Aalborg Universitet 3D Path Planning for Autonomous Aerial Vehicles in Constrained Spaces Schøler, Flemming Publication date: 2012 Document Version Early version, also known as pre-print Link to publication from Aalborg University Citation for published version (APA): Schøler, F. (2012). 3D Path Planning for Autonomous Aerial Vehicles in Constrained Spaces. Section of Automation & Control, Department of Electronic Systems, Aalborg University. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: april 05, 2019 FlemmingSchøler 3D Path Planning for Autonomous Aerial Vehicles in Constrained Spaces 3DPathPlanningforAutonomousAerialVehiclesinConstrainedSpaces Ph.D.thesis ISBN:978-87-92328-73-1 January2012 Copyright2009-2012 c FlemmingSchøler (cid:13) Contents Preface VII Abstract IX Synopsis XI 1 Introduction 1 1.1 BackgroundandMotivation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 VehicleControl . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 PathPlanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 PreviousWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 PotentialFields . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 ProbabilisticRoadmaps . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 Rapidly-ExploringRandomTrees . . . . . . . . . . . . . . . . . 7 1.3.4 VoronoiDiagrams . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.5 VisibilityGraph. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.6 VerticalCellDecompositions . . . . . . . . . . . . . . . . . . . 10 1.3.7 StateoftheArt . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Contributions 15 3 PlanningApplication 17 4 ApproximatedPathPlanning 19 4.1 PaperA:ConfigurationSpaceandVisibilityGraphGenerationfromGe- ometricWorkspacesforUAVs . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Paper B: Generating Approximative Minimum Length Paths in 3D for UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Paper C: Generating Configuration Spaces and Visibility Graphs from a GeometricWorkspaceforUAVPathPlanning . . . . . . . . . . . . . . . 21 5 GeodesicPathPlanning 23 5.1 PaperD:3DPathPlanningwithGeodesicsonGeometricWorkSpaces . . 23 6 TrajectoryGeneration 25 III CONTENTS 6.1 Paper E: Collision Free Path Generation in 3D with Turning and Pitch RadiusConstraintsforAerialVehicles . . . . . . . . . . . . . . . . . . . 25 6.2 PaperF:State-ControlTrajectoryGenerationforHelicopterinObstacle- filledEnvironmentusingOptimalControl . . . . . . . . . . . . . . . . . 26 7 ConclusionsandFutureWork 27 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References 29 PaperA:ConfigurationSpaceandVisibilityGraphGenerationfromGeomet- ricWorkspacesforUAVs 35 PaperB:GeneratingApproximativeMinimumLengthPathsin3DforUAVs 49 PaperC:GeneratingConfigurationSpacesandVisibilityGraphsfromaGe- ometricWorkspaceforUAVPathPlanning 57 PaperD:3DPathPlanningwithGeodesicsonGeometricWorkSpaces 79 PaperE:CollisionFreePathGenerationin3DwithTurningandPitchRadius ConstraintsforAerialVehicles 101 PaperF:State-ControlTrajectoryGenerationforHelicopterinObstacle-Filled EnvironmentusingOptimalControl 115 IV CONTENTS V Preface ThisthesisissubmittedaspartlyfulfillmentoftherequirementsfortheDoctorofPhilos- ophyattheSectionofAutomationandControl,DepartmentofElectronicSystems,Aal- borgUniversity,Denmark. TheworkhasbeencarriedoutintheperiodSeptember2008 toJanuary2012underthesupervisionofAssociateProfessorAnderslaCour-Harboand AssistantProfessorMortenBisgaard. Anders has been the ideal main supervisor. His engagement, enthusiasm and en- couragementwereanaidininnumerableways. IalsogreatlyappreciateMortenforhis theoreticalandtechnicaladvice. IwasvisitingNavalPostgraduateSchoolduringthesummerandautumnof2010. I wouldliketothankProfessorMichaelRossandDr. MarkKarpenkofortheirpersistence inmakingthisstaypossibleandensuringthatIhadapleasantandenjoyabletime. Ithankmyfamily,friends,andcolleaguesforallthesupport,andespeciallymyfellow PhD-studentsforourgreatlyvalueddiscussions. Finally, I dedicate this thesis to Diane for her love and patience during these three years. AalborgUniversity,January2012 FlemmingSchøler VII Abstract 3DPathPlanningforAutonomousAerialVehiclesinConstrainedSpaces DetermininghowanautonomousUnmannedAircraftSystem(UAS)shouldreachagoal position amidst obstacles is a challenging and difficult problem. This thesis treats the subject of path planning and trajectory generation for UAS, while utilizing the ability to move in all three spatial dimensions. The primary contributions of this thesis are an approximatepathplannerandageodesicpathplanner. Bothplannersaremodelindepen- dentandoperateonthesurfaceoftheconfigurationspacetoidentifyalengthminimizing path. The approximate planner determines an approximated shortest path by building and searching a visibility graph. This planner maintains this visibility graph to enable fast multi-query searches as well as replanning when changes occur in the work space. As paths obtained from a visibility graph are not continuously differentiable, a trajectory generationmethodisdevelopedthatusesthepathtofindacollisionfreetrajectorythatis moreappropriateforflight. Thegeodesicplannerrelatestowavefront-typeplanning,andidentifiescontinuously differentiable geodesic paths as parametric equations determined by surface primitives given from the configuration space. Consequently, this planner uses a more analytical approachsinceitreliesoncombinationsofoptimalcurves. Bothplannersoperateonanexplicitdescriptionoftheconfigurationspaceinawork spacecontaining3Dobstacles. Amethodwasdevelopedthatgeneratesconvexconfigu- rationspaceobstaclesfromanypointcloudsorgeometricmeshesinworkspace. Twoapproachesareusedforgeneratingatrajectoryfromanexistingpath. Thefirst generatoruseDubinscurvestofindacollisionfreecontinuouslydifferentiabletrajectory. Thesecondgeneratorreliesonformulatingandsolvinganoptimalcontrolproblem(OCP) using a Legendre pseudospectral method. The main contributions of this approach are the formulation of distance functions that constrains the trajectory. This allows finding trajectories that follows minimal length paths while optimizing the trajectory according toaperformanceindex. Themethodsandalgorithmsdevelopedinthisthesisareimplementedinaplanning applicationandvalidatedthroughsimulatedflightusingahelicoptermodel. IX
Description: