5G Impact on Biomedical Engineering Prospects in Biomedical Engineering and Applications Series Editor: Mohammad M. Banat, Jordan University of Science and Technology, Jordan Adel Al-Jamaily, Faculty of Engineering and IT, University of Technology Sydney 5G Impact on Biomedical Engineering Jacques Bou Abdo, Jacques Demerjian, Abdallah Makhoul For more information about this series, please visit: https://www.crcpress.com/Prospects-in-Biomedical-Engineering-and- Applications/book-series/PBIOMED 5G Impact on Biomedical Engineering Wireless Technologies Applications Edited by Jacques Bou Abdo Jacques Demerjian Abdallah Makhoul MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 selection and editorial matter, Jacques Bou Abdo, Jacques Demerjian, Abdallah Makhoul; individual chapters, the contributors CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf. co.uk Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 978-0-367-52384-8 (hbk) ISBN: 978-0-367-52802-7 (pbk) ISBN: 978-1-003-05843-4 (ebk) DOI: 10.1201/9781003058434 Typeset in CMR10 by KnowledgeWorks Global Ltd. Contents Preface xi Editor Biographies xiii List of Figures xv List of Tables xvii Contributors xix Symbols xxi I Introduction 1 1 Healthcare 4.0: Technologies and Policies 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Technology and e-Health . . . . . . . . . . . . . . . . . . . . 4 1.2.1 e-Health through Cloud Computing . . . . . . . . . . 4 1.2.2 e-Health through Internet of Things . . . . . . . . . . 5 1.2.3 e-Health through 5G . . . . . . . . . . . . . . . . . . . 7 1.3 Policy Challenges . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Trust and Data Privacy . . . . . . . . . . . . . . . . . 9 1.3.2 Incentives for Using e-Health . . . . . . . . . . . . . . 11 1.3.3 Responsibility and Evidence . . . . . . . . . . . . . . . 11 1.3.4 Spectrum Licensing and Regulation . . . . . . . . . . 12 1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Management of Collaborative BSN in Smart Environments 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 BSN Architecture and Technologies . . . . . . . . . . . . . . 20 2.2.1 General Architecture . . . . . . . . . . . . . . . . . . . 20 2.2.2 BSN Applications . . . . . . . . . . . . . . . . . . . . 20 2.2.2.1 Medical Applications . . . . . . . . . . . . . 20 2.2.2.2 Non-Medical Applications . . . . . . . . . . . 22 2.2.3 Sensors Types, Properties, and Challenges . . . . . . . 22 2.2.3.1 Sensors Types . . . . . . . . . . . . . . . . . 22 2.2.3.2 BSN Challenges . . . . . . . . . . . . . . . . 24 v vi Contents 2.2.4 Sensors’ Wireless Communication Technologies . . . . 24 2.3 From BSN to CBSN . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 CBSN Concept and Architecture . . . . . . . . . . . . 26 2.3.3 CBSN Applications. . . . . . . . . . . . . . . . . . . . 27 2.3.4 Comparison between BSN and CBSN . . . . . . . . . 28 2.3.5 Major Challenges in CBSN . . . . . . . . . . . . . . . 28 2.3.6 Open Research Issues in CBSN . . . . . . . . . . . . . 28 2.3.6.1 Sensor Nodes . . . . . . . . . . . . . . . . . . 30 2.3.6.2 Data Fusion . . . . . . . . . . . . . . . . . . 30 2.3.6.3 MAC Protocols . . . . . . . . . . . . . . . . 30 2.3.6.4 Routing . . . . . . . . . . . . . . . . . . . . . 31 2.3.6.5 Inter-BSN Communication . . . . . . . . . . 31 2.3.6.6 Coverage and Connectivity . . . . . . . . . . 31 2.3.6.7 Localization and Tracking. . . . . . . . . . . 32 2.3.6.8 Power Supply and Energy Concern. . . . . . 32 2.3.6.9 Security . . . . . . . . . . . . . . . . . . . . . 32 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 II Communication Technologies 37 3 Smart Resource Allocation for LoRaWAN-based e-Health Applications in Dense Deployments 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 SF Allocation in LoRaWAN . . . . . . . . . . . . . . . 42 3.2.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 System Model and Specifications . . . . . . . . . . . . . . . . 44 3.4 Optimization Problem for SF Selection . . . . . . . . . . . . 45 3.5 Spreading Factor Selection Game in LoRaWAN . . . . . . . 45 3.6 Distributed Learning for SF Selection in LoRaWAN . . . . . 48 3.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . 48 3.7.1 SF Selection Game vs. EXP3 . . . . . . . . . . . . . . 49 3.7.2 Energy Efficiency in LoRaWAN . . . . . . . . . . . . . 50 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Dynamic Health Assessment in Water Environments using LPWAN Technologies 57 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Application Domains in Water Environments . . . . . . . . . 58 4.2.1 First Aid Operations . . . . . . . . . . . . . . . . . . . 59 4.2.2 Monitoring Floods . . . . . . . . . . . . . . . . . . . . 59 4.3 Real-time Monitoring Systems in Water Environments . . . . 60 4.3.1 Discovering Navigation Environment . . . . . . . . . . 60 Contents vii 4.3.2 SurvivorsIdentificationandAssessmentofTheirHealth Conditions . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4 Wireless Communication in Water Networks . . . . . . . . . 63 4.4.1 LTE-M Communication . . . . . . . . . . . . . . . . . 63 4.4.2 NB-IoT Communication . . . . . . . . . . . . . . . . . 64 4.4.3 LoRa Communication . . . . . . . . . . . . . . . . . . 64 4.5 Proposed LoRa-based Monitoring System . . . . . . . . . . . 65 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Quality of Service Provisioning for Ambulance Tele-medicine in a Slice-based 5G Network 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Tele-medicine 5G Network Slice . . . . . . . . . . . . . . . . 74 5.2.1 Network Slicing . . . . . . . . . . . . . . . . . . . . . . 74 5.2.2 5G Reference Slices . . . . . . . . . . . . . . . . . . . 75 5.2.3 Tele-Medicine Network Slice Architecture . . . . . . . 75 5.3 Mobility Management Solution Overview . . . . . . . . . . . 78 5.3.1 Slice Attachment . . . . . . . . . . . . . . . . . . . . . 79 5.3.2 Slice Handover Solution . . . . . . . . . . . . . . . . . 80 5.4 Slice Selection Function . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Related works. . . . . . . . . . . . . . . . . . . . . . . 81 5.4.2 Slice Selection Algorithm . . . . . . . . . . . . . . . . 82 5.4.3 End-to-End Slice Load Utility Calculation . . . . . . . 82 5.4.4 Candidates PoA QoS Utility Calculation . . . . . . . . 83 5.4.5 Target Slice Selection . . . . . . . . . . . . . . . . . . 84 5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 84 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6 Routing Protocol Algorithms for Single-Body and Multi-Body Sensor Networks 91 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3 Comparison of Different Routing Models . . . . . . . . . . . 95 6.4 An Efficient Cluster-based Routing Model . . . . . . . . . . 98 6.4.1 Cluster Formation . . . . . . . . . . . . . . . . . . . . 98 6.4.2 Cluster Head Election . . . . . . . . . . . . . . . . . . 99 6.4.3 Routing Operation . . . . . . . . . . . . . . . . . . . . 99 6.5 Implementation and Results . . . . . . . . . . . . . . . . . . 101 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 viii Contents III Applications 111 7 Towards WBSNs Based Healthcare Applications: From Energy-Efficient Data Collection to Fusion 113 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 WBSN: Architecture and Biosensor Nodes . . . . . . . . . . 114 7.3 Healthcare Applications . . . . . . . . . . . . . . . . . . . . . 115 7.4 Healthcare Application Requirements . . . . . . . . . . . . . 117 7.5 Energy-Efficient Mechanisms . . . . . . . . . . . . . . . . . . 118 7.6 Multi-sensor Data Fusion . . . . . . . . . . . . . . . . . . . . 120 7.7 Challenging Aspects in Data . . . . . . . . . . . . . . . . . . 122 7.8 High-Level Fusion: Data-Driven vs Knowledge-Driven Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8 Data Quality Management for Pervasive Health Monitoring in Body Sensor Networks 129 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2 Data Quality Basic Concepts . . . . . . . . . . . . . . . . . . 130 8.2.1 Data Quality Dimensions . . . . . . . . . . . . . . . . 132 8.2.2 Data Quality Factors. . . . . . . . . . . . . . . . . . . 134 8.2.2.1 Sensor level . . . . . . . . . . . . . . . . . . . 134 8.2.2.2 Human level . . . . . . . . . . . . . . . . . . 135 8.2.2.3 Network level . . . . . . . . . . . . . . . . . . 136 8.3 Data Quality Remedies . . . . . . . . . . . . . . . . . . . . . 136 8.3.1 Data Cleaning Approaches in WSNs . . . . . . . . . . 136 8.3.2 Data Cleaning Approaches in Healthcare Industry . . 138 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9 Wireless Techniques and Applications of the Internet of Medical Things 147 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.2 Historical view and trends of IoMT in medical applications . 148 9.2.1 Physiological Analysis . . . . . . . . . . . . . . . . . . 148 9.2.2 Rehabilitation Systems. . . . . . . . . . . . . . . . . . 148 9.2.3 Nutritional Evaluation and Skin Pathologies. . . . . . 149 9.2.4 Epidemic Infections and Diseases Spot Localization. . 149 9.2.5 Diabetes Treatment . . . . . . . . . . . . . . . . . . . 149 9.3 Advantages of IoMT . . . . . . . . . . . . . . . . . . . . . . 149 9.4 Wireless Technology for Healthcare . . . . . . . . . . . . . . 150 9.5 Mobile Communications for Healthcare . . . . . . . . . . . . 152 9.5.1 Security Threats . . . . . . . . . . . . . . . . . . . . . 153 9.5.2 Wireless Communication and HIPAA Compliance . . 153 Contents ix 9.5.3 ConsiderationsofWirelessTechnologyintheHealthcare System . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.6 IoT-based Healthcare Applications . . . . . . . . . . . . . . 154 9.6.1 IoMT-based Health Monitoring . . . . . . . . . . . . . 155 9.6.2 Application of COVID-19 Fighting Using Cognitive Internet of Medical Things . . . . . . . . . . . . . . . 158 9.6.3 Early Identification and Monitoring of COVID-19 Individuals Deploying IoMT-based Framework . . . . 161 9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10 Deep Learning for IoT-Healthcare Based on Physiological Signals 167 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.2 Physiological Signals . . . . . . . . . . . . . . . . . . . . . . . 169 10.2.1 Electrocardiogram . . . . . . . . . . . . . . . . . . . . 169 10.2.2 Photoplethysmogram. . . . . . . . . . . . . . . . . . . 170 10.2.3 Electromyogram . . . . . . . . . . . . . . . . . . . . . 170 10.2.4 Electrodermal Activity . . . . . . . . . . . . . . . . . . 170 10.2.5 Electroencephalography . . . . . . . . . . . . . . . . . 170 10.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10.3.1 Generative Models . . . . . . . . . . . . . . . . . . . . 173 10.3.1.1 Restricted Boltzmann Machine . . . . . . . . 173 10.3.1.2 Autoencoder . . . . . . . . . . . . . . . . . . 174 10.3.2 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . 174 10.3.3 Discriminative Models . . . . . . . . . . . . . . . . . . 175 10.3.3.1 Multi-Layer Perceptron . . . . . . . . . . . . 175 10.3.3.2 Convolutional Neural Network . . . . . . . . 175 10.3.3.3 Long Short-Term Memory . . . . . . . . . . 175 10.4 Deep Learning-based Physiological Signals Analysis . . . . . 176 10.4.1 Time Series Classification . . . . . . . . . . . . . . . . 176 10.4.2 Physiological Signals Cleaning . . . . . . . . . . . . . 177 10.4.3 Artifacts Removal . . . . . . . . . . . . . . . . . . . . 179 10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Index 185