3D Printed Horn Antenna for Ultra Wideband Applications By Vegard Midtbøen Thesis submitted for the degree of Master of science in Electronics and computer science, Microelectronics 60 credits Department of Informatics Faculty of mathematics and natural sciences UNIVERSITY OF OSLO Spring 2017 3D Printed Horn Antenna for Ultra Wideband Applications By Vegard Midtbøen ©2017ByVegardMidtbøen 3DPrintedHornAntennaforUltraWidebandApplications http://www.duo.uio.no/ Printed: Reprosentralen,UniversityofOslo Abstract This thesis was initiated by the University of Oslo at the Department of Informat- ics. The field of study regarding snow analysis, characterization and imaging of snowlayers, hasbeenanongoingstudy-fieldattheDepartmentofGeophysicsfor some years. The transverse collaboration project, Land-ATmosphere Interactions inColdEnvironment(LATICE)seeksnewadvancedinstrumentsforcharacterizing the impact of climate changes to the snow. In this thesis, 3D printed high gain, ultra-wideband antennas for snow-penetrating radar applications has been simu- latedandmanufactured. A custom build stepped ridge horn antenna was found to be best suited regard- ing large bandwidth and high gain that covers the entire band. Two antennas have been constructed and characterized for a gain between 10 dBi to 15 dBi covering the range between 2.3 GHz to 6.1 GHz. The antennas are 3D printed in low cost polylactic acid (PLA) and coated with conductive copper spray. The measured half-powerbeamwidthforthefirstprintedantennais26 intheE-planeand26 in ◦ ◦ the H-plane. For the second printed antenna, the half-power beamwidth is 24 in ◦ theE-planeand28 intheH-plane. Measuredpeakdirectivityis12.6dBiand12 ◦ dBi,andthefront-to-backratiois22dBand24dBforthefirstandsecondantenna, respectively. Inaddition,anewtechniqueforfeeding3Dprintedwaveguidestruc- turesarepresented. Theworkonthisfeedingtechniquehasbeensubmittedtothe IEEE MTT-S International Microwave Workshop Series on Advanced Materials andProcesses(IMWS-AMP)conferenceinSeptember20-22,2017(AppendixA). The antennas have been tested together with the Novelda X2 Ventricorder mod- uleatthesnowlabattheDepartmentofInformatics,andoutdoormeasurementsat FinseAlpineResearchCenter,Norway. Promisingresultshasbeenachievedfrom these measurements. The radar is able to detect different layers of pressed wood withameasuredpermittivityof1.89. Resultsfromtheoutdoormeasurementshas beenshownintheendofthethesis,butnotverifiedduetolimitedtime. i ii Contents 1 Introduction 1 1.1 SurfacePenetratingRadar . . . . . . . . . . . . . . . . . . . . . 1 1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Motivationandgoals . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background 7 2.1 FundamentalsofRADAR . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Targetdetection . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Dielectricpropertiesofamaterial . . . . . . . . . . . . . 8 2.1.3 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Usingradarforsnowimaging . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Snowavalanches . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Surfacepenetratingradars . . . . . . . . . . . . . . . . . 20 2.3 DirectionalUWBAntennasforsnowimaging . . . . . . . . . . . 24 2.3.1 Reflectorantennas . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Microstriparrayantennas . . . . . . . . . . . . . . . . . 26 2.3.3 Hornantennas . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Hornantennaparameters . . . . . . . . . . . . . . . . . . . . . . 31 2.4.1 Waveguidedesignparameters . . . . . . . . . . . . . . . 31 2.4.2 Feedingtechniquesforrectangularwaveguides . . . . . . 35 2.4.3 Horndesignparameters . . . . . . . . . . . . . . . . . . 