0 Having established existence and uniqueness of the boundary datum w(t), it then follows, via (10), existence and uniqueness of the solution of the linear problem v(z, t). We can thereforeconcludethat,dueto(5a),theinitial/boundaryvalueproblem(1),(4a)–(4c)forthe nonlineardiffusiveequationadmitsauniquesolutionu(x,t). Asanexample,letusnowconsideraninitialdatumu (x),compatiblewiththeasymptotic 0 conditions(4b),givenby u (x)=γ tanh(x). (13) 0 (11)implies,via(5a)and(5b), z (x)=γ lncosh(x) (14a) 0 and v (z )= ez0/γ(e2z0/γ −1)−1/2 (14b) 0 0 γ whichistheinitialdatumforthelinearproblem(6),(7a)–(7d). 7302 SDeLilloetal When (14b) and (11b) are used, the function G(t) on the right-hand side of (12a) takes theform (cid:3) √ 1 1 +∞ e( β+1/γ)ξ G(t)= √ e−βt dξe−ξ2/4t√ . (15) 2γ πt 0 e2ξ/γ −1 Inthefollowingweconcentrateourattentiononthecasewhentheparameterγ issmall (0<γ <1)andanalyseforthiscasetheasymptotic,largetbehaviourofv(z,t). Itiseasyto checkthatforsmallγ weobtaintheapproximateexpression (cid:10) 1 G(t)∼= [1+Erf( βt)]. (16) 2γ In the same approximation, via (10), (8) and (14b), we can write the solution of the linear problemv(z,t)as (cid:3) (cid:6) (cid:7) 1 1 +∞ (z−ξ)2 v(z,t)∼= √ dξexp − 2γ πt 4t (cid:3)0 (cid:6) (cid:7) 1 t (z−αt(cid:1)) 1(z−αt(cid:1))2 + √ dt(cid:1) exp − w(t(cid:1)). (17) 4 π (t −t(cid:1))3/2 4 (t −t(cid:1)) 0 Thetwotermsontheright-handsideof(17)canbeevaluatedinthelargetimelimitt → ∞ (seetheappendix). Wedenotebyv∞(z,t)theasymptoticvalueofv(z,t)andobtainfrom(17) (cid:11) (cid:4) (cid:5)(cid:12) 1 e−z2/4t 2 v∞(z,t) ≈ 1+ √ z− √ +O(t−1/2) . (18) tlarge2γ πt β Finally, the solution of equation (1) with initial datum (13) and boundary data (4b), (4c) is obtained(forsmallγ)inthelargetimelimitas (cid:4) (cid:5) ∂z u∞(x,t)= (19) ∂x where,invirtueof(3a),(3b),z(x,t)solves (cid:3) z x = dz(cid:1)v∞(z(cid:1),t) (20) 0 withv∞(z,t)givenby(18). Appendix Wewrite(17)intheform v(z,t)=I (z,t)+I (z,t), (A.1) 1 2 whereI (z,t)andI (z,t)denote,respectively,thefirstandthesecondtermontheright-hand 1 2 sideof(17). Wethenget (cid:3) (cid:6) (cid:7) 1 1 +∞ (z−ξ)2 I (z,t)= √ dξexp − 1 2γ πt 4t (cid:6) 0 (cid:4) (cid:5)(cid:7) 1 z = 1+Erf √ . (A.2) 2γ 2 t Inthelargetimetlimitweobtainfrom(A.2) (cid:11) (cid:13) (cid:14)(cid:12) 1 z e−z2/4t e−z2/4t I (z,t) ≈ 1+ √ √ +O . (A.3) 1 tlarge2γ π t t3/2 ACauchyprobleminnonlinearheatconduction 7303 Wenowturnourattentiontotheasymptotic,larget,evaluationofI (z,t). From(17)we 2 canwrite (cid:3) (cid:6) (cid:7) (cid:4) (cid:5) 1 1 1 1(z−αtu)2 3 I (z,t)∼= √ √ du(z−αtu)exp − w(tu) 1+ u+··· . (A.4) 2 4 π t 4 t(1−u) 2 0 Inthelargetlimit,byusingtheLaplacemethod,weobtainfrom(A.4) (cid:13) (cid:14) 2 e−z2/4t z e−z2/4t e−z2/4t I (z,t) ≈ −√ √ w(0)+ √ w(0)+O , (A.5) 2 tlarge πβ t 4 β t t3/2 where,via(12a)and(16),itisw(0)∼=1/2γ. When (A.3) and (A.5) are used in (A.1), there immediately follows the result reported in(18). References [1] BlumanGandKumeiS1980J.Math.Phys.211019 [2] StormML1951J.Appl.Phys.22940 [3] RogersC1985J.Phys.A:Math.Gen.18L105 RogersC1986J.NonlinearMech.21249 [4] NataleM.FandTarziaDA2000J.Phys.A:Math.Gen.33395 [5] TricomiFG1985IntegralEquations(NewYork:Dover)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.