ebook img

4-10.pdf (PDFy mirror) PDF

0.02 MB·
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 4-10.pdf (PDFy mirror)

1 Page 125 Fill in a(t) and b(t) in (4.38) with the expressions given in (4.40): (cid:32) (cid:33)(cid:32) (cid:33) (cid:32) (cid:33) ¯h ω0 ω1cosωt c(t)e−iω0t/2 = i¯h ddt(c(t)e−iω0t/2) 2 ω1cosωt −ω0 d(t)eiω0t/2 ddt(d(t)eiω0t/2) Dividing ¯h from both sides and multiplying out the matrix on the left: (cid:32) (cid:33) (cid:32) (cid:33) 1 ω0c(t)e−iω0t/2+ω1cos(ωt)d(t)eiω0t/2 = i ddt(c(t)e−iω0t/2) 2 ω1cos(ωt)c(t)e−iω0t/2−ω0d(t)eiω0t/2 ddt(d(t)eiω0t/2) Taking the derivative of the right side using the product rule: (cid:32) (cid:33) (cid:32) (cid:33) 1 ω0c(t)e−iω0t/2+ω1cos(ωt)d(t)eiω0t/2 = i ddcte−iω0t/2+c(t)(−i2ω0)(e−iω0t/2) 2 ω1cos(ωt)c(t)e−iω0t/2−ω0d(t)eiω0t/2 dddteiω0t/2+d(t)(iω20)(eiω0t/2) (cid:32) (cid:33) (cid:32) (cid:33) (cid:32) (cid:33) 1 ω0c(t)e−iω0t/2+ω1cos(ωt)d(t)eiω0t/2 = i ddcte−iω0t/2 +i c(t)(−i2ω0)(e−iω0t/2) 2 ω1cos(ωt)c(t)e−iω0t/2−ω0d(t)eiω0t/2 dddteiω0t/2 d(t)(iω20)(eiω0t/2) (cid:32) (cid:33) (cid:32) (cid:33) (cid:32) (cid:33) 1 ω0c(t)e−iω0t/2+ω1cos(ωt)d(t)eiω0t/2 = i ddcte−iω0t/2 +ω0 c(t)(e−iω0t/2) 2 ω1cos(ωt)c(t)e−iω0t/2−ω0d(t)eiω0t/2 dddteiω0t/2 2 −d(t)(eiω0t/2) Subtracting the matrix on the far right on both sides: (cid:32) (cid:33) (cid:32) (cid:33) 1 ω1cos(ωt)d(t)eiω0t/2 = i ddcte−iω0t/2 2 ω1cos(ωt)c(t)e−iω0t/2 dddteiω0t/2 (cid:32) (cid:33) (cid:32) (cid:33) ω1cos(ωt) d(t)eiω0t/2 = i ddcte−iω0t/2 2 c(t)e−iω0t/2 ddeiω0t/2 dt Now the right side of the equation can be rewritten as a matrix times a column vector: (cid:32) (cid:33) (cid:32) (cid:33)(cid:32) (cid:33) ω1cos(ωt) d(t)eiω0t/2 = i e−iω0t/2 0 ddct 2 c(t)e−iω0t/2 0 eiω0t/2 dd dt Taking the inverse of the matrix on both sides: 1 (cid:32) (cid:33)(cid:32) (cid:33) (cid:32) (cid:33) ω1cos(ωt) eiω0t/2 0 d(t)eiω0t/2 = i ddct 2 0 e−iω0t/2 c(t)e−iω0t/2 dd dt (cid:32) (cid:33) (cid:32) (cid:33) ω1cos(ωt) d(t)eiω0t = i ddct 2 c(t)e−iω0t dd dt 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.