ÜSTEL VE ÜSTEL VE LOGARİTMİK LOGARİTMİK FONKSİYONLAR FONKSİYONLAR 22 ŞŞeekkiill 55..11aa ÜÜsstteell FFoonnkkssiiyyoonnllaarr y 10 ( ) t y = f t = b , b > 1 8 6 4 2 • t -3 -2 -1 1 2 3 33 ŞŞeekkiill 55..11bb ÜÜsstteell FFoonnkkssiiyyoonnllaarr y y = f (t ) = 22t 50 40 30 20 y = f (t ) = 2t 10 t -2 -1 1 2 3 4 44 ŞŞeekkiill 55..11cc ÜÜsstteell FFoonnkkssiiyyoonnllaarr y ( ) 8 y = f (t ) = 2 2t 6 4 y = f (t ) = 2t 2 t -2 -1 1 2 55 ( ) t y = f t = b , b > 1 ( ) t y = f t = b > 0 , − ∞ < t < ∞ d ( ) ( ) ln y = ln b t → ln y = ln b dt ( ) dy y = ln b dt dy = f ′ ( t ) = ( ln b) bt > 0 , − ∞ < t < ∞ dt 66 2 d y 2 = f ′′ ( t ) = (ln b) bt > 0 , − ∞ < t < ∞ 2 dt ( ) ( ) t t lim b = ∞ , lim b = 0 t→∞ t→−∞ 77 ( ) ct y = f t = ab , b > 1 f ′ ( t ) = ac ( ln b) bct ( ) a > 0 , c > 0 → f ′ t > 0 ( ) a > 0 , c < 0 → f ′ t < 0 ( ) a < 0 , c > 0 → f ′ t < 0 ( ) a < 0 , c < 0 → f ′ t > 0 88 2 f ′′ ( t ) = ac2 ( ln b) bct ( ) a > 0 → f ′′ t > 0 ( ) a < 0 → f ′′ t < 0 99 ŞŞeekkiill 55..22aa ÜÜsstteell FFoonnkkssiiyyoonnllaarr y y 0 t 0 t y = f ( t ) = abct y = f ( t ) = abct a > 0 , c > 0 a > 0 , c < 0 1100 ŞŞeekkiill 55..22bb ÜÜsstteell FFoonnkkssiiyyoonnllaarr y y 0 0 t t y = f ( t ) = abct y = f ( t ) = abct a < 0 , c < 0 a < 0 , c > 0
Description: