www.ck12.org Chapter6. PolygonsandQuadrilaterals 6 C HAPTER Polygons and Quadrilaterals Chapter Outline 6.1 ANGLES IN POLYGONS 6.2 PROPERTIES OF PARALLELOGRAMS 6.3 PROVING QUADRILATERALS ARE PARALLELOGRAMS 6.4 RECTANGLES, RHOMBUSES AND SQUARES 6.5 TRAPEZOIDS AND KITES 6.6 CHAPTER 6 REVIEW This chapter starts with the properties of polygons and narrows to focus on quadrilaterals. We will study several different types of quadrilaterals: parallelograms, rhombi, rectangles, squares, kites and trapezoids. Then, we will provethatdifferenttypesofquadrilateralsareparallelogramsorsomethingmorespecific. 301 6.1. AnglesinPolygons www.ck12.org 6.1 Angles in Polygons LearningObjectives • Extendtheconceptofinteriorandexterioranglesfromtrianglestoconvexpolygons. • Findthesumsofinterioranglesinconvexpolygons. • Identifythespecialpropertiesofinterioranglesinconvexquadrilaterals. ReviewQueue 1. Findxandy. (a) (b) 2. (a) Findw◦,x◦,y◦,andz◦. (b) Whatisw◦+y◦+z◦? ◦ (c) Whattwoanglesadduptoy ? (d) Whatare72◦,59◦,andx◦ called? Whatarew◦,y◦,andz◦ called? KnowWhat? TotherightisapictureofDevil’sPostpile,nearMammothLakes,California. Thesepostsarecooled lava (called columnar basalt) and as the lava pools and cools, it ideally would form regular hexagonal columns. However,variationsincoolingcausedsomecolumnstoeithernotbeperfectorpentagonal. First,defineregularinyourownwords. Then,whatisthesumoftheanglesinaregularhexagon? Whatwouldeach anglebe? 302 www.ck12.org Chapter6. PolygonsandQuadrilaterals InteriorAnglesinConvexPolygons Recall from a previous chapter that interior angles are the angles inside a closed figure with straight sides. Even thoughthisconceptwasintroducedwithtriangles,itcanbeextendedtoanypolygon. Asyoucanseeintheimages below,apolygonhasthesamenumberofinterioranglesasitdoessides. In Chapter 1, we learned that a diagonal connects two non-adjacent vertices of a convex polygon. Also, recall that ◦ thesumoftheanglesinatriangleis180 . Whataboutotherpolygons? Investigation6-1: PolygonSumFormula ToolsNeeded: paper,pencil,ruler,coloredpencils(optional) 1. Drawaquadrilateral,pentagon,andhexagon. 2. Cuteachpolygonintotrianglesbydrawingallthediagonalsfromonevertex. Countthenumberoftriangles. Makesurenoneofthetrianglesoverlap. 3. Makeatablewiththeinformationbelow. 303 6.1. AnglesinPolygons www.ck12.org TABLE 6.1: NameofPolygon NumberofSides Numberof(cid:3)sfrom (Column 3) × (◦ in Total Number of onevertex a(cid:3)) Degrees Quadrilateral 4 2 2×180◦ 360◦ Pentagon 5 3 3×180◦ 540◦ Hexagon 6 4 4×180◦ 720◦ ◦ 4. Doyouseeapattern? Noticethatthetotalnumberofdegreesgoesupby180 . So,ifthenumbersidesisn,then thenumberoftrianglesfromonevertexisn−2. Therefore,theformulawouldbe(n−2)×180◦. PolygonSumFormula: Foranyn−gon,thesumofthemeasuresoftheinterioranglesis(n−2)×180◦. Example1: Findthesumoftheinterioranglesofanoctagon. Solution: UsethePolygonSumFormulaandsetn=8. (8−2)×180◦=6×180◦=1080◦ ◦ Example2: Thesumoftheinterioranglesofapolygonis1980 . Howmanysidesdoesthispolygonhave? Solution: UsethePolygonSumFormulaandsolveforn. (n−2)×180◦=1980◦ 180◦n−360◦=1980◦ 180◦n=2340◦ n=13 Thepolygonhas13sides. Example3: Howmanydegreesdoeseachangleinanequiangularnonagonhave? Solution: First,findthesumoftheinterioranglesinanonagonbysettingn=9. (9−2)×180◦=7×180◦=1260◦ ◦ Second, because the nonagon is equiangular, every angle’s measure is equal, so divide 1260 by 9 to find each ◦ angle’smeasureis140 . EquiangularPolygonFormula: Foranyequiangularn−gon,themeasureofeachangleis (n−2)×180◦. n RegularPolygon:Apolygonthatisbothequilateralandequiangular. It is important to note that in the Equiangular Polygon Formula, the word equiangular can be substituted with regular. Example4: AlgebraConnectionFindthemeasureofx. 304 www.ck12.org Chapter6. PolygonsandQuadrilaterals ◦ Solution: Fromtheinvestigation,aquadrilateral’sinterioranglemeasurestotal360 . Writeanequationtosolvefor x. 89◦+(5x−8)◦+(3x+4)◦+51◦=360◦ 8x=224◦ x=28◦ ExteriorAnglesinConvexPolygons Recallthatanexteriorangleisanangleontheoutsideofapolygonandisformedbyextendingasideofthepolygon. As you can see, there are two sets of exterior angles for any vertex on a polygon. It does not matter which set you usebecauseonesetisjusttheverticalanglesoftheother,makingthemeasurementequal. Inthepicturetotheleft, thecolor-matchedanglesareverticalanglesandcongruent. Inapreviouschapter,weintroducedtheExteriorAngleSumTheorem,whichstatedthatthemeasuresoftheexterior ◦ anglesofatriangleaddupto360 . Let’sextendthistheoremtoallpolygons. Investigation6-2: ExteriorAngleTear-Up ToolsNeeded: pencil,paper,coloredpencils,scissors 1. Drawahexagonlikethehexagonsabove. Colorintheexterioranglesaswell. 2. Cutouteachexteriorangleandlabelthem1-6. 3. Fitthesixanglestogetherbyputtingtheirverticestogether. Whathappens? ◦ The angles all fit around a point, meaning that the exterior angles of a hexagon add up to 360 , just like a triangle. Thisistrueforallpolygons. ◦ ExteriorAngleSumTheorem: Thesumofthemeasuresoftheexterioranglesofanypolygonis360 . ProofoftheExteriorAngleSumTheorem 305 6.1. AnglesinPolygons www.ck12.org Given: Anyn−gonwithnsides,ninterioranglesandnexteriorangles. ◦ Prove: nexterioranglemeasuresaddupto360 NOTE:Theinterioranglesarex ,x ,...x . 1 2 n Theexterioranglesarey ,y ,...y . 1 2 n TABLE 6.2: Statement Reason 1. Any n−gon with n sides, n interior angles and n Given exteriorangles. ◦ ◦ 2. x and y arealinearpair Definitionofalinearpair n n ◦ ◦ 3. x and y aresupplementary LinearPairPostulate n n 4. x◦+y◦=180◦ Definitionofsupplementaryangles n n 5. (x◦+x◦+...+x◦)+(y◦+y◦+...+y◦)=180◦n Sumofallinteriorandexterioranglesinann−gon 1 2 n 1 2 n 6. (n−2)180◦=(x◦+x◦+...+x◦) PolygonSumFormula 1 2 n 7. 180◦n=(n−2)180◦+(y◦+y◦+...+y◦) SubstitutionPoE 1 2 n 8. 180◦n=180◦n−360◦+(y◦+y◦+...+y◦) DistributivePoE 1 2 n 9. 360◦=(y◦+y◦+...+y◦) SubtractionPoE 1 2 n Example5: Whatisy? Solution: y is an exterior angle, as are all the other given angle measures. Exterior angle measures have a sum ◦ of‘360 ,sosetupanequation. 70◦+60◦+65◦+40◦+y=360◦ y=125◦ 306 www.ck12.org Chapter6. PolygonsandQuadrilaterals Example6: Whatisthemeasureofeachexteriorangleofaregularheptagon? Solution: Because the polygon is regular, each interior angle is equal. This also means that all the exterior angles areequal. Theexterioranglesaddupto360◦,soeachangleis 360◦ ≈51.429◦. 7 Know What? Revisited A regular polygon has congruent sides and angles. A regular hexagon’s interior angles total(6−2)180◦=4·180◦=720◦ . Eachinterioranglewouldmeasure720◦ dividedby6or120◦. ReviewQuestions 1. Fillinthetable. TABLE 6.3: #ofsides # of (cid:3)s from one (cid:3)s×180◦ (sum) Each angle in a Sumoftheexterior vertex regularn−gon angles ◦ ◦ 3 1 180 60 ◦ ◦ 4 2 360 90 ◦ ◦ 5 3 540 108 ◦ ◦ 6 4 720 120 7 8 9 10 11 12 2. Whatisthesumofthemeasuresoftheinterioranglesina15-gon? 3. Whatisthesumofthemeasuresoftheinterioranglesina23-gon? ◦ 4. Thesumoftheinterioranglesofapolygonis4320 . Howmanysidesdoesthepolygonhave? ◦ 5. Thesumoftheinterioranglesofapolygonis3240 . Howmanysidesdoesthepolygonhave? 6. Whatisthemeasureofeachinteriorangleinaregular16-gon? 7. Whatisthemeasureofeachinteriorangleinanequiangular24-gon? 8. Whatisthemeasureofeachexteriorangleofadodecagon? 9. Whatisthemeasureofeachexteriorangleofa36-gon? 10. Whatisthesumoftheexterioranglesofa27-gon? ◦ 11. Ifthemeasureofoneinteriorangleofaregularpolygonis160 ,howmanysidesdoesithave? ◦ 12. Howmanysidesdoesaregularpolygonhaveifthemeasureofoneofitsinterioranglesis168 ? ◦ 13. Ifthemeasureofoneinteriorangleofaregularpolygonis15814 ,howmanysidesdoesithave? 17 ◦ 14. Howmanysidesdoesaregularpolygonhaveifthemeasureofoneexteriorangleis15 ? ◦ 15. Ifthemeasureofoneexteriorangleofaregularpolygonis36 ,howmanysidesdoesithave? ◦ 16. Howmanysidesdoesaregularpolygonhaveifthemeasureofoneexteriorangleis32 8 ? 11 Findthevalueofthemissingvariable(s). 17. 307 6.1. AnglesinPolygons www.ck12.org 18. 19. 20. 21. 22. 23. 24. 308 www.ck12.org Chapter6. PolygonsandQuadrilaterals 25. 26. 27. Theinterioranglesofapentagonarex◦,x◦,2x◦,2x◦,and2x◦. Whatisthemeasureofthelargerangles? 28. Theexterioranglesofaquadrilateralarex◦,2x◦,3x◦,and4x◦. Whatisthemeasureofthesmallestangle? 29. Theinterioranglesofahexagonarex◦,(x+1)◦,(x+2)◦,(x+3)◦,(x+4)◦,and(x+5)◦. Whatisx? 30. ChallengeEachinteriorangleformsalinearpairwithanexteriorangle. Inaregularpolygonyoucanusetwo differentformulastofindthemeasureofeachexteriorangle. Onewayis 360◦ andtheotheris180◦−(n−2)180◦ n n ◦ (180 minusEquiangularPolygonFormula). Usealgebratoshowthesetwoexpressionsareequivalent. 31. AnglePuzzleFindthemeasuresoftheletteredanglesbelowgiventhat m||n. ReviewQueueAnswers 1. (a) 72◦+(7x+3)◦+(3x+5)◦=180◦ 10x+80◦=180◦ 10x=100◦ x=10◦ (b) (5x+17)◦+(3x−5)◦=180◦ 8x+12◦=180◦ 8x=168◦ x=21◦ 2. (a) w=108◦,x=49◦,y=131◦,z=121◦ ◦ (b) 360 (c) 59◦+72◦ (d) interiorangles,exteriorangles 309 6.2. PropertiesofParallelograms www.ck12.org 6.2 Properties of Parallelograms LearningObjectives • Defineaparallelogram. • Understandthepropertiesofaparallelogram • Applytheoremsaboutaparallelogramssides,anglesanddiagonals. ReviewQueue 1. Drawaquadrilateralwithonesetofparallelsides. 2. Drawaquadrilateralwithtwosetsofparallelsides. 3. Findthemeasuresofthemissinganglesinthequadrilateralsbelow. (a) (b) Know What? A college has a parallelogram-shaped courtyard between two buildings. The school wants to build twowalkwaysonthediagonalsoftheparallelogramwithafountainwheretheyintersect. Thewalkwaysaregoing tobe50feetand68feetlong. Wherewouldthefountainbe? WhatisaParallelogram? Parallelogram: Aquadrilateralwithtwopairsofparallelsides. Herearesomeexamples: 310
Description: