ebook img

A Bloch-Wigner complex for SL_2 PDF

0.32 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview A Bloch-Wigner complex for SL_2

A BLOCH-WIGNER COMPLEX FOR SL 2 KEVINHUTCHINSON Abstract. WeintroducearefinementoftheBloch-WignercomplexofafieldF.Itiscomplexof modulesoverthemultiplicativegroupofthefield. InsteadofcomputingtheK (F)andKind(F)- 2 3 astheclassicalBloch-Wignercomplexdoes-itcalculatesthesecondandthirdintegralhomology 1 ofSL (F). Onpassingto F×-coinvariantswerecovertheclassicalBloch-Wignercomplex. We 1 2 includethecaseoffinitefieldsthroughoutthearticle. 0 2 ul Contents J 1 1. Introduction 1 ] 2. BlochGroupsandtheBloch-Wignermap 4 T 3. ThehomologyofSL (F ) 11 K 2 q h. 4. ThethirdhomologyofSL2(F) 18 t 5. TherefinedBlochgroup,theclassicalBlochgroupandindecomposable K 29 a 3 m 6. ThemapH (G,Z) → RB(F)forsubgroupsG ofSL (F) 30 3 2 [ 7. Blochgroupsoffinitefields 34 1 References 38 v 4 6 2 0 1. Introduction . 7 0 What is now usually referred to the as the Bloch group of a field F arose first in the work of S. 1 Bloch as an explicitly-presented approximation to indecomposable of the field which could be 1 : used to define a regulator map based on the dilogarithm (see the notes [3]). When F = C (and, v Xi more generally, when F× = (F×)2) there is a natural identification K3ind(C) = H3(SL2(C),Z), and this latter group is a natural target for invariants of hyperbolic 3-manifolds. It was because r a of this connection with hyperbolic geometry that Dupont and Sah ([6] and [22]) explored the properties of the Bloch group. In particular, they wrote down a proof of the so-called Bloch- Wigner Theorem ([6], Theorem 4.10): The pre-Bloch group of the field F is the group, P(F), withgenerators[x], x ∈ F× \{1}subjecttotherelations R : [x]−(cid:2)y(cid:3)+(cid:2)y/x(cid:3)−(cid:104)(1− x−1)/(1−y−1)(cid:105)+(cid:2)(1− x)/(1−y)(cid:3) x (cid:44) y. x,y (These relations correspond to the 5-term functional equation satisfied by the classical dilog- arithm. See Zagier [27] for a beautiful exposition of these and related matters.) We will let S2(F×)denotetheantisymmetricproduct Z F× ⊗ F× Z . < x⊗y+y⊗ x|x,y ∈ F× > Date:July4,2011. 1991MathematicsSubjectClassification. 19G99,20G10. Keywordsandphrases. K-theory,GroupHomology. 1 2 KEVINHUTCHINSON Thenthereisawell-definedgrouphomomorphism λ : P(F) → S2(F×), [x] (cid:55)→ (1− x)⊗ x Z andthetheoremofBlochandWignersaysthatthereisanexactsequence 0 (cid:47)(cid:47) µC (cid:47)(cid:47) H (SL (C),Z) (cid:47)(cid:47) P(C) λ (cid:47)(cid:47) S2(C) (cid:47)(cid:47) H (SL (C),Z) (cid:47)(cid:47) 0. 3 2 Z 2 2 The argument of Dupont and Sah works equally well for any algebraically closed field and more generally for any quadratically closed field (i.e. satisfying F× = (F×)2). When the field F is quadratically closed then the homology groups can be interpreted in terms of K-theory: H (SL (F),Z) = Kind(F) and H (SL (F),Z) = K (F) = KM(F). Thus the homology groups of 3 2 3 2 2 2 2 theBloch-Wignercomplex P(F) λ (cid:47)(cid:47) S2(F) Z are(essentially)theK-theorygroupsKind(F)andKM(F). ThegroupB(F) = Ker(λ)istheBloch 3 2 groupofthe F. Suslin showed that, interpreted in this way, the Bloch-Wigner theorem extends to all (infinite) fields. He proved (see [25], Theorem 5.2) that for any infinite field F there is a natural exact sequence 0 (cid:47)(cid:47) TorZ(µ(cid:93),µ ) (cid:47)(cid:47) Kind(F) (cid:47)(cid:47) P(F) λ (cid:47)(cid:47) S2(F) (cid:47)(cid:47) KM(F) (cid:47)(cid:47) 0. 1 F F 3 Z 2 whereTorZ(µ(cid:93),µ )istheuniquenontrivialextensionofTorZ(µ ,µ )byZ/2ifthecharacteristic 1 F F 1 F F of F isnot2,andTorZ(µ(cid:93),µ ) = TorZ(µ ,µ )incharacteristic2. 1 F F 1 F F The purpose of the current article is to extend the original sequence of Bloch-Wigner-Dupont- Sah in another direction: namely, to construct a complex, which coincides with the one above when F is quadratically closed, but which calculates in the general case - instead of K-theory - the homology groups H (SL (F),Z) and H (SL (F),Z). Our main goal is to understand better 3 2 2 2 thestructureoftheunstablehomologygroupH (SL (F),Z)anditsrelationto Kind(F). 3 2 3 To put this project in context, we recall some of what is known about the relationship between thehomologygroupsandthe K-theorygroups. Ingeneral,thegroupextension 1 → SL (F) → GL (F) → F× → 1 n n defines an action of F× on the homology groups H (SL (F),Z). Since the determinant of a k n scalar matrix is an n-th power, the subgroup (F×)n acts trivially. In the particular, the groups H (SL (F),Z) are modules over the integral group ring R := Z[F×/(F×)2]. The natural map k 2 F H (SL (F),Z) → K (F) (via stabilization and an inverse Hurewicz map) is surjective and in- 2 2 2 ducesanisomorphismon F×-coinvariants H (SL (F),Z) (cid:27) K (F). 2 2 F× 2 However, the action of F× on H (SL (F),Z) is in general nontrivial. The action of R factors 2 2 F through the Grothendieck-Witt ring GW(F) of the field, and the kernel of the surjective map H (SL (F),Z) → K (F) is isomorphic, as a GW(F)-module, to I(F)3, the third power of the 2 2 2 fundamental ideal I(F) of the augmented ring GW(F). (See Suslin [24], Appendix for the details.) TobemoreexplicitH (SL (F),Z)canbeexpressedasafibreproduct 2 2 H (SL (F),Z) (cid:27) I(F)2 × KM(F). 2 2 I(F)2/I(F)3 2 H (SL (F),Z) is of interest in its own right to K-theorists and geometers because it coincides 2 2 with the second Milnor-Witt K-group, KMW(F), of the field F (see, for example, [18] or [19]). 2 Bloch-Wigner-Suslincomplex 3 More generally, the calculation of the groups H (SL (F),Z), which are at the boundary of the n n homologystabilityrange,involvestheMilnor-Witt K-groups KMW(F)([11]). n The group H (SL (F),Z) is of interest, among other reasons, because it is strictly below the 3 2 range of homology stability. However there is, for any field F, a natural homomorphism H (SL (F),Z) → Kind(F)whichinducesasurjectivehomomorphism(see[10]) 3 2 3 H (SL (F),Z) (cid:47)(cid:47) (cid:47)(cid:47) Kind(F) . 3 2 F× 3 Suslinhasaskedthequestionwhetherthisisanisomorphism,anditisknown(seeMirzaii[17]) thatthekernelconsistsof-atworst-2-primarytorsion. In order to refine the Bloch-Wigner sequence to a sequence which captures the homology of SL (F),itisnecessarytobuildintheR -modulestructuresateachstage. Thus,inthisarticlewe 2 F introducefirsttherefinedpre-BlochgroupRP(F)ofafield F. ThisistheR -modulegenerated F bysymbols[x], x ∈ F× \{1}subjecttotherelations 0 = [x]−[y]+(cid:104)x(cid:105)(cid:2)y/x(cid:3)−(cid:68)x−1 −1(cid:69)(cid:104)(1− x−1)/(1−y−1)(cid:105)+(cid:104)1− x(cid:105)(cid:2)(1− x)/(1−y)(cid:3), x,y (cid:44) 1 where (cid:104)x(cid:105) denotes the class of x in F×/(F×)2. Similarly we introduce an R -module RS2(F×) F Z which has natural generators [x,y], x,y ∈ F×. The ‘refined Bloch-Wigner complex’ is then the complexofR -modules F RP(F) Λ (cid:47)(cid:47) RS2(F) , [x] (cid:55)→ [1− x,x]. Z Ontaking F×-coinvariantsthisreducestotheclassicalBloch-Wignercomplex. Ourmainresult (Theorem4.3)isthatthereis,foranyfield F,anaturalcomplexofR -modules F 0 (cid:47)(cid:47) TorZ(µ ,µ ) (cid:47)(cid:47) H (SL (F),Z) (cid:47)(cid:47) RP(F) Λ (cid:47)(cid:47) RS2(F×) (cid:47)(cid:47) H (SL (F),Z) (cid:47)(cid:47) 0 1 F F 3 2 Z 2 2 which is exact at every term except possibly at the term H (SL (F),Z), where the homology of 3 2 thecomplexisannihilatedby4. The refined Bloch group of the field F is the R -module RB(F) := Ker(Λ). The main theorem F tells us that it is a good approximation to the H (SL (F),Z). In particular, we show that - up to 3 2 some2-primarytorsion-RB(F) (cid:27) B(F)and F× Ker(RB(F) → B(F)) (cid:27) Ker(H (SL (F),Z) → Kind(F)). 3 2 3 In a subsequent article we will develop further the algebraic properties of the refined Bloch group(see[8],forexample). Inparticular,whenthefield F hasavaluationwithresiduefieldk, thereareusefulspecializationhomomorphismsfromRB(F)toRP(k). Thus,wewillshowthat if F isanondyadiclocalfieldwith(finite)residuefieldk thereisanaturalisomorphism H (SL (F),Z[1/2]) (cid:27) (cid:16)Kind(F)⊕R(cid:91)B(k)(cid:17)⊗Z[1/2] 3 2 3 (cid:91) whereRB(k)isacertainexplicitlycomputablequotientoftheBlochgroupofk. Similarly,wewillshow(see[8]fordetails)thatforanyglobalfield F thekernel Ker(H (SL (F),Z[1/2]) → Kind(F)⊗Z[1/2]) 3 2 3 mapshomomorphicallyontotheinfinitedirectsum (cid:16)⊕ R(cid:91)B(k )(cid:17)⊗Z[1/2], v v thesumbeingoverallfiniteplacesvof F. Thusthe(refined)Blochgroupsoffinitefieldswillplayanimportantroleinfutureapplications. Because of this, and unlike most of the references above, throughout the paper we include the 4 KEVINHUTCHINSON case of finite fields. At times, they require separate treatment and methods. For this reason we include a separate section - section 3- recalling the results we need on the homology of SL (F) 2 for finite fields F. In the last section of the paper we combine our main theorem with these homology calculations to give a proof of Suslin’s theorem in the case of finite fields and to makesomeusefulcalculationsinBlochgroupsoffinitefields. Remark 1.1. Several authors (W. Neumann [20], W. Nahm, S. Goette and C. Zickert [7]) have introducedandstudiedanextendedBlochgroup,whichisexactlyisomorphictothe Kind(F)-at 3 least for some fields F. This is a quite different object from the refined Bloch group introduced here,whicheffectivelybearsthesamerelationshiptoH (SL (F),Z)astheclassicalBlochgroup 3 2 doesto Kind(F). 3 2. BlochGroupsandtheBloch-Wignermap In this section, we review the definition of the classical Bloch group and pre-Bloch group of a field,andwedefineourbasicobjectsofstudyinthisarticle,therefinedBlochgroupandrefined pre-Blochgroup. 2.1. TheclassicalBlochgroup. Let F beafieldwithatleast4elementsandlet X denotethe n setofallorderedn-tuplesofdistinctpointsofP1(F). PGL (F),andhencealsoGL (F),actson 2 2 P1(F)viafractionallineartransformations. Thusthesegroupsacton X viaadiagonalaction. n NowletA(F)bethecokernelofthehomomorphismofGL (F)-modules 2 (cid:88)5 δ : ZX → ZX , (x ,...,x ) (cid:55)→ (−1)j+1(x ,...,xˆ,...,x ). 5 4 1 5 1 j 5 j=1 Thenthepre-Blochgroupof F isthegroup P(F) := A(F) = Coker(δ¯ : (ZX ) → (ZX ) ). GL2(F) 5 GL2(F) 4 GL2(F) Now the orbits of GL (F) on X are classified by the cross-ratio: i.e., in general, (x ,...,x ) is 2 4 1 4 intheorbitof(0,∞,1,x)where x ∈ P1(F)\{∞,0,1} = F× \{1}isthecross-ratio (x − x )(x − x ) 4 1 3 2 (x − x )(x − x ) 3 1 4 2 of x ,...,x . 1 4 Thus (cid:77) (ZX ) (cid:27) Z·(0,∞,1,x) 4 GL2(F) x∈F×\{1} and,similarly, (cid:77) (ZX ) (cid:27) Z·(0,∞,1,x,y). 5 GL2(F) x,y∈F×\{1} x(cid:44)y andfor x (cid:44) yin F× \{1},δ¯(0,∞,1,x,y) = (∞,1,x,y)−(0,1,x,y)+(0,∞,x,y)−(0,∞,1,y)+(0,∞,1,x) (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) = 0,∞,1, 1−x − 0,∞,1, 1−x−1 + 0,∞,1, y −(0,∞,1,y)+(0,∞,1,x) 1−y 1−y−1 x Thus, if we let [x] denote the class of the orbit of (0,∞,1,x) in P(F) then P(F) is the group generatedbytheelements[x], x ∈ F× \{1},subjecttotherelations R : [x]−(cid:2)y(cid:3)+(cid:2)y/x(cid:3)−(cid:104)(1− x−1)/(1−y−1)(cid:105)+(cid:2)(1− x)/(1−y)(cid:3) x (cid:44) y. x,y Bloch-Wigner-Suslincomplex 5 LetS2(F×)denotethegroup Z F× ⊗ F× Z < x⊗y+y⊗ x|x,y ∈ F× > anddenoteby x◦ytheimageof x⊗yinS2(F×). Z Themap λ : P(F) → S2(F×), [x] (cid:55)→ (1− x)◦ x Z iswell-defined,andtheBlochgroupof F,B(F) ⊂ P(F),isdefinedtobethekernelofλ. 2.2. The refined pre-Bloch group. Let F be a field with at least 4 elements. The refined pre-Blochgroupof F isthegroup RP(F) := A(F) = Coker(δ¯ : (ZX ) → (ZX ) ). SL2(F) 5 SL2(F) 4 SL2(F) For a field F, we let G denote the multiplicative group, F×/(F×)2, of nonzero square classes F of the field. For x ∈ F×, we will let (cid:104)x(cid:105) ∈ G denote the corresponding square class. Let R F F denotetheintegralgroupringZ[G ]ofthegroupG . Wewillusethenotation(cid:104)(cid:104)x(cid:105)(cid:105)forthebasis F F elements,(cid:104)x(cid:105)−1,oftheaugmentationidealI ofR . F F Sinceforanyfield F wehaveashortexactsequenceofgroups 1 → PSL (F) → PGL (F) → G → 1 2 2 F itfollowsthatif X isanyPGL (F)-set,thenSL (F)\X isaG -setand 2 2 F (ZX) (cid:27) Z[SL (F)\X] SL2(F) 2 isanR -module. F ThestabilizerinSL (F)of(0,∞)isthesubgroupT consistingofalldiagonalmatrices 2 (cid:34) (cid:35) a 0 D(a) := 0 a−1 For x ∈ P1(F), D(a)· x = a2x. Given x (cid:44) yinP1(F),letT ∈ SL (F)bethematrix x,y 2  (cid:34) (cid:35) T =  (cid:34) 1x1−1y−x−x−−yx(cid:35)y yx,=y (cid:44)∞∞ x,y  (cid:34) 001 −−11y (cid:35) x = ∞ Then T (x) = 0, T (y) = ∞, and, by the preceding remarks, if S ∈ SL (F) satisfies S(x) = 0 x,y x,y 2 andS(y) = ∞,thenS = D(a)·T forsomea ∈ F×. Inparticular,if A ∈ SL (F),itfollowsthat x,y 2 T = D(a)·T ·A−1 forsomea = a(x,y,A) ∈ F×. Ax,Ay x,y For x,y,zdistinctpointsofP1(F),wedefine  (z− x)(x−y)(z−y)−1, x,y,z (cid:44) ∞ φ(x,y,z) := T (z) =  (y−z)−1, x = ∞ x,y  zx−−xy,, zy==∞∞ 6 KEVINHUTCHINSON Thusφ(x,y,z) ∈ P1(F)\{∞,0} = F×,andφ(0,∞,z) = zforz ∈ F×. Furthermore,ifA ∈ SL (F), 2 then φ(Ax,Ay,Az) = T (Az) = D(a)·T ·A−1(Az) = a2φ(x,y,z)forsomea ∈ F×. Ax,Ay x,y Now,forn ≥ 1,letY denotethesetoforderedn-tuplesofdistinctpointsofF×. Y isanF×-set n n viathediagonalaction. Lemma2.1. Forn ≥ 3,themap Φ : X → Y n n n−2 (x ,x ,...,x ) (cid:55)→ (φ(x ,x ,x ),φ(x ,x ,x ),...,φ(x ,x ,x )) 1 2 n 1 2 3 1 2 4 1 2 n inducesabijectionofG -sets F SL (F)\X ←→ (F×)2\Y . 2 n n−2 Proof. BytheremarksaboveΦ descendstoawell-definedmap n Φ¯ : SL (F)\X → (F×)2\Y . Furthermore,themap n 2 n n−2 Ψ : Y → X n n−2 n (y ,...,y ) (cid:55)→ (0,∞,y ,...,y ) 1 n−2 1 n−2 givesaset-theoreticsectionofΦ whichdescendstoaninverseofΦ¯ . n n Since,foranya ∈ F×, (cid:40) aφ(x ,x ,y), x (cid:44) ∞ φ(ax ,ax ,ay) = 1 2 1 1 2 a−1φ(x ,x ,y), x = ∞ 1 2 1 italsofollowsthatΦ¯ isamapofG -sets. (cid:3) n F Corollary2.2. Forn ≥ 0,letZ denotethesetoforderedn-tuples,[z ,...,z ],ofdistinctpoints n 1 n of F× \{1}. Thenforalln ≥ 3thereisanisomorphismofR -modules F (ZX ) (cid:27) R [Z ]. n SL2(F) F n−3 Proof. ByLemma2.1wehaveR -isomorphisms F (ZX ) (cid:27) Z[SL (F)\X ] (cid:27) Z[(F×)2\Y ]. n SL2(F) 2 n n−2 Finally,wehaveanR -isomorphism F Z[(F×)2\Y ] (cid:27) R [Z ] n−2 F n−3 viathemap (cid:34) (cid:35) y y (y ,...,y ) (cid:55)→ (cid:104)y (cid:105) 2,..., n−2 . 1 n−2 1 y y 1 1 (cid:3) ItfollowsthattheR -isomorphism(ZX ) (cid:27) R [Z ]isgivenby F n SL2(F) F n−3 (cid:34) (cid:35) φ(x ,x ,x ) φ(x ,x ,x ) (x ,...,x ) (cid:55)→ (cid:104)φ(x ,x ,x )(cid:105) 1 2 4 ,..., 1 2 n . 1 n 1 2 3 φ(x ,x ,x ) φ(x ,x ,x ) 1 2 3 1 2 3 Inparticular,wehaveR -isomorphisms F (ZX ) (cid:27) R , (ZX ) (cid:27) R [F× \{1}], (ZX ) (cid:27) R [Z ] 3 SL2(F) F 4 SL2(F) F 5 SL2(F) F 2 NotethattakingG -coinvariantsofthetermsinCorollary2.2weobtain F Bloch-Wigner-Suslincomplex 7 Corollary2.3. Foralln ≥ 3thereisanisomorphismofgroups (ZX ) (cid:27) Z[Z ]. n GL2(F) n−3 Inparticular,forn = 4,theisomorphism(ZX ) (cid:27) Z[F× \{1}]isgivenby 4 GL2(F) (cid:34) (cid:35) φ(x ,x ,x ) (x ,x ,x ,x ) (cid:55)→ 1 2 4 1 2 3 4 φ(x ,x ,x ) 1 2 3 whichisjusttheclassicalcross-ratiomap. Nowitfollowsfromthecalculationsabovethatthemap R [Z ] (cid:27) (cid:47)(cid:47) (ZX ) δ¯ (cid:47)(cid:47) (ZX ) (cid:27) (cid:47)(cid:47) R [Z ] F 2 5 SL2(F) 4 SL2(F) F 1 istheR -modulehomomorphism F [x,y] (cid:55)→ [x]−[y]+(cid:104)x(cid:105)(cid:2)y/x(cid:3)−(cid:68)x−1 −1(cid:69)(cid:104)(1− x−1)/(1−y−1(cid:105)+(cid:104)1− x(cid:105)(cid:2)(1− x)/(1−y)(cid:3) (sinceφ(∞,1,a) = (1−a)−1,φ(0,1,a) = (a−1 −1)−1 andφ(0,∞,a) = a.) Thuswehave: Lemma2.4. Therefinedpre-BlochgroupRP(F)istheR -modulewithgenerators[x], x ∈ F× F subjecttotherelations[1] = 0and S : 0 = [x]−[y]+(cid:104)x(cid:105)(cid:2)y/x(cid:3)−(cid:68)x−1 −1(cid:69)(cid:104)(1− x−1)/(1−y−1)(cid:105)+(cid:104)1− x(cid:105)(cid:2)(1− x)/(1−y)(cid:3), x,y (cid:44) 1 x,y Ofcourse,bydefinition,wehaveP(F) = (RP(F)) = H (F×,RP(F)). F× 0 2.3. ThemoduleRS2(F×)andtherefinedBlochgroupofafield. Z Lemma 2.5. Let G be an abelian group. There is a natural short exact sequence of Z[G]- modules 0 → I3 → I2 → Sym2(G) → 0 G G Z (whereG actstriviallyonthefourthterm). Proof. In fact if R is any commutative ring and I an ideal in R, then there is a natural exact sequence Symn+1(I) η (cid:47)(cid:47) Symn(I) (cid:47)(cid:47) Symn (I/I2) (cid:47)(cid:47) 0 R R R/I whereη(a ∗a ∗···∗a ) = a ·(a ∗···∗a ) = (a a )∗···∗a . 0 1 n 0 1 n 0 1 n Intheparticularcasen = 2,R = Z[G], I = I thisgivesanexactsequence G Sym3 (I ) → Sym2 (I ) → Sym2(G) → 0 Z[G] G Z[G] G Z sinceI /I2 (cid:27) G. G G NowthereisanaturalsurjectivehomomorphismofgradedZ[G]-algebras Sym• (I ) → I•, Z[G] G G a ∗···∗a (cid:55)→ (cid:104)(cid:104)a (cid:105)(cid:105)···(cid:104)(cid:104)a (cid:105)(cid:105). 1 n 1 n This is an isomorphism in dimension 2 (and,for trivial reasons, in dimensions 0 and 1). To see this,applythefunctor−⊗ I totheshortexactsequence Z[G] G 0 → I → Z[G] → Z → 0 G toobtaintheexactsequence 0 → TorZ[G](Z,I ) → T2 (I ) → I2 → 0. 1 G Z[G] G G 8 KEVINHUTCHINSON ButTorZ[G](Z,I ) = H (G,I ) (cid:27) H (G,Z) (cid:27) ∧2(G). Astraightforwardcalculationnowshows 1 G 1 G 2 Z thatthemap ∧2(G) (cid:27) TorZ[G](Z,I ) → T2 (I ) Z 1 G Z[G] G sendsg ∧g to(cid:104)(cid:104)g (cid:105)(cid:105)⊗(cid:104)(cid:104)g (cid:105)(cid:105)−(cid:104)(cid:104)g (cid:105)(cid:105)⊗(cid:104)(cid:104)g (cid:105)(cid:105). 1 2 1 2 2 1 Finally,weobservethattheimageofthemap Sym3 (I ) → Sym2 (I ) (cid:27) I2 Z[G] G Z[G] G G isclearlyI3. G (cid:3) Remark2.6. ItisastraightforwardmattertoverifythatSym• (I )hasthefollowingpresen- Z[G] G tation as a graded ring: It is generated in degree 1 by the elements (cid:104)(cid:104)g(cid:105)(cid:105), g ∈ G, subject to the relations (N) (cid:104)(cid:104)1(cid:105)(cid:105) = 0 (R) (cid:104)(cid:104)g (cid:105)(cid:105)∗(cid:104)(cid:104)g g (cid:105)(cid:105)+(cid:104)(cid:104)g (cid:105)(cid:105)∗(cid:104)(cid:104)g (cid:105)(cid:105) = (cid:104)(cid:104)g g (cid:105)(cid:105)∗(cid:104)(cid:104)g (cid:105)(cid:105)+(cid:104)(cid:104)g (cid:105)(cid:105)∗(cid:104)(cid:104)g (cid:105)(cid:105)forallg ,g ,g ∈ G. 1 2 3 2 3 1 2 3 1 2 1 2 3 (S) (cid:104)(cid:104)g (cid:105)(cid:105)∗(cid:104)(cid:104)g (cid:105)(cid:105) = (cid:104)(cid:104)g (cid:105)(cid:105)∗(cid:104)(cid:104)g (cid:105)(cid:105)forallg ,g ∈ G 1 2 2 1 1 2 Forabeliangroupsthesurjectivehomomorphismofgradedringsα : Sym• (I ) → I• isnot Z[G] G G generallyinjectiveindimensionsgreaterthan2. However,thefollowingisknown: If G is either torsion-free or cyclic then α is an isomorphism (see Bak and Tang [1]). On the otherhand,ifG isanelementaryabelian2-group,thenthekernelofαistheidealgeneratedby the degree 3 terms (cid:104)(cid:104)g (cid:105)(cid:105)∗(cid:104)(cid:104)g (cid:105)(cid:105)∗(cid:104)(cid:104)g g (cid:105)(cid:105) for g ,g ∈ G (see Bak and Vavilov [2]). It is easy to 1 2 1 2 1 2 seethattheselattertermsarenonzero(byconsideringtheirimageinSym3 (G),forexample). Z/2 ApplyingLemma2.5tothecaseG = G gives: F Corollary2.7. Let F beafield. ThereisanaturalexactsequenceofR -modules F 0 → I3 → I2 → Sym2 (G ) → 0. F F F2 F Ontheotherhand,clearlythereisalsoanaturalhomomorphismofadditivegroups S2(F×) (cid:47)(cid:47) (cid:47)(cid:47) S2(F×)⊗Z/2 (cid:27) (cid:47)(cid:47) Sym2 (G ). Z Z F F 2 Foranyfield F wedefinetheR -module F RS2(F×) := I2 × S2(F×) ⊂ I2 ⊕S2(F×) Z F Sym2F (GF) Z F Z 2 whereS2(F×)hasthetrivialR -modulestructure. Z F Givena,b ∈ F×,welet[a,b]denotetheelement [a,b] := ((cid:104)(cid:104)a(cid:105)(cid:105)(cid:104)(cid:104)b(cid:105)(cid:105),a◦b) ∈ RS2(F×). Z Lemma2.8. Let F beafield. (1) I RS2(F×) (cid:27) I3 F Z F (2) RS2(F×) (cid:27) S2(F×) Z F× Z (3) RS2(F×)isgeneratedasanR -modulebytheelements[a,b],a,b ∈ F×. Z F Proof. (1) Wehaveaninjectivehomomorphism I3 → I2 ⊕S2(F×), x (cid:55)→ (x,0). F F Z But,since x mapsto0inSym2 (G ) = I2/I3,infactI3 ⊂ RS2(F×). F2 F F F F Z Bloch-Wigner-Suslincomplex 9 Ontheotherhand,ifa,b,c ∈ F×,then(cid:104)(cid:104)a(cid:105)(cid:105)[b,c] = ((cid:104)(cid:104)a(cid:105)(cid:105)(cid:104)(cid:104)b(cid:105)(cid:105)(cid:104)(cid:104)c(cid:105)(cid:105),0). So I3 ⊂ I RS2(F×). F F Z Conversely, if (x,y) ∈ RS2(F×) and a ∈ F×, then (cid:104)(cid:104)a(cid:105)(cid:105)(x,y) = ((cid:104)(cid:104)a(cid:105)(cid:105)x,0) ∈ I3; i.e. Z F I RS2(F×) ⊂ I3. F Z F (2) Suppose that (x,y) lies in the kernel of the surjective R -homomorphism RS2(F×) → F Z S2(F×). Then y = 0 and thus x maps to 0 in Sym2 (G ). By Corollary 2.7, x ∈ I3 = Z F2 F F andhence(x,y) ∈ I RS2(F×). F Z ObservethatitfollowsthatthereisanaturalshortexactsequenceofR -modules F 0 → I3 → RS2(F×) → S2(F×) → 0. F Z Z (3) Let K(F) be the R -submodule of RS2(F×) generated by the elements [a,b]. Since F Z (cid:104)(cid:104)a(cid:105)(cid:105)[b,c] = (cid:104)(cid:104)a(cid:105)(cid:105)(cid:104)(cid:104)b(cid:105)(cid:105)(cid:104)(cid:104)c(cid:105)(cid:105) ∈ I3 ⊂ RS2(F×), it follows that I3 ⊂ K(F). On the other F Z F hand the homomorphism RS2(F×) → S2(F×) maps K(F) onto S2(F×), since the latter Z Z Z isgeneratedbytheelementsa◦b. Thus K(F) = RS2(F×)asrequired. Z (cid:3) ObservethattheR -modulestructureonRS2(F×)isgivenbytheformula F Z (cid:104)b(cid:105)[a,c] = [ab,c]−[b,c] = [a,bc]−[a,b]. WedefinetherefinedBloch-WignerhomomorphismΛtobetheR -modulehomomorphism F Λ : RP(F) → RS2(F), [x] (cid:55)→ [1− x,x]. Z In view of the definition of RS2(F×), we can express Λ = (λ ,λ ) where λ : RP(F) → I2 is Z 1 2 1 F themap[x] (cid:55)→ (cid:104)(cid:104)1− x(cid:105)(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105),andλ isthecomposite 2 RP(F) (cid:47)(cid:47) (cid:47)(cid:47) P(F) λ (cid:47)(cid:47) S2(F×). Z Itisatediouscalculationtoverifydirectlyλ isawell-definedhomomorphismofR -modules. 1 F However,wewillseebelowthatλ arisesnaturallyasadifferentialinaspectralsequence. 1 RecallthatthehomologygroupsH (SL (F),Z)arenaturallyR -modulesforallk. k 2 F Theorem2.9. ForanyfieldF withatleast10elements,thereisanaturalsurjectiveR -module F homomorphism RS2(F×) → H (SL (F),Z) Z 2 2 inducinganisomorphismCoker(Λ) (cid:27) H (SL (F),Z). 2 2 Proof. Suppose first that F is finite. Then H (SL (F),Z) = 0. The statement of the theorem 2 2 amountstothesurjectivityofΛ. Forafinitefield,since F× iscyclic,S2(F×) = Sym2 (G )andthusRS2(F×) = I2. Z Z/2 F Z F Recall that the Grothendieck-Witt ring of the field F is the ring GW(F) = R /J , where J F F F is the ideal generated by the elements (cid:104)(cid:104)1− x(cid:105)(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105). Thus Coker(Λ) is I(F)2, where I(F) is the fundamental ideal I /J in GW(F). However, it is well-known that I(F)2 = 0 for any finite F F field F (see,forexample,[16],sectionIII.5). Thuswecansupposethat F isinfinite. Inthiscase,thesymplecticcaseofthetheoremofMat- sumotoandMoore([13]),givesapresentationofthegroupH (SL (F),Z). Ithasthefollowing 2 2 form: Thegeneratorsaresymbols(cid:104)a ,a (cid:105),a ∈ F×,subjecttotherelations: 1 2 i (i) (cid:104)a ,a (cid:105) = 0ifa = 1forsomei 1 2 (cid:68) i (cid:69) (ii) (cid:104)a ,a (cid:105) = a−1,a 1 2 2 1 10 KEVINHUTCHINSON (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) (iii) a ,a a(cid:48) + a ,a(cid:48) = a a ,a(cid:48) +(cid:104)a ,α (cid:105) 1 2 2 2 2 1 2 2 1 2 (iv) (cid:104)a ,a (cid:105) = (cid:104)a ,−a a (cid:105) 1 2 1 1 2 (v) (cid:104)a ,a (cid:105) = (cid:104)a ,(1−a )a (cid:105) 1 2 1 1 2 Furthermore, Suslin has shown ([24], appendix) that for an infinite field F, there is an isomor- phismofR -modules F H (SL (F),Z) (cid:27) I(F)2 × KM(F), (cid:104)a,b(cid:105) ↔ ((cid:104)(cid:104)a(cid:105)(cid:105)(cid:104)(cid:104)b(cid:105)(cid:105),{a,b}). 2 2 I(F)2/I(F)3 2 NowwehaveamapofdiagramsofR -modules F S2(F×) KM(F) Z 2 (cid:47)(cid:47) (cid:15)(cid:15) (cid:15)(cid:15) I2 (cid:47)(cid:47) Sym2(G ) I(F)2 (cid:47)(cid:47) I(F)2/I(F)3 F Z F whichinducesamapofpullbacks RS2(F×) → I(F)2 × KM(F) (cid:27) H (SL (F),Z) Z I(F)2/I(F)3 2 2 2 sendingtheelements[a,b]totheelements(cid:104)a,b(cid:105). This map is surjective, since the elements (cid:104)a,b(cid:105) generate H (SL (F),Z), and the image of Λ is 2 2 containedinitskernelsince{1− x,x} = 0in KM(F)and(cid:104)(cid:104)1− x(cid:105)(cid:105)(cid:104)(cid:104)x(cid:105)(cid:105) = 0inI(F)2. 2 To complete the proof of the theorem we must show that there is an R -homomorphism F H (SL (F),Z) → Coker(Λ) sending (cid:104)a,b(cid:105) to [a,b] (mod Im(Λ)); i.e. we must show that the 2 2 elements[a,b] ∈ RS2(F×)satisfytheMatsumoto-MoorerelationsmodulotheimageofΛ. Z Now the elements [a,b] are easily seen to satisfy relations (i), (ii) and (iii). On the other hand, since[a,1−a] ≡ 0 (mod Im(Λ))foralla ∈ F×,andsinceΛisanR -homomorphism,itfollows F that0 ≡ (cid:104)b(cid:105)[a,1−a] ≡ [a,(1−a)b]−[a,1−a] (mod Im(Λ))foralla,b ∈ F×. (cid:104) (cid:105) Now,foranya ∈ F×,Λ([a]+(cid:104)−1(cid:105) a−1 ) = [−a,a],since (cid:104) (cid:105) λ ([a]+(cid:104)−1(cid:105) a−1 ) = (cid:104)(cid:104)1−a(cid:105)(cid:105)(cid:104)(cid:104)a(cid:105)(cid:105)+(cid:104)−1(cid:105)(cid:104)(cid:104)a(a−1)(cid:105)(cid:105)(cid:104)(cid:104)a(cid:105)(cid:105) 1 = ((cid:104)(cid:104)(1−a)a(cid:105)(cid:105)−(cid:104)(cid:104)1−a(cid:105)(cid:105)−(cid:104)(cid:104)a(cid:105)(cid:105))+(cid:104)−1(cid:105)((cid:104)(cid:104)a−1(cid:105)(cid:105)−(cid:104)(cid:104)a(a−1)(cid:105)(cid:105)−(cid:104)(cid:104)a(cid:105)(cid:105)) = (cid:104)(cid:104)(1−a)a(cid:105)(cid:105)−(cid:104)(cid:104)1−a(cid:105)(cid:105)−(cid:104)(cid:104)a(cid:105)(cid:105)+(cid:104)(cid:104)1−a(cid:105)(cid:105)−(cid:104)(cid:104)a(1−a)(cid:105)(cid:105)−(cid:104)(cid:104)−a(cid:105)(cid:105)+(cid:104)(cid:104)−1(cid:105)(cid:105) = (cid:104)(cid:104)−1(cid:105)(cid:105)−(cid:104)(cid:104)a(cid:105)(cid:105)−(cid:104)(cid:104)−a(cid:105)(cid:105) = (cid:104)(cid:104)a(cid:105)(cid:105)(cid:104)(cid:104)−a(cid:105)(cid:105) and (cid:104) (cid:105) λ ([a]+(cid:104)−1(cid:105) a−1 ) = (1−a)◦a+(1−a−1)◦a−1 2 (cid:32) (cid:33) 1−a = (1−a)◦a− ◦a = (−a)◦a. −a Thus [a,−a] ≡ 0 (mod Im(Λ)) for all a ∈ F× and hence 0 ≡ (cid:104)b(cid:105)[a,−a] ≡ [a,−ab] − [a,−a] (mod Im(Λ)) for all a,b ∈ F×. Thus relations (iv) and (v) also hold in Coker(Λ), and the theoremisproven. (cid:3) Remark 2.10. The restriction to fields with at least 10 elements is to rule out the exceptional casesofthefieldwith4andthefieldwith9elementsforwhichH (SL (F),Z) = Z/pisnonzero 2 2 (seeLemma3.14below)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.