ebook img

6.1 Angles in Polygons PDF

54 Pages·2014·1.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 6.1 Angles in Polygons

www.ck12.org Chapter6. PolygonsandQuadrilaterals 6 C HAPTER Polygons and Quadrilaterals Chapter Outline 6.1 ANGLES IN POLYGONS 6.2 PROPERTIES OF PARALLELOGRAMS 6.3 PROVING QUADRILATERALS ARE PARALLELOGRAMS 6.4 RECTANGLES, RHOMBUSES AND SQUARES 6.5 TRAPEZOIDS AND KITES 6.6 CHAPTER 6 REVIEW This chapter starts with the properties of polygons and narrows to focus on quadrilaterals. We will study several different types of quadrilaterals: parallelograms, rhombi, rectangles, squares, kites and trapezoids. Then, we will provethatdifferenttypesofquadrilateralsareparallelogramsorsomethingmorespecific. 301 6.1. AnglesinPolygons www.ck12.org 6.1 Angles in Polygons LearningObjectives • Extendtheconceptofinteriorandexterioranglesfromtrianglestoconvexpolygons. • Findthesumsofinterioranglesinconvexpolygons. • Identifythespecialpropertiesofinterioranglesinconvexquadrilaterals. ReviewQueue 1. Findxandy. (a) (b) 2. (a) Findw◦,x◦,y◦,andz◦. (b) Whatisw◦+y◦+z◦? ◦ (c) Whattwoanglesadduptoy ? (d) Whatare72◦,59◦,andx◦ called? Whatarew◦,y◦,andz◦ called? KnowWhat? TotherightisapictureofDevil’sPostpile,nearMammothLakes,California. Thesepostsarecooled lava (called columnar basalt) and as the lava pools and cools, it ideally would form regular hexagonal columns. However,variationsincoolingcausedsomecolumnstoeithernotbeperfectorpentagonal. First,defineregularinyourownwords. Then,whatisthesumoftheanglesinaregularhexagon? Whatwouldeach anglebe? 302 www.ck12.org Chapter6. PolygonsandQuadrilaterals InteriorAnglesinConvexPolygons Recall from a previous chapter that interior angles are the angles inside a closed figure with straight sides. Even thoughthisconceptwasintroducedwithtriangles,itcanbeextendedtoanypolygon. Asyoucanseeintheimages below,apolygonhasthesamenumberofinterioranglesasitdoessides. In Chapter 1, we learned that a diagonal connects two non-adjacent vertices of a convex polygon. Also, recall that ◦ thesumoftheanglesinatriangleis180 . Whataboutotherpolygons? Investigation6-1: PolygonSumFormula ToolsNeeded: paper,pencil,ruler,coloredpencils(optional) 1. Drawaquadrilateral,pentagon,andhexagon. 2. Cuteachpolygonintotrianglesbydrawingallthediagonalsfromonevertex. Countthenumberoftriangles. Makesurenoneofthetrianglesoverlap. 3. Makeatablewiththeinformationbelow. 303 6.1. AnglesinPolygons www.ck12.org TABLE 6.1: NameofPolygon NumberofSides Numberof(cid:3)sfrom (Column 3) × (◦ in Total Number of onevertex a(cid:3)) Degrees Quadrilateral 4 2 2×180◦ 360◦ Pentagon 5 3 3×180◦ 540◦ Hexagon 6 4 4×180◦ 720◦ ◦ 4. Doyouseeapattern? Noticethatthetotalnumberofdegreesgoesupby180 . So,ifthenumbersidesisn,then thenumberoftrianglesfromonevertexisn−2. Therefore,theformulawouldbe(n−2)×180◦. PolygonSumFormula: Foranyn−gon,thesumofthemeasuresoftheinterioranglesis(n−2)×180◦. Example1: Findthesumoftheinterioranglesofanoctagon. Solution: UsethePolygonSumFormulaandsetn=8. (8−2)×180◦=6×180◦=1080◦ ◦ Example2: Thesumoftheinterioranglesofapolygonis1980 . Howmanysidesdoesthispolygonhave? Solution: UsethePolygonSumFormulaandsolveforn. (n−2)×180◦=1980◦ 180◦n−360◦=1980◦ 180◦n=2340◦ n=13 Thepolygonhas13sides. Example3: Howmanydegreesdoeseachangleinanequiangularnonagonhave? Solution: First,findthesumoftheinterioranglesinanonagonbysettingn=9. (9−2)×180◦=7×180◦=1260◦ ◦ Second, because the nonagon is equiangular, every angle’s measure is equal, so divide 1260 by 9 to find each ◦ angle’smeasureis140 . EquiangularPolygonFormula: Foranyequiangularn−gon,themeasureofeachangleis (n−2)×180◦. n RegularPolygon:Apolygonthatisbothequilateralandequiangular. It is important to note that in the Equiangular Polygon Formula, the word equiangular can be substituted with regular. Example4: AlgebraConnectionFindthemeasureofx. 304 www.ck12.org Chapter6. PolygonsandQuadrilaterals ◦ Solution: Fromtheinvestigation,aquadrilateral’sinterioranglemeasurestotal360 . Writeanequationtosolvefor x. 89◦+(5x−8)◦+(3x+4)◦+51◦=360◦ 8x=224◦ x=28◦ ExteriorAnglesinConvexPolygons Recallthatanexteriorangleisanangleontheoutsideofapolygonandisformedbyextendingasideofthepolygon. As you can see, there are two sets of exterior angles for any vertex on a polygon. It does not matter which set you usebecauseonesetisjusttheverticalanglesoftheother,makingthemeasurementequal. Inthepicturetotheleft, thecolor-matchedanglesareverticalanglesandcongruent. Inapreviouschapter,weintroducedtheExteriorAngleSumTheorem,whichstatedthatthemeasuresoftheexterior ◦ anglesofatriangleaddupto360 . Let’sextendthistheoremtoallpolygons. Investigation6-2: ExteriorAngleTear-Up ToolsNeeded: pencil,paper,coloredpencils,scissors 1. Drawahexagonlikethehexagonsabove. Colorintheexterioranglesaswell. 2. Cutouteachexteriorangleandlabelthem1-6. 3. Fitthesixanglestogetherbyputtingtheirverticestogether. Whathappens? ◦ The angles all fit around a point, meaning that the exterior angles of a hexagon add up to 360 , just like a triangle. Thisistrueforallpolygons. ◦ ExteriorAngleSumTheorem: Thesumofthemeasuresoftheexterioranglesofanypolygonis360 . ProofoftheExteriorAngleSumTheorem 305 6.1. AnglesinPolygons www.ck12.org Given: Anyn−gonwithnsides,ninterioranglesandnexteriorangles. ◦ Prove: nexterioranglemeasuresaddupto360 NOTE:Theinterioranglesarex ,x ,...x . 1 2 n Theexterioranglesarey ,y ,...y . 1 2 n TABLE 6.2: Statement Reason 1. Any n−gon with n sides, n interior angles and n Given exteriorangles. ◦ ◦ 2. x and y arealinearpair Definitionofalinearpair n n ◦ ◦ 3. x and y aresupplementary LinearPairPostulate n n 4. x◦+y◦=180◦ Definitionofsupplementaryangles n n 5. (x◦+x◦+...+x◦)+(y◦+y◦+...+y◦)=180◦n Sumofallinteriorandexterioranglesinann−gon 1 2 n 1 2 n 6. (n−2)180◦=(x◦+x◦+...+x◦) PolygonSumFormula 1 2 n 7. 180◦n=(n−2)180◦+(y◦+y◦+...+y◦) SubstitutionPoE 1 2 n 8. 180◦n=180◦n−360◦+(y◦+y◦+...+y◦) DistributivePoE 1 2 n 9. 360◦=(y◦+y◦+...+y◦) SubtractionPoE 1 2 n Example5: Whatisy? Solution: y is an exterior angle, as are all the other given angle measures. Exterior angle measures have a sum ◦ of‘360 ,sosetupanequation. 70◦+60◦+65◦+40◦+y=360◦ y=125◦ 306 www.ck12.org Chapter6. PolygonsandQuadrilaterals Example6: Whatisthemeasureofeachexteriorangleofaregularheptagon? Solution: Because the polygon is regular, each interior angle is equal. This also means that all the exterior angles areequal. Theexterioranglesaddupto360◦,soeachangleis 360◦ ≈51.429◦. 7 Know What? Revisited A regular polygon has congruent sides and angles. A regular hexagon’s interior angles total(6−2)180◦=4·180◦=720◦ . Eachinterioranglewouldmeasure720◦ dividedby6or120◦. ReviewQuestions 1. Fillinthetable. TABLE 6.3: #ofsides # of (cid:3)s from one (cid:3)s×180◦ (sum) Each angle in a Sumoftheexterior vertex regularn−gon angles ◦ ◦ 3 1 180 60 ◦ ◦ 4 2 360 90 ◦ ◦ 5 3 540 108 ◦ ◦ 6 4 720 120 7 8 9 10 11 12 2. Whatisthesumofthemeasuresoftheinterioranglesina15-gon? 3. Whatisthesumofthemeasuresoftheinterioranglesina23-gon? ◦ 4. Thesumoftheinterioranglesofapolygonis4320 . Howmanysidesdoesthepolygonhave? ◦ 5. Thesumoftheinterioranglesofapolygonis3240 . Howmanysidesdoesthepolygonhave? 6. Whatisthemeasureofeachinteriorangleinaregular16-gon? 7. Whatisthemeasureofeachinteriorangleinanequiangular24-gon? 8. Whatisthemeasureofeachexteriorangleofadodecagon? 9. Whatisthemeasureofeachexteriorangleofa36-gon? 10. Whatisthesumoftheexterioranglesofa27-gon? ◦ 11. Ifthemeasureofoneinteriorangleofaregularpolygonis160 ,howmanysidesdoesithave? ◦ 12. Howmanysidesdoesaregularpolygonhaveifthemeasureofoneofitsinterioranglesis168 ? ◦ 13. Ifthemeasureofoneinteriorangleofaregularpolygonis15814 ,howmanysidesdoesithave? 17 ◦ 14. Howmanysidesdoesaregularpolygonhaveifthemeasureofoneexteriorangleis15 ? ◦ 15. Ifthemeasureofoneexteriorangleofaregularpolygonis36 ,howmanysidesdoesithave? ◦ 16. Howmanysidesdoesaregularpolygonhaveifthemeasureofoneexteriorangleis32 8 ? 11 Findthevalueofthemissingvariable(s). 17. 307 6.1. AnglesinPolygons www.ck12.org 18. 19. 20. 21. 22. 23. 24. 308 www.ck12.org Chapter6. PolygonsandQuadrilaterals 25. 26. 27. Theinterioranglesofapentagonarex◦,x◦,2x◦,2x◦,and2x◦. Whatisthemeasureofthelargerangles? 28. Theexterioranglesofaquadrilateralarex◦,2x◦,3x◦,and4x◦. Whatisthemeasureofthesmallestangle? 29. Theinterioranglesofahexagonarex◦,(x+1)◦,(x+2)◦,(x+3)◦,(x+4)◦,and(x+5)◦. Whatisx? 30. ChallengeEachinteriorangleformsalinearpairwithanexteriorangle. Inaregularpolygonyoucanusetwo differentformulastofindthemeasureofeachexteriorangle. Onewayis 360◦ andtheotheris180◦−(n−2)180◦ n n ◦ (180 minusEquiangularPolygonFormula). Usealgebratoshowthesetwoexpressionsareequivalent. 31. AnglePuzzleFindthemeasuresoftheletteredanglesbelowgiventhat m||n. ReviewQueueAnswers 1. (a) 72◦+(7x+3)◦+(3x+5)◦=180◦ 10x+80◦=180◦ 10x=100◦ x=10◦ (b) (5x+17)◦+(3x−5)◦=180◦ 8x+12◦=180◦ 8x=168◦ x=21◦ 2. (a) w=108◦,x=49◦,y=131◦,z=121◦ ◦ (b) 360 (c) 59◦+72◦ (d) interiorangles,exteriorangles 309 6.2. PropertiesofParallelograms www.ck12.org 6.2 Properties of Parallelograms LearningObjectives • Defineaparallelogram. • Understandthepropertiesofaparallelogram • Applytheoremsaboutaparallelogramssides,anglesanddiagonals. ReviewQueue 1. Drawaquadrilateralwithonesetofparallelsides. 2. Drawaquadrilateralwithtwosetsofparallelsides. 3. Findthemeasuresofthemissinganglesinthequadrilateralsbelow. (a) (b) Know What? A college has a parallelogram-shaped courtyard between two buildings. The school wants to build twowalkwaysonthediagonalsoftheparallelogramwithafountainwheretheyintersect. Thewalkwaysaregoing tobe50feetand68feetlong. Wherewouldthefountainbe? WhatisaParallelogram? Parallelogram: Aquadrilateralwithtwopairsofparallelsides. Herearesomeexamples: 310

Description:
Identify the special properties of interior angles in convex quadrilaterals. plate. Trig is 90 feet away at 3rd base, Algie is 127.3 feet away at 2nd base, .. Solution: First, double-check and make sure the diagonals bisect each other.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.