ebook img

3D Storyboarding for Modern Animation PDF

162 Pages·2017·13.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 3D Storyboarding for Modern Animation

3 D STORYBOARDING FOR MODERN ANIMATION alexandros gouvatsos Doctor of Engineering in Digital Media Media School Bournemouth University Centre for Digital Entertainment University of Bath 2017 September This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. Alexandros Gouvatsos: 3D Storyboarding for Modern Animation 2017 © September supervisors : Dr. Zhidong Xiao Prof. Jian J. Zhang Jerry Hibbert Neil Marsden 2 ABSTRACT Animation is now a classic medium that has been practiced for over a cen- tury. While Disney arguably made it mainstream with some hand-drawn 3 classics, today’s industry is focused on Three-Dimensional ( D) animation. 3 In modern D animation productions, there have been significant leaps in terms of optimising, automating and removing manual tasks. This has al- lowed the artistic vision to be realised within time and budget and empow- ered artists to do things that in the past would be technically more difficult. However, most existing research is focused on specific tasks or processes rather than the pipeline itself. Moreover, it is mostly focused on elements of the animation production phase, such as modelling, animating and render- ing.Asaresult,pre-productionpartslikestoryboardingarestilldoneinthe traditional way, often drawn by hand. Because of this disparity between the 3 old and the new, the transition from storyboarding to D is prone to errors. 3 Dstoryboardingisanattempttoadaptthepre-productionphaseofmod- ern animation productions. By allowing storyboard artists access to simple 3 but scale-accurate D models early on, drawing times as well as transi- tion times between pre-production and production can be reduced. How- 3 ever, D storyboarding comes with its own shortcomings. By analysing ex- isting pipelines, points of potential improvement are identified. Motivating research from these points, alternative workflows, automated methods and 3 novel ideas that can be combined to make D animation pipelines more efficient are presented. The research detailed in this thesis focuses on the area between pre-production and production. A pipeline is presented that consists of a portfolio of projects that aim to: • Generate place-holder character assets from a drawn character line-up • Create project files with scene and shot breakdowns using screenplays 3 • Empower non-experts to pose D characters using Microsoft Kinect 3 2 • Pose D assets automatically by using D drawings as input 3 CONTENTS i research background 18 1 introduction 19 11 19 . Hibbert Ralph Animation . . . . . . . . . . . . . . . . . . . . . . 12 20 . Research focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 21 . Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 21 . Research contributions . . . . . . . . . . . . . . . . . . . . . . . . 15 22 . Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 digital media in 3d animation pre production 24 - 21 24 . An analysis of animation as a medium . . . . . . . . . . . . . . 22 . Animation as media, animation in media and media in ani- 27 mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 29 . Pipeline elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 32 . Breakdown of different media used in pre-production . . . . . 25 36 . Animation producers as consumers of media . . . . . . . . . . . 26 39 . Remediation of the pre-production phase . . . . . . . . . . . . . 3 storyboarding in 3d 42 31 3 42 . Why storyboard in D . . . . . . . . . . . . . . . . . . . . . . . . 32 3 43 . D storyboarding in theory . . . . . . . . . . . . . . . . . . . . . 33 3 44 . D storyboarding in practice . . . . . . . . . . . . . . . . . . . . 331 47 . . Storyboarding . . . . . . . . . . . . . . . . . . . . . . . . . 332 47 . . Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 48 . . The HRA pipeline . . . . . . . . . . . . . . . . . . . . . . 34 48 . Moving forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii projects portfolio 51 4 automatic creation of place holder assets 53 - 41 53 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 54 . Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 55 . Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 58 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 45 58 . Discussion & future work . . . . . . . . . . . . . . . . . . . . . . 5 screenplay analysis system for automatic asset import 65 51 65 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 66 . Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 68 . Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 68 . . Parsing the screenplay . . . . . . . . . . . . . . . . . . . . 532 69 . . Linking the information . . . . . . . . . . . . . . . . . . . 533 70 . . Generating Redboard project file . . . . . . . . . . . . . . 54 71 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 73 . Discussion & future work . . . . . . . . . . . . . . . . . . . . . . 6 integration of placeholder creation and screenplay analysis 75 61 75 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 75 . Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 76 . Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 77 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 77 . Discussion & future work . . . . . . . . . . . . . . . . . . . . . . 7 cheap motion capture devices for humanoid posing in - pre production 80 - 71 80 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 80 . Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 83 . Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 84 . . Mapping of storyboard timeline to Maya timeline . . . . 732 3 85 . . Mapping skeleton capture data to D rigged assets . . . 74 89 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 91 . Discussion & future work . . . . . . . . . . . . . . . . . . . . . . 8 automatic 3d posing from 2d hand drawn sketches 96 - 81 96 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 97 . Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821 98 . . Related work . . . . . . . . . . . . . . . . . . . . . . . . . 822 104 . . State-of-the-Art work . . . . . . . . . . . . . . . . . . . . . 823 109 . . Proposed Approach . . . . . . . . . . . . . . . . . . . . . 83 109 . Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 110 . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 112 . . PARAC-LOAPSO . . . . . . . . . . . . . . . . . . . . . . . 833 119 . . Comparing Drawings to Renders. . . . . . . . . . . . . . 5 84 122 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 129 . Discussion & future work . . . . . . . . . . . . . . . . . . . . . . iii concluding remarks 135 9 discussion future work 136 & 10 conclusion 144 references 147 glossary 162 6 LIST OF FIGURES 1 Figure Exampleflowofatraditionalpipelinewithitsdistinct 29 stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure Exampleofpre-vis,withoverlayofthecorresponding 31 storyboard panel at the bottom right.. . . . . . . . . . . 3 Figure Example screenplay from the movie ‘Wolf of Wall 2013 32 Street’ (Winter and Belfort ). . . . . . . . . . . . . . 4 2009 33 Figure Example storyboard (Glebas ). . . . . . . . . . . . . 5 43 Figure Screenshot of Redboard. . . . . . . . . . . . . . . . . . . 6 3 2 Figure Example of D storyboarding, with D drawing on 3 3 45 top of a D environment. The D models are unposed. 7 Figure Efficient storyboarding workflow example from Tree Fu Tom (FremantleMedia, CBeebies, Blue-Zoo Pro- 2012 50 ductions ). (©BBC MMXVI) . . . . . . . . . . . . . . 8 Figure Example of input character drawings (© Hibbert 55 Ralph Animation).. . . . . . . . . . . . . . . . . . . . . . 9 3 Figure Automaticallygenerated DpegsasseeninAutodesk 55 Maya. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure Examples of automatically generated character ab- 60 stractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 61 Figure Screenshot of the Peg Creator interface. . . . . . . . . . 12 1 Figure Step — Segmenting the character from the line-up. 2 3 Step — Trimming it based on the feet. Step — Av- eragingthecoloursintostripestocreatea‘mosaic’ef- 4 fect. Step — Generating the rectangular cuboid and 61 adding a plane on top to convey orientation. . . . . . . 13 Figure The same character drawn differently can result in a different bounding box that may affect how the char- 62 acter’s width is estimated. . . . . . . . . . . . . . . . . . 7 14 Figure Side by side comparison of the original character drawing (left-most) and different mosaic stripe thick- 10 40 100 ness parameters: , and respectively from left 62 to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 67 Figure Screenshot of Final Draft software. . . . . . . . . . . . . 16 Figure Automatically populated Redboard project from ‘Q 5 2013 71 Pootle ’ (Blue-Zoo Productions ) screenplay. . . . 17 72 Figure Automatic shot breakdown as seen in Redboard. . . . . 18 Figure StructureofintegrationbetweenthePegCreationand 76 the Screenplay Analysis software. . . . . . . . . . . . . . 19 Figure A screenshot of the Peg Creation software, where dropdown boxes allow the artist to choose the char- 79 acter’s name. . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure ThecreatedsystemrunningwithinMaya,trackingthe pose of an actor while viewing a series of storyboard 83 panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure ThemainUserInterface(UI)ofthesystem,asanactor is posing in an office environment, according to the 85 selected storyboard panel. . . . . . . . . . . . . . . . . . 22 25 Figure For frames per second, the first panel corresponds 86 to the first frame in Maya’s timeline. . . . . . . . . . . . 23 25 Figure For frames per second, the second panel corre- 25 86 sponds to the th frame in Maya’s timeline. . . . . . . 24 Figure The skeletal structure of the Kinect data. There are 20 joints on the human body tracked from the Kinect 2017 87 sensor (Microsoft ). . . . . . . . . . . . . . . . . . . 25 88 Figure KinectdataneedstobetransformedtobeusedinMaya. 26 3 Figure The skeletal structure of an example D rigged T- posed asset in Maya. Note that there is not a one- to-one correspondence to the skeletal structure of the 24 90 Kinect data shown in Figure . . . . . . . . . . . . . . . 8 27 Figure A screenshot during practice for the live demo se- quence. The top left window shows the actor acting out the pose in front of the Kinect, with the joints overlaid on top. The bottom left window shows the storyboardpaneltheactoriscurrentlyactingout.The Autodesk Maya window is updated whenever the ac- 90 tor captures a new pose. . . . . . . . . . . . . . . . . . . 28 3 Figure An example of an actor posing a D character in 92 Maya, according to the selected storyboard panel. . . . 29 Figure An example of a character in a Maya scene posed us- ing the proposed pose capture system. The actor is in this case controlling the computer and thus does not 93 appear in front of the camera. . . . . . . . . . . . . . . . 30 Figure Anexampleoftheforward-backwardambiguityissue 3 in inferred D pose of a lamp when not using the 104 internal lines for additional information. . . . . . . . . 31 Figure Character poses created by sketching lines of action 2013 105 (Guay et al. ). . . . . . . . . . . . . . . . . . . . . . . 32 Figure Bone rotations are constrained to the viewing plane. The bones are parameterised as a single axis-angle component. The axis is the camera’s viewing direc- tion projected onto the floor plane. From left to right is the initial pose, a side view with the LOA, the re- sult after optimisation, and a frontal view of the final 2013 106 pose (Guay et al. ). . . . . . . . . . . . . . . . . . . . 33 Figure Theposedescriptorconsistsofin-the-imageplanean- 2009 108 gles for every limb segment (Jain et al. ). . . . . . . 34 Figure Characterposesthatmatchthehandanimationmuch more closely than the mocap animation. ‘Our result’ 2012 108 refers to the work by Jain et al. ( ). . . . . . . . . . . 35 2 110 Figure Different descriptors for comparing poses in D. . . . . 36 Figure Flow chart of original Particle Swarm Optimisation 113 algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 37 Figure The ring local topology of a particle swarm (on the left) allows each particle to communicate with two other particles, while the global topology (on the right) allows particles to exchange information with 116 all other particles. . . . . . . . . . . . . . . . . . . . . . . 38 Figure Exampleofsilhouettecomparisontocalculatesimilar- itybetweentwoposesXandY.Greencoloursignifies the silhouette of pose X, red colour the silhouette of pose Y and blue colour the overlap between the two 122 poses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Figure The D assets of the lamp, horse and human shown with their joint hierarchies and controllers in Au- 123 todesk Maya. . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure Sidebysidecomparisonofthedrawingsandlesssuc- 3 123 cessfully estimated D poses (bottom). . . . . . . . . . . 41 Figure Sidebysidecomparisonofthedrawings(top)andthe 3 125 estimated D pose (bottom) for the horse model. . . . . 42 Figure Side by side comparison of a drawing (left) and the 3 estimated D pose (right) for the human model. The 3 126 estimated D pose is close to the drawing. . . . . . . . 43 Figure Sidebysidecomparisonofthedrawings(top)andthe 3 126 estimated D pose (bottom) for the lamp model. . . . . 44 Figure Frominitialstoryboardtopre-visualisation.Thelamp in these three shots is automatically posed using the storyboarddrawing.Ontheleftcolumn,drawingsare 3 overlaid on top of the D scene with the assets un- posed.Ontherightcolumn,thelamphasbeenposed 127 automatically using the proposed method. . . . . . . . 45 Figure Side by side comparison of a sequence of drawings (top) with temporal relationships and a sequence 3 from the estimated D poses (bottom) for the lamp model. Lighter opacity and colours signify frames earlier in the sequence while darker opacity and 128 colours signify frames later in the sequence. . . . . . . 10

Description:
Animation is now a classic medium that has been practiced for over a cen- tury Figure 6. Example of 3D storyboarding, with 2D drawing on top of a 3D 2003), modelling (Yang and Wünsche 2010), stylising motion (Li et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.