SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY Tin-Chih Toly Chen 3D Printing and Ubiquitous Manufacturing 123 SpringerBriefs in Applied Sciences and Technology SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum offields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical publications can be: (cid:129) A timely report of state-of-the art methods (cid:129) Anintroductiontooramanualfortheapplicationofmathematicalorcomputer techniques (cid:129) A bridge between new research results, as published in journal articles (cid:129) A snapshot of a hot or emerging topic (cid:129) An in-depth case study (cid:129) Apresentation ofcore conceptsthatstudents mustunderstand inordertomake independent contributions SpringerBriefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules. On the one hand, SpringerBriefs in Applied Sciences and Technology are devoted to the publication of fundamentals and applications within the different classical engineering disciplines as well as in interdisciplinary fields that recently emerged between these areas. On the other hand, as the boundary separating fundamental research and applied technology is more and more dissolving, this series isparticularlyopentotrans-disciplinary topics between fundamentalscience and engineering. Indexed by EI-Compendex, SCOPUS and Springerlink. More information about this series at http://www.springer.com/series/8884 Tin-Chih Toly Chen 3D Printing and Ubiquitous Manufacturing 123 Tin-Chih TolyChen Department ofIndustrial Engineering andManagement National Chiao TungUniversity Hsinchu, Taiwan ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology ISBN978-3-030-49149-9 ISBN978-3-030-49150-5 (eBook) https://doi.org/10.1007/978-3-030-49150-5 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Three-Dimensional Printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Ubiquitous Manufacturing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Various Types of Ubiquitous Manufacturing Systems. . . . . . . . . . 6 1.4 Application of Three-Dimensional Printing to Ubiquitous Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Organization of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Application of Ubiquitous Manufacturing to a Conventional Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Migrating to Three-Dimensional Printing . . . . . . . . . . . . . . . . . . . 13 2.2 Applicability of Ubiquitous Manufacturing to a Conventional Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Production Planning by Prioritizing Self-Owned Capacity. . . . . . . 15 2.4 Production Planning by Considering Both Self-Owned and Foundry Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Resorting to Cloud-Based Capacity . . . . . . . . . . . . . . . . . . . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Three-Dimensional Printing Capacity Planning . . . . . . . . . . . . . . . . 29 3.1 Three-Dimensional Printing Capacity. . . . . . . . . . . . . . . . . . . . . . 29 3.2 Selecting the Most Suitable Three-Dimensional Printer: An Analytic Hierarchy Process Approach . . . . . . . . . . . . . . . . . . 30 3.3 Selecting Diversified Three-Dimensional Printers: The Decomposition Analytic Hierarchy Process Approach. . . . . . . . . . 36 3.4 A Fuzzy Analytic Hierarchy Process Approach for Selecting the Most Suitable Three-Dimensional Printer . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 v vi Contents 4 Capacity Planning for a Ubiquitous Manufacturing System Based on Three-Dimensional Printing. . . . . . . . . . . . . . . . . . . . . . . . 47 4.1 Capacity and Production Planning Procedure . . . . . . . . . . . . . . . . 47 4.2 System Architecture of a Three-Dimensional Printing-Based Ubiquitous Manufacturing System. . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Assessing and Choosing Three-Dimensional Printing Facilities . . . 50 4.3.1 Determining the Weights of Criteria . . . . . . . . . . . . . . . . . 50 4.3.2 Assessing the Overall Performance of a Three- Dimensional Printing Facility . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Production and Transportation Planning for a Ubiquitous Manufacturing System Based on Three-Dimensional Printing . . . . . 63 5.1 A Ubiquitous Manufacturing System Based on Three- Dimensional Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Balancing the Workloads on Three-Dimensional Printing Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 Identifying the Shortest Delivery Path . . . . . . . . . . . . . . . . . . . . . 68 5.4 An Aggregate Production and Transportation Planning Model. . . . 70 5.5 An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.6 A Production Planning Model Considering Uncertainty . . . . . . . . 76 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 QualityControlina3DPrinting-BasedUbiquitousManufacturing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.1 Quality and Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Quality of a Three-Dimensional Printed Object . . . . . . . . . . . . . . 83 6.2.1 Quality and QC Standards for 3D Printing . . . . . . . . . . . . 85 6.2.2 Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2.3 Conformance to Specifications . . . . . . . . . . . . . . . . . . . . . 86 6.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3 QC for 3D Printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.1 Product Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.2 Process Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.3 Cause-and-Effect Analysis . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.4 DOE and Taguchi Method . . . . . . . . . . . . . . . . . . . . . . . . 92 6.4 Quality Control in a Three-Dimensional Printing-Based Ubiquitous Manufacturing System. . . . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Chapter 1 Introduction 1.1 Three-DimensionalPrinting Three-dimensional (3D) printing is a new approach for additive manufacturing, whichistocreatea3Dobjectbyformingsuccessivelayersofmaterialsbyusinga 3Dprintercontrolledbyacomputer[1].Inthisway,3Dprintingcanfabricateprod- uctsorcomponentswithverycomplexshapes.Anotheradvantageof3Dprintingis theeasinessofintegratingwithcomputer-aideddesign(CAD)andcomputer-aided manufacturing (CAM), so that a 3D object can be directly made from the model generated by a CAD/CAM software package. Naturally, existing CAD/CAM soft- ware vendors were pioneers in this field. For example, AutoCAD has supported reading a 3D model in the stereolithography (STL) file format and output an STL filetoa3DprintersinceAutoCAD2011.Catiacanalsosavea3DmodelintheSTL format [2]. Other acceptable 3D printing file formats include OBJ, VRML, PLY, and ZIP. 3D printer vendors, CAD/CAM software companies, 3D printing service providers,and3D-printingcommunitieshavebeenmaintainingonlinedatabasesof 3Dobjects.Ausercandownloada3Dmodelresemblinghisorherideafromthese websitesandthenmodifyit.Inaddition,offlinedatabasessuchas3Danthropometry databases and medical databases (including computed tomography and magnetic resonanceimagingdatabases)canalsobeconvertedtobeprintable,asillustratedin Fig.1.1. Thedevelopmentof3Dprintingdatesbacktotheearly1980s[3].Afterdecadesof researchanddevelopment,theapplicationof3Dprintinghastransitedfromvisual- izationandprototypingtomasscustomizationandmassproduction[4–6].American Society for Testing and Materials classified additive manufacturing processes into sevencategories[7]: (cid:129) Vatphotopolymerization, (cid:129) Materialjetting(MJ), (cid:129) Binderjetting(BJ), ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 1 T.-C.Chen,3DPrintingandUbiquitousManufacturing, SpringerBriefsinAppliedSciencesandTechnology, https://doi.org/10.1007/978-3-030-49150-5_1 2 1 Introduction Online 3D Object Databases n n o o si si er 3D Printing er v v n Databases n o o c c Medical CAD/CAM Databases Drawings n o si r e v n o Scanned c 3D 3D Objects Anthropometry Databases 3D Printers Fig.1.1 Datasourcesfor3Dprinting (cid:129) Materialextrusion, (cid:129) Powderbedfusion, (cid:129) Sheetlamination,and (cid:129) Directedenergydeposition. Currently, the most popular 3D printing technologies include fused deposition modeling (FDM), stereolithography (SLA), masked stereolithography (MSLA), digital light processing (DLP), selective laser sintering (SLS), direct metal laser sintering (DMLS), selective laser melting (SLM), electron beam melting (EBM), MJ,drop-ondemand(DOD),andBJ.These3Dprintingtechnologiesdifferinthe types of raw materials used, forms of raw materials, and principles followed. The majortypesofmaterialsfor3Dprintingincluderesin(orplastics),metal,gypsum, andsand.Anintroductionofvarious3DprintingtechnologiesreferstoAll3DP[8]. Three-dimensionalprintinghasbeenappliedinnumerousindustries.Forexample, in the automotive manufacturing industry, automotive makers have applied 3D 1.1 Three-DimensionalPrinting 3 printingtechnologiestoprototyping,designvalidation,small-scalemassproduction, andfinalinspection[9].Everyyear,automotivemakersapply3Dprintingtoproto- type or manufacture more than 100,000 parts and/or molds [10]. Functional spare partsofvehicles,engines,andplatformsarealsotestedusing3Dprinting[9].Inthe medicalandhealthcareindustry,3Dprintingtechnologieshavebeenwidelyapplied tomakepersonalizedproductssuchashearingaids,artificialears,prostheses,reha- bilitationaids,orthopedicsurgeryguideplates,artificialjoints,anddentalimplants [11].Medicalproductsmadeusingmetalprintinghaveporoustitaniumstructures, aremoreergonomic,andhavehigherperformance,farexceedingthelimitationsof traditionalmanufacturingprocesses.3D-printedtitaniumpartsorproductsarepreva- lentinvariousindustriessuchasaerospace,chemical,andbiomedicalindustriesdue toexcellentpropertiesincludinglightweight,highspecificstrength,highchemical resistance,andbiocompatibility[12].Inthebiomedicalindustry,titaniumisusedto makeimplantsbecauseofitsload-bearingandbiocompatibility,whileintheavia- tionindustry,theresistancetocorrosionandlightweightoftitaniumisemphasized [13–15]. Titanium is about 45% lighter than steel [16]. The replacement of steel with titanium has reduced the weight of a 777 airplane by 5800 lb [17]. A lighter weightalsoreducestherequiredfuelsandcarbonemission,whichfurtherpromoted theusageoftitaniuminaircraft.Inaddition,titaniumistwiceasstrongasaluminum thatisfrequentlyusedtobuildtheoverallstructureofanairplane[16,17].Inaddition, atraditionalmanufacturingprocessmayberelativelycomplex,havelongcycletime, andbedifficulttomaintainprecision.Theapplication of3Dprintingtechnologies hasovercometheseproblemstoreducemanufacturingcostsandshortencycletime [13].Forexample,intheconstructionindustry,3Dprintingtechnologieshavebeen appliedtobuildsimpleandaffordablemodelsrapidly.Theapplicationof3Dprinting technologiesalsomotivatesinnovativewaysofproduction.Forexample,architects proposedadirectmethodofconstructionbyapplying3Dprintingtechnologies[18]. 3D printing, cyberphysical systems, and the Internet of things (IoT) have brought aboutthethirdindustrialrevolution[19]. Fourtechnicalchallengesfacedby3Dprintingresearchersandpractitionersare time-consuming3Dobjectdesign,limitedtypesofusablematerials,lowprecision, andlowproductivity,asillustratedinFig.1.2[2].Toaddressthesechallenges,the followingtreatmentshavebeentaken: (1) Amajorresearchtrendinthisfieldistoincreasethenumberoftypesorsuitability ofmaterialsthatsupporttheprintingofaspecific3Dobject[5]. (2) Anotherfocusisonhowtoimprovethequalityofaprinted3Dobject[20,21]. (3) 3Dscannersthatcanbeusedtoscanobjectstoproduce3Dmodelshavebecome more and more popular and affordable [22]. However, this does not work for 3Dobjectsthatdonotphysicallyexist. (4) Ubiquitousmanufacturing(UM)systemsbasedon3Dprintinghavebeenestab- lished to enhance the productivity of mass customization using 3D printers [23]. Further, to further enhance the effectiveness and efficiency of 3D printing applications,thefollowingmanagerialissuesneedtobeaddressed[2]: