SSiimmuullaatteedd AAnnnneeaalliinngg Biostatistics 615/815 LLeeccttuurree 1188 So far … “Greedy” optimization methods (cid:122) • Can get trapped at local minima • Outcome might depend on starting point Examples: (cid:122) • Golden Search • Nelder-Mead Simplex Optimization • E-M Algorithm Today … Simulated Annealing (cid:122) Markov-Chain Monte-Carlo method (cid:122) Designed to search for global minimum (cid:122) aammoonngg mmaannyy llooccaall mmiinniimmaa The Problem Most minimization strategies find the (cid:122) nearest local minimum SSttaannddaarrdd ssttrraatteeggyy (cid:122)(cid:122) • Generate trial point based on current estimates • EEvvaalluuaattee ffuunnccttiioonn aatt pprrooppoosseedd llooccaattiioonn • Accept new value if it improves solution The Solution We need a strategy to find other minima (cid:122) This means, we must sometimes select (cid:122) nneeww ppooiinnttss tthhaatt ddoo nnoott iimmpprroovvee ssoolluuttiioonn HHooww?? (cid:122)(cid:122) Annealing One manner in which crystals are formed (cid:122) Gradual cooling of liquid … (cid:122) • At high temperatures, molecules move freely • At low temperatures, molecules are "stuck" IIff coolliing iis sllow (cid:122) • Low energy, organized crystal lattice formed Simulated Annealing Analogy with thermodynamics (cid:122) Incorporate a temperature parameter into the (cid:122) minimization procedure At high temperatures, explore parameter space (cid:122) At lower temperatures, restrict exploration (cid:122) Markov Chain The Markovian property (cid:122) Pr(Z = i | Z = i , , Z = i ) = Pr(Z = i | Z = i ) K n n n−1 n−1 0 0 n n n−1 n−1 Transition probability (cid:122) QQ == PPrr((ZZ == jj || ZZ == ii)) ij n n−1 n-step transition (cid:122) (n) ∑ ∑ Q = Pr(Z = j | Z = i) = p p L L ij n 0 ii i j 1 n−1 i i 1 n−1 (all possible n-step paths i → j) Markov Chain (In Practice) Start with some state (Z =i) (cid:122) n • A set of mixture parameters Propose a change (Z =j) (cid:122) n+1 •• EEddiitt miixtture parametters iin some way DDeecciiddee wwhheetthheerr ttoo aacccceepptt cchhaannggee ((QQ )) (cid:122)(cid:122) ij • Decision is based on relative probabilities of ttwwoo oouuttccoommeess Simulated Annealing Strategy Consider decreasing series of temperatures (cid:122) For each temperature, iterate these steps: (cid:122) • Propose an update and evaluate function •• AAcceptt upddattes tthhatt iimprove solluttiion • Accept some updates that don't improve solution • Accepptance pprobabilityy deppends on “tempperature” pparameter If cooling is sufficiently slow, the global minimum (cid:122) wiillll bbe reachhedd
Description: