ebook img

56Gs/s ADC Enabling 100GbE PDF

28 Pages·2010·0.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 56Gs/s ADC Enabling 100GbE

5566GGss//ss AADDCC EEnnaabblliinngg 110000GGbbEE Ian Dedic, Chief Engineer, Fujitsu Microelectronics Europe OFC2010 Invited Paper, Digital Transmission Systems Copyright 2009 FUJITSU MICROELECTRONICS EUROPE GmbH 5566GGss//ss AADDCC :: nnoott jjuusstt aann AADDCC ddeessiiggnn pprroobblleemm (cid:1) 100G coherent receiver (cid:1) Why single-chip CMOS? (cid:1) So what is so difficult? (cid:1) CHAIS ADC (cid:1) DSP and integration (cid:1) Package and PCB (cid:1) Testing (cid:1) Examples (cid:1) Future challenges OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 1 Fujitsu Microelectronics Europe -http://www.chais.info 110000GG CCoohheerreenntt OOppttiiccaall TTrraannssppoonnddeerr 100G MUX S E F le I- c S t 10 r / S S ic M F F to a LD I-S I-S Precoding 4 l -> O / MUX X p F ti c I s a p l b s To system G p To network OTU-4 b 1 G (Router) Framer / FEC 11. 8 2 * * OTU-4 0 S 1 ADC 4 O 112 Gbps 100G client module for F p * 100G Ethernet or I- ti S c * OTU-4 / M SF SF ADC al - I I DSP > LD -S -S E ADC le / c X t F ri I c ADC a l 100G Coherent Receiver ADC+DSP Optical Module OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 2 Fujitsu Microelectronics Europe -http://www.chais.info 110000GG ccoohheerreenntt rreecceeiivveerr rreeqquuiirreemmeennttss (cid:1) 4-channel 56Gs/s ADC, minimum 6b resolution (cid:1) DP-QPSK receiver with H/V channels, I/Q conversion (OIF standard) (cid:1) 2x oversampling minimizes impact on performance • 56Gs/s needed, >60Gs/s with soft FEC (cid:1) In early 2009, predicted availability for such an ADC was in 2013 • Major obstacle to target rollout date for 100G networks (cid:1) DSP to remove transmission channel imperfections and recover data (cid:1) Dispersion, cross-polarization, time-varying channel, clock recovery (cid:1) ~12 TeraOperations/sec (TOPS) for 40Gb/s (cid:2) ~30 TOPS for 100Gb/s ? (cid:1) Power consumption and thermal constraints (cid:1) OIF target for complete coherent transponder ~70W (cid:1) Severe challenge for both ADC and DSP design • Total power for ADC+DSP needs to be < 50W (cid:1) Environmental restrictions make problem even more difficult than it first appears OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 3 Fujitsu Microelectronics Europe -http://www.chais.info WWhhyy ssiinnggllee--cchhiipp CCMMOOSS ffoorr 110000GG?? (cid:1) Massive data bandwidth between ADC and DSP (cid:1) 4-channel 6-8b 56Gs/s ADC means 1.3-1.8Tb/s of data at interface (cid:1) Getting this from one chip to another costs power and chip area (cid:2) • 10G SERDES link ~100mW/channel 3-4W per ADC (cid:1) Critical performance factor is power efficiency, not just speed (cid:1) Discrete ADC dissipating >10W each are difficult to use • Total power dissipation is too high (>100W) • Skew management/calibration nightmare (especially over temperature/lifetime) • Higher intrinsic manufacturing cost and lower yield for a hybrid (cid:1) Single-chip CMOS solution is the “Holy Grail” (cid:1) Integrate on ASIC with >50M gates (limited by power dissipation) (cid:1) Leverage CMOS technology advances to drive down power and cost • Single-chip allows integration of calibration and channel deskew/matching (cid:1) ADC and DAC get faster and lower power at the same rate as digital – ideally ☺ OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 4 Fujitsu Microelectronics Europe -http://www.chais.info AADDCC++DDSSPP ---- ssoo wwhhaatt iiss ssoo ddiiffffiiccuulltt ?? (cid:1) ADC is the biggest circuit design problem (cid:1) Ultra-high speed, low noise and jitter, low power consumption – all same time (cid:1) Conventional techniques cannot easily deliver required performance (cid:1) Digital-analogue noise coupling (cid:1) Sampler/clock jitter <100fs on same chip as DSP with >100A current spikes (cid:1) Wide bandwidth (>15GHz), good S11 (up to >30GHz), low theta-jc (cid:1) Sampler, package, PCB design all very challenging (cid:1) DSP design is out-of-the-ordinary (tens of TeraOPS) (cid:1) Extremely power-efficient (cid:2) use massive parallelism, not GHz clocks (cid:1) Test (cid:1) Performance verification challenges limits of test equipment (cid:1) Need at-speed performance verification in production, not just functional testing OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 5 Fujitsu Microelectronics Europe -http://www.chais.info TThhee AADDCC pprroobblleemm (cid:1) Wideband low-noise sampler + demultiplexer + interleaved ADC array (cid:1) Smaller CMOS geometries (cid:2) higher speed (cid:2) worse mismatch and noise (cid:1) Single 56Gs/s track/hold very difficult due to extreme speed (cid:1) <9ps to acquire, <9ps to transfer to following interleaved T/H stages (cid:1) Interleaved track/hold (e.g. 4-channel 14Gs/s) also very difficult (cid:1) Signal/clock delays must match to <<1ps – how do you measure this? (cid:1) Noise, mismatch and power of cascaded circuits all adds up (cid:1) Multiple sampling capacitors, buffers, switches, demultiplexers… (cid:1) Interleaved ADC back-end is not so difficult (but only in comparison!) (cid:1) Design for best power and area efficiency rather than highest speed (cid:1) Interleave as many as necessary to achieve required sampling rate (cid:1) 8 x 175Ms/s 8b SAR ADCs fit underneath 1 solder bump (cid:2) 45Gs/s per sq mm ☺ OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 6 Fujitsu Microelectronics Europe -http://www.chais.info AA 5566GGss//ss CCMMOOSS AADDCC ssoolluuttiioonn CHArge-mode Interleaved Sampler (CHAIS) DEMUX 14GHz VCO 80 x ADC Inputs 80 x 8b ADC Outputs (1 per ADC pair) Clocks D 80 80 E M ADCBANK U A X A D 80 80 E ADCBANK M B U X Input B 4 Phase Sampler D 80 80 EM ADCBANK D Output U C ig X i 1024b C t a 437.5MHz l 80 80 D E M ADCBANK U D X D Trim Voltages Calibration OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 7 Fujitsu Microelectronics Europe -http://www.chais.info CCHHAAIISS cciirrccuuiitt ooppeerraattiioonn [ this page intentionally left blank ] OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 8 Fujitsu Microelectronics Europe -http://www.chais.info AADDCC ppeerrffoorrmmaannccee (cid:1) 56Gs/s with 8 bit resolution (cid:1) Extra resolution allows some digital AGC after ADC instead of in OFE • Non-ideal INL/DNL has negligible impact on performance (cid:1) 63Gs/s for 40nm ADC to allow for higher overhead soft decision FEC • Higher clock rate plus soft FEC needs 40nm to meet same power budget (cid:1) 16GHz bandwidth (cid:1) Closely controlled, can be extended using digital equalization if required (cid:1) ENOB>5.7 for -6dBFS sinewave input (cid:1) Similar power to 100G OFE output signal peaking at full-scale (PAR=9dB) (cid:1) ENOB almost constant with input frequency (cid:1) On-chip PLL jitter is 30fs rms, THD < -40dBc at 15GHz (cid:1) <0.2ENOB variation from 1GHz to 15GHz (cid:1) Power consumption 2W per ADC in 65nm, 9W for complete 4-channel RX (cid:1) 5W for 63Gs/s 40nm 4-channel RX – power scales better than digital ! OFC2010/OThT6 -- 56 GS/s ADC: Enabling 100GbE 9 Fujitsu Microelectronics Europe -http://www.chais.info

Description:
56Gs/s ADC : not just an ADC design problem. ▫ 100G coherent .. CPU, GPU, FPGA, standard ASIC don't have this problem (lower activity levels) . Increased confidence that chip actually meets design specifications. ▫ Make chip self-testing as far as possible and do at-speed performance tests.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.