ebook img

A catalog of planetary nebula candidates and HII regions in NGC 3109 PDF

0.2 MB·English
by  M. Pena
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A catalog of planetary nebula candidates and HII regions in NGC 3109

Astronomy&Astrophysicsmanuscriptno.pena (cid:13)c ESO2008 February5,2008 A catalog of planetary nebula candidates and HII regions in NGC ⋆ 3109 M.Pen˜a1⋆⋆,M.G.Richer2,andG.Stasin´ska3 1 InstitutodeAstronom´ıa,UniversidadNacionalAuto´nomadeMe´xico,Apdo.Postal70264,Me´x.D.F.,04510Me´xico e-mail:[email protected] 2 InstitutodeAstronom´ıa,UniversidadNacionalAuto´nomadeMe´xico,Apdo.Postal877,Ensenada,B.C.,Me´xico 7 e-mail:[email protected] 0 3 LUTH,ObservatoiredeMeudon,MeudonCedex,France 0 e-mail:[email protected] 2 n Received8November2006/Accepted30December2006 a J ABSTRACT 0 3 Aims.Imagesobtained withtheESOVLTandFORS1in[O ] 5007 on- and off-band, aswellasr Gunnfilters,areanalyzed to searchforplanetarynebula(PN)candidates. 2 Methods.In the continuum-subtracted [O ] 5007 on-band images, a large number of emission-line regions were detected. We v describethecriteriaemployedfordistinguishingPNcandidatesfromcompactHIIregions. 3 Results. Themostunambiguousdiscriminatorsforthetwoclassesofnebulaearethesizesandpropertiesoftheionizingstars.Based 5 uponthesecriteria,wehavefound20PNcandidatesforwhichwepresentcoordinates,nebular[O]fluxes,andstellarmagnitudes. 5 ThecumulativeluminosityfunctionforthesePNeisdiscussed. AcatalogofHIIregionslistingcoordinates,nebular [O]fluxes, 2 stellarmagnitudes,andothercharacteristicsisalsopresented.WefindthatHIIregionsareratherconcentratedtowardsthediskofthe 1 galaxy,whilePNearedistributedalsoaboveandbelowthisstructure,consistentwiththeirbelongingtoanolderstellarpopulation. 6 Keywords.galaxies:individual:NGC3109(DDO236)–ISM:planetarynebulae–ISM:HIIregions 0 / h p 1. Introduction Here and in a forthcoming paper, we propose studying the - PN and HII region populations in NGC 3109 (DDO 236), a o r The dwarf galaxies of the Local Group (LG) and its vicin- Magellanic-typeirregularclassifiedasalate-typespiralSB(s)m t ity allow detailed studies of their different component popula- (deVaucouleursetal. 1991).NGC3109isthedominantmem- s a tions, such as stars, planetary nebulae (PNe), and HII regions. berofthesmallgroupofmetal-poordwarfgalaxiesthatalsoin- : Therefore,theyprovidestrongconstraintsforstellarpopulation cludesSextansA,SextansB,andAntlia,justattheedgeofthe v i studiesandhelpinunderstandinghowtheelementalabundances LG.Duetoitsdistance,NGC3109isparticularlywell-suitedto X ofgalaxieshavechangedovertime.Dwarfirregulars,inpartic- chemicalevolutionstudiesbecauseitdoesnotseemtohavebeen r ular,allowacomparativeanalysisofthechemicalpropertiesof affectedbytidaleffectsfromthemassivegalaxiesoftheLG,so a their stellar, PN, and HII region populations,which providesa itshouldnothavelostasignificantamountofgas. probeofthechemicalenrichmentandstarformationhistoryof thegalaxyfromintermediateagestothepresentday.Inaddition, With an absolute magnitude M ∼ −15.2 (see §4) and a B throughspectroscopicanalysisofPNeandHIIregionsindiffer- mean oxygen abundance log O/H+12 ∼ 7.75 (as derived from ent zones of these galaxies, it is possible to address the ques- HII regions by Lee et al. 2003 and, recently, from blue super- tionofthelarge-scalehomogeneityinthedistributionofheavy giantsbyEvansetal.2006),NGC3109issimilartotheSMCin elements. To proceed with these studies, the first step is to de- luminosityandchemicalcomposition.Thegalaxyisseenalmost tectPNeandHIIregions,distinguishingthemfromeachother, edge-on,havinganelongatedshapealignedalmostE-W,withan whichisanon-trivialmatterinstar-forminggalaxies,beforeob- extensionofabout17.4×3.5arcmin.Studiesofthestellarpopu- tainingspectrophotometryofthecandidates.Spectroscopicanal- lationsinthisgalaxyhavebeenmadeby,amongothers,Demers yses have already been done for several galaxies of the Local et al. (1985), who pointed out some traces of spiral structure. Group. For example, Stasin´ska et al. (1998) present a compar- Sandage&Carlson(1988)reportedlightcurvesandperiodsfor ative analysis of the PN populationsin the Magellanic Clouds, 29cepheidsandestimatedadistancemodulusof26.0mag(1.59 M32,andthebulgesofthe MilkyWay andM31.M33wasan- Mpc). The cepheidswere revisited by Capaccioli et al. (1992), alyzed by Magrini et al. (2003), while Sextans A and B were whoderivedadistancemodulusof25.5±0.16(1.26±0.10Mpc), studiedbyMagrinietal.(2005)andKniazevetal.(2006). and by Musella et al. (1997), who find a distance modulus of 25.67±0.16 (1.36±0.10 Mpc). Based upon V and I band pho- Sendoffprintrequeststo:M.Pen˜a tometry,Minnitietal.(1999)establishedthepresenceofahalo ⋆ Based on observations collected at the European Southern consisting of Population II stars and derived a distance modu- Observatory,VLT,Paranal,Chile,programID076.B-0166 lusof25.62±0.1mag(1.33±0.10Mpc)fromadeepluminosity ⋆⋆ On sabbatical leave at the Departamento de Astronom´ıa, function of these stars. We adopt this value for the distance to UniversidaddeChile. NGC3109inthefollowingsections. 2 M.Pen˜aetal.:AcatalogofplanetarynebulacandidatesandHIIregionsinNGC3109 NGC3109presentsalloftheusualindicatorsofrobuststar ob ID 204406). Each field has dimensions of 6.8×6.8 arcmin formationactivity:numerousextendedandcompactHIIregions, on the sky (they overlapped by about 2 arcmin in the E-W large ionized shells, super-shells, and filaments of low surface direction), with a plate scale of 0.2”/pix. For each field, four brightness.AcatalogofextendedHIIregionswaspublishedby dithered images were acquired with each filter, each with ex- Hodgein1969.TheOBassociationsandthedistributionofstar- posuretimesof94s(on-band),90s(off-band),and10s(r).The forming regions were analyzed by Bresolin et al. (1993), who imageswerereducedandcalibratedwiththenormalprocedures alsoproducedacatalogofHIIregions.Hunteretal.(1993)ana- oftheESOpipeline.Thatis,reducedimagesarebias-subtracted, lyzedtheshellsandsuper-shellsinthisgalaxy. flat-fielded,andastrometricallycalibrated.Theastrometricpre- Richer&McCall(1992)reportedthediscoveryofsevenPN cisionis0.2arcsec. candidatesandtenHIIregionsinthecentralzoneofNGC3109 Each set of four images was combined using IRAF1 rou- and, from the brightest-PNe method, they derived a distance tines,allowingforcosmicrayremoval.Theresultingimagesare modulusof25.96(+0.1/−0.4)correspondingto1.6Mpc.From equivalenttoa6.2minexposureforthe[O] on-bandfilter,6 good-quality imaging Pen˜a et al. (2006; and this paper) have minfortheoff-bandfilter,and40sfortherfilter(theseimages foundthatmostofthePNcandidatesfoundbyRicher&McCall will be available at the CDS). The on- and off-band combined aremorelikelycompactHIIregionsthataresomewhatbrighter images were subtracted (after backgroundsubtraction and nor- thanPNe,whichexplainswhytheirdistancemodulusisoveres- malization)toeasilydetect[O]5007emissionobjects. timatedcomparedtothestellarstudies.Leisyetal.(2005)report Nostandardstarswereobservedforthephotometriccalibra- thediscoveryof18PNcandidatesinNGC3109and,fromspec- tionoftheimages.Neverthelessin§3weshowthataroughcal- troscopy,theyfindthatPNedisplayawiderangeofmetallicities. ibrationofthestellarmagnitudescanbeperformedusingsome Here, we present a deep survey of PNe and HII regions in known stars from the field, and the [O ] on-bandimages can NGC 3109 based on [O ] 5007 on- and off-band images, as becalibratedusingourspectroscopy. wellas r Gunnimagingcoveringalmosttheentire galaxy.The datawereacquiredwiththeESO VeryLargeTelescope(VLT), Thecontinuum-subtracted[O]5007imagesshownumer- equipped with the Focal reducer spectrograph FORS1. These ous[O ] 5007-emittingobjects.The 7 PN candidatesand the imagesconstitutethe‘pre-imaging’observationsforthespectro- 10 HII regions reported by Richer & McCall (1992) were re- scopicprogramID076.B-0166.Theywereobtainedtoidentify covered. At least four of the large shells studied by Hunter et candidatesforasubsequentmulti-objectspectroscopy.Fromthe al. (1993) are clearly visible; the others are not, probably be- continuum-subtracted [O ] 5007 images, we identified more causetheyarelowexcitationnebulaethatdonotemitin[O]. than 40 HII regions and 20 PN candidates that are reported in Severalofthe HIIregionsreportedbyHodge(1969)were also thiswork. identified.Inaddition,anumberofsmalldiffuseHIIregionsex- The VLT-FORS1 multi-object spectroscopic run associated ist,aswellasmanyunresolvedemittingobjects.Someofthem with the pre-imaging observations was performed on January coincidewith the Hα emitting objectsin the list from Bresolin 27,2006.SpectraofseveralHIIregionsandPNcandidates,dis- etal.(1993),butthecoordinatesprovidedbytheseauthorshave tributed in different zones of the galaxy, were acquired. These uncertaintieslargerthan1′′,andsometimesitisdifficulttoiden- dataallowedustoconfirmthePNnatureofmanyPNcandidates tifytheirobjectswithours.Ourobjectsarepresentedin Tables and will form the basis of a forthcomingpaper (Pen˜a et al., in 1 and 2, where we have included a column named “other ID” preparation).Nonetheless the calibrated [O ] 5007 fluxes are listingthenamesgivenbyotherauthorsforthesameobject. presentedhere,astheyallow usto calibratethe[O ] on-band imagingandhelptostrengthenourarguments.Inournextpaper, One of the most important issues in studying extragalactic weshallstudythechemicalabundancesofnebulaeandstarfor- PNe is to distinguish true PNe from compact HII regions and, mation history of the galaxy,along with the large-scale spatial of course, to avoid contaminationwith backgroundobjects. To distributionoftheheavyelements. identifyPNeinourimaging,weusedthecriteriadescribedbe- Thispaperisorganizedasfollows:in§2wepresentthe’pre- low. Criteria (a) and (b) are very similar to those employedby imaging’ observations and discuss the criteria we use to dis- Soffneretal.(1996)intheirworkonNGC300. tinguish between planetary nebulae and compact HII regions. a.Objectsize In §3, we present the properties of the detected PNe and HII AtthedistanceofNGC3109(about1.33Mpc),onearcsec regions, including positions, diameters, [O ] 5007 calibrated correspondsto6.4pc.Givenourpixelsizeof0.2”/pixandour fluxes, nebular magnitudes, and V magnitudes for the central FWHMofabout3.2pixforstellarobjects,PNe(whichtypically stars. ThecumulativeluminosityfunctionforthePNe is calcu- havediameterssmallerthan1pc)shouldappearaspoint-likeob- latedanddiscussedin§4,andtheconclusionspresentedin§5. jects. Thus,we selectedtheunresolved[O ]-emittingobjects. These nebulae can be either PN candidates or unresolved HII regions. 2. Imaging:distinguishingbetweenPNeand b.Thecentralstar compactHIIregions HII regions and PNe with significant [O ] 5007 emission areionizedbystarswithT ≥35,000K(e.g.,Stasin´ska1990). ThewidefieldcoverageofFORS1allowedustoobservealmost eff InthecaseofHIIregions,thisimpliesacentralstarofspectral theentiregalaxywithonlytwoframes.Theobservingprogram consistedofimagingwiththefilters[O] 5007on-band(filter type O8V or earlier (or O7 if the luminosity class is III or Ia). name FILT 500 5+85, λ =5000 Å, FWHM=50 Å), [O ] off- Typically,such stars haveabsolute visualmagnitudesof MV ∼ c −4.3to−4.6orbrighter(Martinsetal.2005;Vaccaetal.1996). band (filter name OIII/6000+52, λ = 5105 Å, FWHM=61 Å) c and r Gunn (hereafter r). The images were acquired in service 1 IRAF is distributed by the National Optical Astronomy modeonNovember29,andDecember1,2005. Observatories,whichisoperatedbytheAssociationofUniversitiesfor Two fieldswereobserved,centeredat10:03:19.8-26:09:32 Research in Astronomy, Inc., under contract to the National Science (eastfield;obID204405)and10:02:54.5-26:09:22(westfield; Foundation. M.Pen˜aetal.:AcatalogofplanetarynebulacandidatesandHIIregionsinNGC3109 3 Ontheotherhand,thecentralstarsofgalacticPNewithT ≥ image. Magnitudes were determined using the ‘apphot’ pack- eff 35,000KtypicallyhaveM ∼−2.0(Me´ndezetal.1992),which ageinIRAF.Aperturephotometrywasperformedbyintegrating V ismorethan2magfainterthantheionizingstarsofHIIregions. thefluxwithina5pixelradius(equivalentto1arcsec)centered Adoptingadistancemodulusof25.6magforNGC3109implies onthestellarposition.Thebackgroundwasdeterminedfroman an apparentvisual magnitude,V, brighterthan about21.3 mag annulus10-13pixelsfromthestarandsubtractedfromtheflux. fortheionizingstarsin HIIregionsandfainterthanabout23.3 Special care was taken in crowded fields. Instrumental magni- magforthecentralstarsofPNe. tudes for each object are listed in Tables 1 and 2 for the PN By measuring the visual magnitudes of the central stars of candidatesandtheHIIregions,respectively. unresolvedemittingobjects,wecandistinguishcompactHIIre- gionsfromPNcandidates(seenextsection).Ofcourse,itispos- 3.1.Nebular[O]5007magnitudes siblethataforegroundorbackgroundstarmayappearprojected onaPNcandidate.Inthatcase,ourcriterionwouldclassifythe The nebular magnitude, m(5007), was measured from the i object as an HII region rather than a PN, and spectroscopy is continuum-subtracted[O]image,therebyexcludingtheemis- neededtoclassifytheobjectproperly. sion from the central star. The aperture employed includes all c.Therimages the flux for the nebulae with radii smaller than 1 arcsec, but it Therfilterhasitsmaximumtransmissionat6530Åandan contains only a fraction of the flux for very extended objects. FWHM of 810 Å. It therefore includes the stellar flux and the We find that the measured magnitudes for unresolved objects nebularlinesinthiswavelengthrange.Inparticular,itincludes are well-correlated with the [O ]5007 fluxes measured from Hα. Thus, we expect the [O ]-emitting objects to appear in ourspectroscopythroughtherelation: the r images as well. Most of the objects do appear, in which logF(5007)=−0.40mi(5007)−8.32 . (1) casestheyaremostprobablynotbackgroundemission-lineob- This relation (shown in Fig. 1) has a small dispersion (≤0.05 jects.However,requiringdetectioninboth[O]andrdiscrim- mag)andalargecorrelationcoefficientR2=0.997.Thisimplies inates against very faint (e.g., Magrini et al. 2001) but highly thattheFORS1pre-imaging,reducedthroughtheESOpipeline excitedPNethatshouldhavenostellaremissionandforwhich (§2), is very consistent with the calibrated spectrophotometry. the5007/Hαratioislarge.Therefore,wewillalsoconsiderwith Thus,weareconfidentthatthedifferencesininstrumentalmag- cautionthosecandidateswithfaint[O],butwhichdonotap- nitudesdorepresentfluxratios. pearintherimage. d.Theluminosityofrecombinationlines 3.2.Stellarmagnitudes Inadditiontothepreviouscriteria,itshouldbetakenintoac- countthat,ofteninHIIregions,thereismorethanoneionizing Apparentvisualmagnitudesforthecentralstars,mi(star),were starandthesestarsproducealargernumberofionizingphotons, measured in the off-band frame. A rough photometric calibra- Q ,duetotheirlargerradius.TypicallylogQ ≥48.0(s−1)for tionusingthesameprocedureasemployedbyRicher&McCall 0 0 HIIregions(Vaccaetal.1996)versuslogQ ∼47.5forPNe(us- (1992) was used to relate these instrumental magnitudes to V 0 ingevolutionarytracksbyBlo¨cker1995).Opticallythickcom- magnitudes. That is, some stars from the list of Demers et al. pactHIIregionsshouldthenbebrighterthanopticallythickPNe (1985;hereafterDKI)withmeasuredBandVmagnitudeswere inthehydrogenrecombinationlines.Furthermore,manyPNein usedaslocalstandards.Certainly,a calibrationbaseduponob- theMilkyWayareknowntobeopticallythin,furtherweakening servationsof photometricstandardswould have been more ap- these lines.The HαorHβ fluxes(forinstance)can beused for propriate for a photometric calibration; but, as said in §2, our thiscriterion. imageswere acquiredas ‘pre-imaging’for spectroscopy,so no standardswereobserved. e.Theionizationdegreeorexcitationclass Our off-band instrumental magnitudes follow a linear rela- Itisexpectedthat,statistically,PNewillbemorehighlyex- tion with the V magnitudes from DKI, V(DKI), given by the cited than HII regions as a result of containing hotter ionizing expression: stars.IfanebulashowsHe4686emissionwhoseintensityex- V(DKI)=0.99m(star)+4.38 . (2) ceedsa few percentofHβ, it isunquestionablya PN.Also, in- i tensityratios[O]5007/Hβlargerthanabout4arefoundonly This relation is plotted in Fig.1. It has a dispersion ≤0.15 mag andacorrelationcoefficientR2=0.989.Thegoodcorrelationof inPNe.However,thiscriteriondiscriminatesagainstPNewhose the two sets of magnitudes again indicates that differences in centralstarshavelowT (usuallyyoungPNe).Low-excitation eff m(star)indeedrepresentfluxratios,whichallowsustoassigna PNe cannot be distinguished from HII regions on the basis of i visualmagnitude,V(DKI),tothecentralstarsofourHIIregions onlytheirspectroscopiclineratios. andcandidatePNe. We also measured the instrumental r magnitude, m(r). As i From the above criteria, a and b are clearly the least ambigu- alreadynoted,m(r)includesthestellarfluxandthenebularlines i ousindistinguishingbetweencompactHIIregionsandPNcan- intherfilter,particularlyHα.Consequently,objectswithbright didates, when only imaging is available. The outcomes of our m(r)magnitudeshaveveryintenseHαorabrightstar. imaging analysis, upheld with the [O ] fluxes from our spec- i troscopy,arepresentedinthefollowingsections. 3.3.PNeandHIIregionsinNGC3109 Wehaveclassifiedthediffuseandextendedemissionnebulaeas 3. Nebularandstellarmagnitudes HIIregions.Inthecaseofthecompactobjects,weseparateHII Forallof our[O] emittingobjects,we havedeterminedsev- regionsfromPNcandidatesusingthemagnitudesoftheirioniz- eral instrumental magnitudes: the nebular magnitude m(5007) ingstars.Consideringthatthevisualmagnitudesoftheionizing i fromthecontinuum-subtractedon-bandimage,thestellarmag- starsinHIIregionsshouldbebrighterthanabout21.4mag(§2, nitude m(star) from the off-band image, and m(r) from the r b),equivalentto17.2maginoursystem,weconsiderallobjects i i 4 M.Pen˜aetal.:AcatalogofplanetarynebulacandidatesandHIIregionsinNGC3109 Fig.2. The color index m(r)−m(star) plotted against m(star). i i i OpensquaresrepresentHIIregions(objectswithm(star) ≤18 i mag).Black dotsrepresentPN candidates.Sincerincludesthe fluxfromthestarandHα,thecolorindexisproportionaltothe flux ratio (F(Hα)+F (star))/F(star). Thus, objects with a very r i faint central star (e.g., PNe) appear in the lower right corner. Thevaluesm(star)=22areupperlimits. Fortheseobjects,the i starwasnotdetected.Thearrowsshowthedisplacementofdots forstarswithfainterm . r (Pen˜a et al., in preparation), while column 9 lists the value of log F(5007) calculated from Eq. (1). In column 10, any previ- ousidentificationsare listed. As alreadyreportedin Pen˜a et al. (2006),weconfirmasPNeonlytwoofthesevenPNcandidates Fig.1.Therelationsbetweenourinstrumentalm(5007)andthe foundbyRicher&McCall(1992). i spectroscopic [O ] 5007 flux, F(5007),(upperpanel) and be- Table2liststhecharacteristicsoftheHIIregions.Wepresent tweenm(star)andV(DKI)forsomestars(lowerpanel). coordinates, diameters, magnitudes, and fluxes for 40 nebulae i foundinourcontinuum-subtracted[O] image.Thisisnotan exhaustive list of HII regions in NGC 3109, but it includes a with m(star) brighter than 18 mag as HII regions. This limit- largefractionofthe[O]5007emittingregions.Theverylow i ingmagnitudeallowsforanuncertaintyof0.3maginindividual excitation nebulae without 5007 emission are obviously not in instrumental magnitudes (twice the dispersion of Eq. (2)) and this list, and some detected but very faint HII regionsand fila- an extinctionof upto 0.5mag,a valuethatamplyincludesthe mentswerenotincluded.Them(star)andV(DKI)magnitudes i small color excess of E(B-V)= 0.04 mag (equivalent to A = measured for the central star of the HII regions(when there is V 0.13 mag, see §4) reportedby Burstein & Heiles (1984)in the an obvious central star) are presented in columns 6 and 7, re- directionofNGC 3109andany plausibleinternalextinctionin spectively. In column 8 we list m(r). The [O ] 5007 fluxes, i the HII regions. We note that some ionizing stars, in both HII F(5007),fromspectroscopyandcalculatedviaEq.(1)arelisted regionsand PNe, couldbe binaries, in which case m(star) and in columns 9 and 10, respectively. The other columns contain i V(DKI)representthefluxesofbothstars. Consideringthepos- a description of the morphology (diffuse, compact, extended, sibility of binarity, our limiting magnitude for separating PNe complex, unresolved), a rough estimate of the stellar spectral fromHIIregionsisthenquiteconservative. type(seebelow),andpreviousidentificationsoftheHIIregions In Fig. 2,we presentthecolorindexm(r)−m(star) plotted (columns11-13,respectively). i i asafunctionofm(star)forHIIregions(objectswithm(star)≤ In Fig. 3 we present our [O ] 5007 image of NGC 3109. i i 18)andPNcandidates(withm(star)>18).ThecolorsofHIIre- In this figure, we show the distribution of PNe from Table 1 i gionsspantheintervalfrom−1.5to0.8mag.ForPNcandidates and compact HII regions from Table 2. Our objects are spread the colors are bluer (more negative) than −1.3. The two types throughoutthegalaxy,anditisevidentthatHIIregionsarerather ofnebulaeareseparatedverynicelyinthisfigure.Thissepara- concentratedtowardstheedge-ondiskofthegalaxy,whilePNe tionoccursbecausethecolorindexm(r)−m(star)corresponds areseenalsoaboveandbelowthisstructure,consistentwiththeir i i roughlytothefluxratios(F(Hα)+F (star))/F(star),whichwill belongingtoanolderstellarpopulation. r i be largeforPNe while,atthe same time, theircentralstarsare faint. 3.4.IndividualPNe In total, we detected 20 PN candidates. Their characteris- a.ThebrightestPN tics are listed in Table 1, where we include their coordinates Accordingto ourselection criteria,ourPN7 andPN10are (columns2and3)andmagnitudesm(5007),m(star),V(DKI), the only bona fide PN candidates from the list reported by i i and m(r) (columns 4 to 7, respectively). Column 8 presents Richer & McCall (corresponding to their PN1 and PN6, re- i logF(5007),inergcm−2s−1,fromoursubsequentspectroscopy spectively).PN10isabrightPNwithnostellarcontinuum,but M.Pen˜aetal.:AcatalogofplanetarynebulacandidatesandHIIregionsinNGC3109 5 Table1. PositionsandcharacteristicsofPNcandidatesinNGC3109a Name R.A.b Decb m(5007) m(star)c V(DKI) m(r)c logd loge otherIDf i i i F(5007) F(5007) PN1 10:02:41.57 -26:08:40.7 19.0 >22 >25 >22.5 −15.91 PN2 10:02:44.70 -26:11:32.4 19.7: 21.0: 25.1: 17.8 −16.21 PN3 10:02:49.15 -26:09:10.1 16.4 >22 >25 18.8 −14.88 −14.89 PN4 10:02:50.06 -26:08:10.0 17.3 >22 >25 >22.5 −15.25 −15.23 PN5 10:02:51.60 -26:10:19.7 18.7 21.0: 25.1: 17.1 −15.81 PN6 10:02:57.20 -26:08:55.8 18.7 19.5 23.6 17.9 −15.81 PN7 10:02:58.20 -26:08:45.8 14.4 18.2 22.4 15.8 −14.09 −14.09 PN1RMc PN8 10:02:59.52 -26:08:13.9 18.9 20.0 24.1 17.4 −15.89 PN9 10:03:02.66 -26:08:50.3 16.4 >22 >25 19.7 −14.88 PN10 10:03:03.91 -26:09:42.3 15.4 >22 >25 18.4 −14.48 PN6RMc PN11 10:03:05.04 -26:10:54.2 15.6 >22 >25 18.0 −14.52 −14.57 PN12 10:03:07.99 -26:07:57.8 18.8 19.40 23.5 16.5 −15.21 PN13 10:03:08.52 -26:09:07.7 17.2 >22 >25 >22.5 −15.15 PN14 10:03:10.34 -26:08:06.1 18.5 19.5 23.2 17.1 −15.78 −15.71 PN15 10:03:13.32 -26:10:20.7 19.3 >22 >25 >22.5 −16.04 PN16 10:03:18.67 -26:09:58.8 17.0 >22 >25 18.6 −15.13 PN17 10:03:18.74 -26:10:05.4 16.7 18.8 23.0 17.5 −14.96 −15.01 PN18 10:03:20.74 -26:09:00.2 17.5 >22 >25 >22.5 −15.32 PN19 10:03:21.22 -26:11:20.9 19.1 >22 >25 >22.5 −15.98 PN20 10:03:25.51 -26:09:07.2 17.0 18.6 22.8 16.8 −15.13 (a)Alltheseobjectsareunresolved. (b)Coordinatesforequinox2000. (c)Objectswithm >22arenotdetectedintheoff-bandimage.Objectswithm(r)>22.5arenotdetectedintherimage. i i (d)Fluxfromspectroscopy,inergcm−2s−1. (e)FluxcalculatedfromEq.(1),inergcm−2s−1. (f)RMc:Richer&McCall1992. Fig.3.Our[O]on-bandimage,showingthewholegalaxy.Northisup,eastisleft.Thefullsizeoftheimageis16.7×5.3arcmin. PNcandidatesfromTable1aremarkedwithacircle.CompactHIIregionsfromTable2aremarkedwithasquare(squareswithan innercircleindicatetheobjectsreportedbyRicher&McCall1992).TheHIIregionsareratherconcentratedtowardstheedge-on diskofthegalaxy,whilePNespreadoverawiderarea.Thelargecircles,fromlefttoright,showtheshells#1,3,5,and9studied byHunteretal.(1993). PN7 has the brightest central star among our PN candidates, showsaveryhigh5007/Hβratio(Pen˜aetal.,inpreparation).In with V(DKI)=22.4 mag, i.e., brighter than expected for a sin- addition, it shows a [O ] 5007 line width, HWHM = 13 km glestar (§2,criterionb).Thisnebulais alsothe brightestin [O s−1 (Richer 2006), which is significantly greater than the val- ]5007,onemagnitudebrighterthanthenextbrightestobject. uesofHIIregions.Forcomparison,theaverage[O]5007line We included it in the PN group due to its spectroscopy,which width(HWHM)ofthefivePNcandidatesfromRicher&McCall 6 M.Pen˜aetal.:AcatalogofplanetarynebulacandidatesandHIIregionsinNGC3109 (1992)thatwefindarecompactHIIregionsis11kms−1(Richer Table3. FitforthecumulativePNLF 2006;Richeretal.inpreparation).Alsoin§4wepresentfurther argumentsforincludingitamongthePNsample. fit m∗ Nexp(−0.307µ) 5007 b.ThePNewithnoorveryfaintremission includingPN7 21.18 2.62×10−3 Six PNcandidatesinoursamplewerenotdetectedinourr excludingPN7 21.82 2.77×10−3 LMCa 14.23 0.287 image. They are PN1, PN4, PN13, PN15, PN18, and PN19. SMCa 14.82 9.31×10−2 Wedeterminedaninstrumentalupperlimitof22.5magfortheir m(r).Severalofthemarealsoveryfaintin[O].Asmentioned M31b 20.20 0.150 i in §2 (criterion c), these objects are considered PN candidates (a)BaseduponthesampleofJacobyetal.(1990)and butsomeofthemcouldbebackgroundsources.Mostprobably, consideringthesamelimitingmagnitude,15.9mag,forfitting. though,theyarehighexcitationPNewhere[O]5007ismuch (b)BaseduponthesampleofCiardulloetal.(2002)and strongerthanHα.Fromourspectroscopy,wehaveverifiedthat fittingtothefirstthreemagnitudesoftheluminosityfunction. atleastPN4isatruePN(Pen˜aetal.,inpreparation). Fitzpatrick (1999) reddeninglaw, parametrized with a total-to- 3.5.ThestellarspectraltypesinHIIregions selectiveextinctionof3.041.Thisparametrizationdeliversatrue OntheV(DKI)magnitudescale,thecentralstarsofHIIregions ratiooftotal-to-selectiveextinctionof3.07whenintegratedover showvaluesintherangefrom22.1to19.5,anda spectraltype thespectrumofVega(McCall2004),whichistheaveragevalue canbeassignedtoeachthembyadoptinganabsolutemagnitude forthediffusecomponentoftheinterstellarmediumoftheMilky scaleformassivestars(forinstanceVaccaetal.1996orMartins Way (McCall & Armour 2000). The extinction towards NGC etal.2005)andadistancemodulus.Wechosethedistancemod- 3109thenamountsto A5007 = 0.13mag.Ourfittothecumula- ulus,m-M=25.62mag(Minnitietal.1999).Thisexercisewas tiveluminosityfunctionreturnstheproductNexp(−0.307µ)and done only for those relatively small HII regionswhere there is m∗ as fitting parameters.Althoughthis allows us to derive a 5007 anobviouscentralstar.Extendednebulae(complexregionsand normalization constant without knowledge of the peak magni- loops)appearrelatedtostellarclumpsanditisverydifficultto tudeoftheluminosityfunction,itobviouslyprecludesusingour decidewhichonesaretheionizingstars;thereforeforthemwe peakmagnitudetoderiveadistancetoNGC3109,asisusually havenottriedtoidentifytheionizingstars.Anotherproblemis done. theassumptionthatthesestarsaresingle,whichlikelybiasesour Since the brightestPN (PN7 in Table 1, see §3.4)is 1mag classificationsto earlier spectraltypes.In anycase, these spec- brighterthanthenextbrightestobject,wefitthecumulativelu- tral types (column 9, Table 2) are very rough approximations minosity function while both including and excluding this ob- thatshouldbeconsideredmerelyindicative.Inaddition,nored- ject. Both fits to the luminosity functionare similarly good, so deninghasbeenassumednorhasanyaccountbeentakenofany the luminosity functionprovidesno groundsfor excludingthis possiblemagnitudeoffsetoftheDKIcalibration(Bresolinetal. objectasa PN.Theparametersforthese fitsaregiveninTable 1993 claimed a difference of about 0.3 - 0.4 mag). From this 3, where we also provide similar fits to the cumulative lumi- roughapproximationwedetectafewgiantsandsupergiantstars nosity functions for PNe in the Magellanic Clouds and M31 (spectraltype O III or O Ia), five main sequencestars between forcomparison.OurapparentpeakmagnitudesforM31andthe O4andO6,fiveO6-O7,and16starslaterthanO7. Magellanic Clouds are within 0.12mag of those found in the originalstudies(seeCiardulloetal.1989forM31),adifference thatfallswithintheuncertaintiesinallofthesestudies,including 4. TheluminosityfunctionforPNe ours. Considering the brightest PN candidate as a bona fide PN, Fromour[O ] fluxes,F(5007)(Eq.1;column9, Table 1),an we can use the true distance modulusof 25.62mag (Minnitiet apparentmagnitudem can be obtainedand the [O ] 5007 5007 al.1999)andtheextinctionA =0.13toderiveapeakabsolute 5007 luminosity function (PNLF) can be constructed. In Fig. 4, we magnitudeoftheluminosityfunctionofM∗ =−4.57 magfor present the cumulative luminosity function for our PN candi- 5007 NGC3109.Thisvalueissurprisinglybrightatthemetallicityof dates (including PN7, see below). We chose this representa- thisgalaxy,comparedwiththevalueof−4.48magsuggestedby tion because of the low number of PN candidates and because Ciardulloetal.(2002)fromstudiesofseveralgalaxiesofhigher the peak magnitude of the luminosity function is poorly con- metallicity. On the other hand, excludingthe brightestPN, our strainedatthemetallicityofNGC3109(Ciardulloetal.2002). fittotheluminosityfunctionimpliesapeakabsolutemagnitude Therefore,wemustfitthecumulativeluminosityfunctionusing ofonly−3.93mag,avaluethatisfaintcomparedtothevaluesof apparentmagnitudes,insteadoftheusualabsolutemagnitudes. about−4.08magexpectedbyCiardulloetal.(2002)forgalaxies Weconverttheusualluminosityfunction withmetallicities12+logO/H∼8.0.Obviously,oneoftheben- N(M)∝exp(0.307M )(1−exp(3(M∗ −M ))) 5007 5007 5007 efits of observing low metallicity galaxies like NGC 3109 will toaluminosityfunctioninapparentmagnitudes be a better understanding of the absolute luminosities of their N(m)=Nexp(−0.307µ) exp(0.307m5007)(1−exp(3(m∗5007− planetarynebulae. m5007)), BaseduponthenormalizationfactorsinTable3,NGC3109 whereN isa normalizationconstant,µis theapparentdistance has about the expected number of PNe. Adopting a true dis- modulus, µ = 5logd−5+ A5007, M5∗007 and m∗5007 are the ab- tancemodulusµ0=18.50magandA5007=0.36magfortheLMC soluteandapparentpeakmagnitudesoftheluminosityfunction, (Jacobyetal.1990)andµ =25.62magandA =0.13magfor 0 5007 respectively,thelatterdefinedvia NGC3109,wefind N = 93.85and N = 7.11fortheLMCand m5007=−2.5logF(5007)-13.74 NGC3109,respectively.IfweadopttheabsoluteBmagnitudes (Allen 1973;Jacoby 1989),and A5007 is the extinction at 5007 fromRicher&McCall(1995),butcorrectthemtothedistance Å towards NGC 3109. For the extinction, we adopted the moduli already mentioned, the luminosity ratio is 11.69, very aforementioned color excess, E(B − V) = 0.04mag, and the similartotheratioofNvalues,13.20.Therefore,NGC3109has M.Pen˜aetal.:AcatalogofplanetarynebulacandidatesandHIIregionsinNGC3109 7 30 3109hasaboutthesamenumberofPNeperunitluminosityas the LMC. By assuming a true distance modulus of 25.62 mag NGC 3109 andanextinctionA =0.13magforNGC3109,a peakvalue 25 PNLF fit 5007 LMC, scaled of −4.57mag is derivedfor the PNLF. This valueis high com- ) e paredbothwiththecanonical−4.48magfoundforgalaxieswith v ti 20 highermetallicityandwith thepeakmagnitudeexpectedatthe a ul metallicityofNGC3109.Bystudyingmoregalaxieswithmetal- m cu 15 licitiessimilartoNGC3109’s,abetterunderstandingoftheab- ( soluteluminositiesoflowmetallicityPNewillbeacquired. ) e N 10 Acknowledgements. M. Pen˜a is grateful to the Departamento de Astronom´ıa, P Universidad de Chile for hospitality during a sabbatical stay when part of ( N thisworkwasperformed.M.P.gratefullyacknowledgesfinancialsupportfrom FONDAP-ChileandDGAPA-UNAM.Wethankthereferee,Dr.MarioPerinotto, 5 forhisconstructivecomments.Thisworkreceivedfinancialsupportfromgrants #43121(CONACyT-Mexico),IN-108506-2,IN-108406-2,IN-112103,andIN- 114805(DGAPA-UNAM). 0 0 1 2 3 4 5 6 m5007 - m*5007 (mag) References Fig.4. Cumulative planetary nebula luminosity function from Allen,C.W.1973,AstrophysicalQuantities(London:Athlone) the data in Table 1. The fit to the cumulativePNLF returnsthe Blocker,T.1995,A&A,299,755 product Nexp(−0.307µ) and m∗ (see text and Table 3). The Bresolin,F.,Capaccioli,M.,&Piotto,G.1993,AJ,105,1779 5007 Burstein,D.,&Heiles,C.1984,ApJS,54,33 LMC’sluminosityfunction,scaledbya factorof1/13.2is also Buzzoni,A.,Arnaboldi,M.,&Corradi,R.L.M.2006,MNRAS,368,877 presented. Capaccioli,M.,Piotto,G.,&Bresolin,F.1992,AJ,103,1151 Ciardullo,R.,Jacoby,G.H.,Ford,H.C.,&Neill,J.D.1989,ApJ,339,53 Ciardullo,R.,Feldmeier,J.J.,Jacoby,G.H.,etal.2002,ApJ,577,31 aboutthesamenumberofPNeperunitluminosityastheLMC. DemersS.,KunkelW.E.,&IrwinM.J.1985,AJ,90,1967(DKI) deVaucouleursG.,deVaucouleursA.,CorwinH.G.,etal.1991,Thirdreference Thisisexpected,sincethecolorsoftheLMCandNGC3109are catalogueofBrightGalaxies(Springer,NewYork) similar(Buzzonietal.2006). Evans, C. J., Bresolin, F., Urbaneja, M. A., Pietrzyn´ski, G., Gieren W., & InFig.4,weoverlaytheLMC’sluminosityfunction,scaled Kudritzki,R.-P.2006,acceptedbyApJ,astro-ph/0612114 by 1/13.2. Both fits (NGC 3109’s and LMC’s) show excellent Fitzpatrick,E.L.1999,PASP,111,63 agreementoverthefirst1.5−2.0mag,theextentoverwhichthe Hodge,P.W.1969,ApJS,18,73 Hunter,D.A.,Hawley,W.N.,&Gallagher,J.S.III1993,AJ,106,1797 LMC’s luminosity function is believed to be complete (e.g., Jacoby,G.H.1989,ApJ,339,39 Richeretal.1997).Sincethenormalizationofthetwofitstothe Jacoby,G.H.,Walker,A.R.,&Ciardullo,R.1990,ApJ,365,471 luminosityfunctionaresimilar(Table2),regardlessofwhether Kniazev, A. Y., Grebel, E. K., Pramskij, A. G., & Pustilnik, S. A. 2006, in PN7isconsidered,theconclusionthatNGC3109hasaboutthe PlanetaryNebulaeBeyondtheMilkyWay,eds.L.Stanghellini, R.Walsh andN.G.Douglas(Springer:Berlin,Germany),257 numberofPNeexpectedisindependentofwhetherPN7mayor Lee,H.,McCall,M.L.,&Richer,M.G.2003,AJ,125,2975 maynotbeatruePN. Leisy,P.,Magrini, L.,Corradi, R.L.M.,&Mampaso, A.2005, in Planetary NebulaeasAstronomicalTools,eds.R.Szczerba,G.StasinskaandS.Gorny (AIP:Melville,USA),265 Magrini,L.,Perinotto,M.,Corradi,R.L.M.,&Mampaso,A.2001,A&A,379, 90 5. Conclusions Magrini,L.,Perinotto,M.,Corradi,R.L.M.,&Mampaso,A.,2003,A&A,400, From[O]5007on-band,off-band,andrimaging,wedetected 511 Magrini,L.,Leisy,P.,Corradi,R.L.M.,etal.2005,A&A,443,115 a large number of extended and compact emitting nebulae in Martins,F.,Schaerer,D.,&Hillier,D.J.2005,A&A,436,1049 NGC3109.WehavedefinedcriteriatodistinguishbetweenPN McCall,M.L.2004,AJ,128,2144 candidatesandcompactHIIregions,whichallowustoidentify McCall,M.L.,&Armour,M.-H.2000,inMappingtheHiddenUniverse:The 20PNcandidates,forwhichwepresentcoordinates,[O]5007 UniverseBehind theMilkyWay–TheUniverse inHI,ASPConf.Ser., eds.R.C.Kraan-Korteweg,P.A.Henning,&H.Andernach(SanFrancisco: magnitudes,andstellarmagnitudes,whenthecentralstarisde- AstronomicalSocietyofthePacific),218,1 tected. We also present a catalog of 40 HII regions (extended Me´ndez,R.H.,Kudritzki,R.,&Herrero,A.1992,A&A,260,329 andcompact)thatincludescoordinates,diameters,[O ] 5007 Minniti,D.,Zijlstra,A.A.,&Alonso,M.V.1999,AJ,117,881 magnitudes, and instrumental magnitudes for the central stars. Musella,I.,Piotto,G.,&Capaccioli,M.1997,AJ,114,976 Pen˜a,M.,Richer,M.G.,&Stasin´ska,G.2006,inPlanetaryNebulaeintheMilky ApparentVmagnitudeshavebeenestimatedfromaroughpho- WayandBeyond,IAUSymp.234,eds.M.J.Barlow andR.H.Me´ndez tometriccalibrationoftheinstrumentalmagnitudes.Basedupon (CambridgeU.Press:Cambridge,UK),inpress theseVmagnitudes,weassignaroughspectralclasstotheion- Richer,M.G.2006,inPlanetaryNebulaeintheMilkyWayandBeyond,IAU izingstarsofHIIregions. Symp. 234, eds. M. J. Barlow and R. H. Me´ndez (Cambridge U. Press: Cambridge,UK),inpress(astro-ph/0605348) The distribution of HII regions is concentratedtowards the Richer,M.G.,&McCall,M.L.1992,AJ,103,54 Richer,M.G.,&McCall,M.L.1995,ApJ,445,642 edge-on disk of the galaxy, while PN distribution is more ex- Richer,M.G.,McCall,M.L.,&Arimoto,N.1997,A&AS,122,215 tended,coveringawiderarea,aboveandbelowthedisk.Thisis Sandage,A.,&Carlson,G.1988,AJ,96,1599 consistentwiththePNebelongingtoanolderstellarpopulation. Soffner,T.,Me´ndez,R.H.,Jacoby,G.,Ciardullo,R.,Roth,M.M.,&Kudritzki, R.P.1996,A&A,306,9 Stasin´ska,G.1990,A&ASupl.Ser.,83,501 ThecumulativePNLFfor[O]5007magnitudeswascon- Stasin´ska,G.,Richer,M.G.,&McCall,M.L.1998,A&A,336,667 structedandafittothisfunctionwascalculated.Comparingthis Vacca,W.D.,Garmany,C.D.,&Shull,J.M.,1996,ApJ,460,914 fitwithafittotheavailabledatafortheLMCshowsthatNGC Table2.PositionsandcharacteristicsofHIIregionsinNGC3109 8 Name R.A.(2000) Dec(2000) φ(”) m(5007) m(star) V(DKI)a m(r) logFb logFb descriptionc S.T. otherIDd i i 5007 5007 HII1 10:02:46.50 -26:10:10.0 >60 — — — — — cmplxloop clump Ho19;Hu9;F3H1,F3H2,.. HII2 10:02:49.35 -26:08:38.1 5.7 18.6: 16.9 21.0 16.7 −15.8: diff O7-O8V F2H4 HII3 10:02:50.50 -26:08:48.5 5.2 18.8: 16.2 20.4 16.5 −15.9: diff O4-O5V F2H5 HII4 10:02:50.66 -26:09:35.9 1.1 14.7 16.1 20.2 15.6 −14.21 comp O4-O5V nearF2H7 HII5 10:02:50.89 -26:09:35.9 4.0 15.9 17.3 21.5 17.4 −14.70 diff O8V nearF2H7 HII6 10:02:52.03 -26:09:05.3 0.8 14.2 16.6 20.8 15.5 −14.02 comptail O6-O7V F2H3 HII7 10:02:52.46 -26:09:24.6 1.4 14.4 16.5 20.7 15.8 −14.11 −14.10 comp O6-O7V nearF2H6 M HII8 10:02:56.28 -26:08:58.3 17.0 15.3 15.7 −14.45 ext clump HII1RMc;Ho12;F1H4,H12 . P HII9 10:02:58.11 -26:08:52.5 5.0 17.2 17.2 21.4 17.2 −15.21 diff O8-O9V e ˜n HII10 10:02:58.91 -26:08:48.3 13.0 16.1 15.9 20.1 16.1 −14.79 ext O7III HII2RMc;Ho11 a e HII11 10:02:59.16 -26:09:17.5 <0.8 15.0 17.0 21.2 16.0 −14.32 −14.33 unres O8-O9V PN2RMc ta HII12 10:02:59.52 -26:09:46.6 4.7 15.9 16.7 20.9 16.9 −14.69 diff O7-O8V HII3RMc l.: A HII13 10:03:00.12 -26:08:53.3 20.0 — — — — — extloop clump Ho8;HII4RMc;Hu5 c a HII14 10:03:00.19 -26:09:28.7 0.8 15.4 16.0 20.2 15.6 −14.48 comp O6III PN3RMc ta HII15 10:03:01.34 -26:09:27.2 <0.8 14.3 16.5 20.7 15.8 −14.11 −14.06 unres O5-O6V PN4RMc log HII16 10:03:01.37 -26:08:38.3 8.5 15.3 15.0 19.2 15.6 −14.45 ext OIa HII5RMc,F1H3 of HII17 10:03:01.97 -26:08:37.5 <0.8 15.2 17.2 21.4 16.1 −14.42 −14.42 unres O8-O9V PN5RMc pla HII18 10:03:03.77 -26:09:20.7 13.0 15.4 15.3 19.5 15.2 −14.48 ext clump HII6RMc,D2H5 ne HII19 10:03:04.46 -26:08:43.9 3.0 15.7 — — — −14.61 diff — HII7RMc tar y HII20 10:03:04.54 -26:09:20.7 1.6 14.3 16.4 20.6 15.7 −14.09 −14.05 comp O6-O7V PN7RMc n e HII21 10:03:05.16 -26:09:23.8 4.0 16.0 15.5 19.7 16.1 −14.73 diff O5III HII8RMc bu HII22 10:03:08.50 -26:10:02.5 60.0 — — — — — arc — D2H4;Hu3 la c HII23 10:03:10:67 -26:09:25.9 8.0 18.0 16.1 20.3 16.1 −15.54 diff O4-O5V an d HII24 10:03:11.50 -26:10:22.4 1.2 17.2 17.4 21.6 17.5 −15.21 diff O8-O9V id a HII25 10:03:11.78 -26:09:47.3 2.6 15.7 16.6 20.8 16.6 −14.61 diff O6-O7V te s HII26 10:03:12.64 -26:08:52.1 6.0 15.7 15.5 19.7 15.8 −14.60 diffext O5III HII9RMc;Ho3;Hu8 a n HII27 10:03:12.84 -26:09:54.9 2.0 16.8 17.9 22.1 17.2 −15.05 diff O8-O9V d H HII28 10:03:13.32 -26:08:50.0 2.4 15.6 17.0 21.2 17.1 −14.58 diff O8V II HII29 10:03:17.48 -26:10:00.5 6.0 16.7 16.9 21.1 17.1 −14.99 diff O7-O8V HII10RMc,Ho2 re g HII30 10:03:17.71 -26:09:59.4 0.8 16.0 17.5 21.7 17.6 −14.74 comp O8-O9V nearHII10RMc io n HII31 10:03:22.00 -26:08:53.4 2.5 15.8 17.6 21.8 17.6 −14.65 diff O8-O9V D1H6 s in HII32 10:03:22.92 -26:10:27.4 1.5 15.6 16.5 20.7 16.2 −14.58 −14.55 comp O7V N HII33 10:03:25.50 -26:10:54.7 18.0 17.5 16.3 20.5 16.9 −15.33 ext O5-O6V G C HII34 10:03:25.80 -26:09:08.9 0.9 17.4 17.0 21.2 16.7 −15.23 −15.29 comp O7V 3 1 HII35 10:03:27.19 -26:10:22.4 19.0 17.7 17.3 21.5 17.5 −15.39 extcmplx clump Ho1,Hu1 0 9 HII36 10:03:27.90 -26:09:36.4 2.5 17.3 17.4 21.6 16.4 −15.25 diff O8-O9V HII37 10:03:27.96 -26:09:19.9 0.9 13.6 16.7 20.9 15.2 −13.75 comp O7-O8V HII38 10:03:28.00 -26:10:22.8 3.0 16.9 16.8 21.0 17.6 −15.09 diff O7-O8V F5H1 HII39 10:03:28.08 -26:09:14.8 3.0 17.5 17.3 21.5 17.8 −15.33 diff O8-O9V F5H2 HII40 10:03:28.51 -26:09:21.8 0.8 13.2 15.4 19.6 14.4 −13.55 −13.57 comp clump nearF5H4,H3,H5 (a)Vstellarmagnitudeoftheionizingstar,asderivedrelativetoDKIphotometry. (b)Fluxinergcm−2s−1,column9:fromspectroscopy;column10:fromexpression(1). (c)Nomenclature:comp:compact,cmplx:complex,diff:diffuse,ext:extended,unres:unresolved. (d)References:RMc,Richer&McCall1992;Ho:Hodge1969;Hu:Hunteretal1993;F3H1,F5H4,D1H6,...:Bresolinetal.1993.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.