35 2.4.4 Summaryofhornantennaparameters . . . . . . . . . . . 36 2.5 Systemoverview . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.1 Antennaparameters . . . . . . . . . . . . . . . . . . . . 37 2.5.2 Practicalusage . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.3 Designspecificationoverview . . . . . . . . . . . . . . . 38 3 Designandanalysis 39 3.1 Designmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Designofpyramidalhornantenna . . . . . . . . . . . . . . . . . 40 3.2.1 Designingawaveguideforrectangularhorn . . . . . . . . 40 3.2.2 Feedingarectangularwaveguide . . . . . . . . . . . . . . 41 3.2.3 Simulationofrectangularwaveguide . . . . . . . . . . . . 42 3.2.4 Designofhornaperture . . . . . . . . . . . . . . . . . . 43 3.2.5 Simulationofrectangularhornantenna . . . . . . . . . . 44 3.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 47 iii CONTENTS iv 3.3 Designoftapereddoubleridgedhornantenna . . . . . . . . . . . 49 3.3.1 Designofridgedwaveguide . . . . . . . . . . . . . . . . 49 3.3.2 Feedingtheridgedwaveguide . . . . . . . . . . . . . . . 49 3.3.3 Simulationofridgedwaveguide . . . . . . . . . . . . . . 50 3.3.4 Design of double ridged waveguide for a new cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.5 Designoftaperedridgedhornaperture . . . . . . . . . . 53 3.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Anewmethodforfeedingplasticwaveguides . . . . . . . . . . . 62 3.4.1 Microstriptransmissionlinefeed . . . . . . . . . . . . . . 62 3.4.2 Simulationofmicrostriptransmissionlinefeed . . . . . . 64 3.4.3 Evaluationthemicrostripfeed . . . . . . . . . . . . . . . 65 3.5 Designofsteppedridgehornantenna . . . . . . . . . . . . . . . 68 3.5.1 Designofsteppedridgewaveguide. . . . . . . . . . . . . 68 3.5.2 Simulationofsteppedridgewaveguide . . . . . . . . . . 69 3.5.3 Designofsteppedridgehornantenna . . . . . . . . . . . 71 3.5.4 Simulation of stepped ridge horn antenna with microstrip transmissionlinefeed. . . . . . . . . . . . . . . . . . . . 72 3.5.5 Summaryofsteppedridgehornantenna . . . . . . . . . . 73 3.6 3Dprintedantennas . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.1 Challengesby3Dprintingantennas . . . . . . . . . . . . 74 3.6.2 3Dprintedsteppedridgehornantenna . . . . . . . . . . . 74 4 Measurementsandresults 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3 Evaluationoftheprintedwaveguide . . . . . . . . . . . . . . . . 79 4.3.1 Measuredresultsforthefirstprintedwaveguide . . . . . . 79 4.3.2 SummaryoftheprintedwaveguidewithPCBfeed . . . . 81 4.4 Printedsteppedridgehornantenna . . . . . . . . . . . . . . . . . 83 4.4.1 Measuredreflectioncoefficient . . . . . . . . . . . . . . . 83 4.4.2 Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.5 Radarmeasurements . . . . . . . . . . . . . . . . . . . . . . . . 88 4.5.1 Snowlabmeasurements . . . . . . . . . . . . . . . . . . 88 4.5.2 Fieldmeasurements . . . . . . . . . . . . . . . . . . . . 90 4.6 Summaryofallresults . . . . . . . . . . . . . . . . . . . . . . . 94 5 Discussion 95 5.1 Issuesregarding3Dprintingantennas . . . . . . . . . . . . . . . 95 5.1.1 3Dprinting . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1.2 Coppercoating . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 InterfacebetweenPCBandwaveguide . . . . . . . . . . . . . . . 97 5.3 Suggestionsforfurtherwork . . . . . . . . . . . . . . . . . . . . 98 5.3.1 Newwaveguidedesign . . . . . . . . . . . . . . . . . . . 98 5.3.2 PCBfeed . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.3 OnesinglePCBforacompleteradarsystem . . . . . . . . 99 v CONTENTS 5.4 Alternativeradarapplications . . . . . . . . . . . . . . . . . . . . 100 6 Conclusion 101 Appendices 109 A Paper 111 B Machinedrawings 115 CONTENTS vi
Description: