ebook img

3D Laser Microfabrication: Principles and Applications PDF

369 Pages·2006·6.615 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 3D Laser Microfabrication: Principles and Applications

3DLaserMicrofabrication Editedby HiroakiMisawaand SauliusJuodkazis 3DLaserMicrofabrication.PrinciplesandApplications. EditedbyH.MisawaandS.Juodkazis Copyright(cid:1)2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-31055-X Related Titles Bordo,V.G.,Rubahn,H.-G. Optics and Spectroscopy at Surfaces and Interfaces 281pageswith144figures 2005 Softcover ISBN3-527-40560-7 B(cid:1)umer,S.(ed.) Handbook of Plastic Optics 199pageswith135figuresand37tables 2005 Hardcover ISBN3-527-40424-4 Franssila,S. Introduction to Microfabrication 408pages 2004 Hardcover ISBN0-470-85105-8 Sinzinger,S.,Jahns,J. Microoptics 447pageswith209figuresand12tables 2003 Hardcover ISBN3-527-40355-8 Schleich,W.P. QuantumOptics in Phase Space 716pageswith220figures 2001 Hardcover ISBN3-527-29435-X 3D Laser Microfabrication Principles and Applications Edited by Hiroaki Misawa and Saulius Juodkazis Editors & AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, HiroakiMisawa editors,andpublisherdonotwarrantthe ResearchInstituteforElectronicScience informationcontainedinthesebooks, HokkaidoUniversity,Japan includingthisbook,tobefreeoferrors. [email protected] Readersareadvisedtokeepinmindthat statements,data,illustrations,procedural detailsorotheritemsmayinadvertently SauliusJuodkazis beinaccurate. ResearchInstituteforElectronicScience LibraryofCongressCardNo.:appliedfor HokkaidoUniversity,Japan [email protected] BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Cover Bibliographicinformationpublishedby Periodicstructureofabody-centeredcubiclattice DieDeutscheBibliothek numericallysimulatedbyinterferenceoffourplane DieDeutscheBibliothekliststhispublication waves. intheDeutscheNationalbibliografie;detailed bibliographicdataisavailableintheInternetat <http://dnb.ddb.de>. (cid:1)2006WILEY-VCHVerlagGmbH&Co.KGaA, Weinheim Allrightsreserved(includingthoseof translationintootherlanguages). Nopartofthisbookmaybereproduced inanyform–nortransmittedortranslated intomachinelanguagewithoutwritten permissionfromthepublishers.Registered names,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. Typesetting K(cid:2)hn&Weyh,SatzundMedien, Freiburg Printing StraussGmbH,M(cid:3)rlenbach Bookbinding Litges&DopfBuchbindereiGmbH, Heppenheim PrintedintheFederalRepublicofGermany. Printedonacid-freepaper. ISBN-13: 978-3-527-31055-5 ISBN-10: 3-527-31055-X V Contents ListofContributors XIII 1 Introduction 1 HiroakiMisawaandSauliusJuodkazis 2 Laser–MatterInteractionConfinedInsidetheBulkofaTransparentSolid 5 EugeneGamaly,BarryLuther-DaviesandAndreiRode 2.1 Introduction 5 2.2 Laser–matterInteractions:BasicProcessesandGoverning Equations 7 2.2.1 LaserIntensityDistributioninaFocalDomain 7 2.2.2 AbsorbedEnergyDensityRate 8 2.2.3 Electron–phonon(ions)EnergyExchange,HeatConductionand Hydrodynamics:Two-temperatureApproximation 9 2.2.4 TemperatureintheAbsorptionRegion 11 2.2.5 AbsorptionMechanisms 12 2.2.6 ThresholdfortheChangeinOpticalandMaterialProperties (“OpticalDamage”) 13 2.3 NondestructiveInteraction:Laser-inducedPhaseTransitions 13 2.3.1 Electron–PhononEnergyExchangeRate 14 2.3.2 PhaseTransitionCriteriaandTime 14 2.3.3 FormationofDiffractiveStructuresinDifferentMaterials 15 2.3.3.1 ModificationsInducedbyLightinNoncrystallineChalcogenide Glass 15 2.3.3.2 Two-photonExcitationofFluorescence 16 2.3.3.3 Photopolymerization 17 2.3.3.4 PhotorefractiveEffect 17 2.4 Laser–SolidInteractionatHighIntensity 18 2.4.1 LimitationsImposedbytheLaserBeamSelf-focusing 18 2.4.2 OpticalBreakdown:IonizationMechanismsandThresholds 19 2.4.2.1 IonizationbyElectronImpact(AvalancheIonization) 19 2.4.2.2 MultiphotonIonization 21 3DLaserMicrofabrication.PrinciplesandApplications. EditedbyH.MisawaandS.Juodkazis Copyright(cid:1)2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-31055-X VI Contents 2.4.3 TransientElectronandEnergyDensityinaFocalDomain 21 2.4.2.1 IonizationandDamageThresholds 22 2.4.3.2 AbsorptionCoefficientandAbsorptionDepthinPlasma 23 2.4.3.3 ElectronTemperatureandPressureinEnergyDepositionVolumeto theEndoftheLaserPulse 23 2.4.4 Electron-to-ionEnergyTransfer:HeatConductionandShockWave Formation 24 2.4.4.1 ElectronicHeatConduction 25 2.4.4.2 ShockWaveFormation 26 2.4.5 ShockWaveExpansionandStopping 27 2.4.6 ShockandRarefactionWaves:FormationofVoid 27 2.4.7 PropertiesofShock-and-heat-affectedSolidafterUnloading 28 2.5 Multiple-pulseInteraction:EnergyAccumulation 29 2.5.1 TheHeat-affectedZonefromtheActionofManyConsecutive Pulses 30 2.5.2 CumulativeHeatingandAdiabaticExpansion 30 2.6 Conclusions 31 3 SphericalAberrationanditsCompensationfor HighNumericalApertureObjectives 37 MinGuandGuangyongZhou 3.1 Three-dimensionalIndensityPoint-spreadFunctionintheSecond Medium 38 3.1.1 RefractiveIndicesMismatch-inducedSphericalAberration 38 3.1.2 VectorialPoint-spreadFunctionthroughDielectricInterfaces 39 3.1.3 ScalarPoint-spreadFunctionthroughDielectricInterfaces 40 3.2 SphericalAberrationCompensationbyaTube-lengthChange 41 3.3 EffectsofRefractiveIndicesMismatch-inducedSphericalAberration on3DOpticalDataStorage 42 3.3.1 AberratedPoint-spreadFunctionInsideaBleachingPolymer 42 3.3.2 CompensationforSphericalAberrationBasedonaVariableTube Length 46 3.3.3 Three-dimensionalDataStorageinaBleachingPolymer 46 3.4 EffectsofRefractiveIndexMismatchInducedSphericalAberration ontheLaserTrappingForce 49 3.4.1 IntensityPoint-spreadFunctioninAqueousSolution 49 3.4.2 CompensationforSphericalAberrationBasedonaChangeofTube Length 50 3.4.3 TransverseTrappingEfficiencyandTrappingPowerunderVarious EffectiveNumericalApertures 52 3.5 Summary 55 Contents VII 4 TheMeasurementofUltrashortLightPulses inMicrofabricationApplications 57 XunGu,SelcukAkturk,AparnaShreenath,QiangCao,andRickTrebino 4.1 Introduction 57 4.2 AlternativestoFROG 58 4.3 FROGandCross-correlationFROG 59 4.4 Dithered-crystalXFROGforMeasuringUltracomplex SupercontinuumPulses 60 4.5 OPAXFROGforMeasuringUltraweakBroadbandEmission 64 4.6 ExtremelySimpleFROGDevice 71 4.7 OtherProgress 80 4.8 Conclusions 82 5 NonlinearOptics 85 JohnBuckandRickTrebino 5.1 LinearversusNonlinearOptics 85 5.2 Nonlinear-opticalEffects 87 5.3 SomeGeneralObservationsaboutNonlinearOptics 92 5.4 TheMathematicsofNonlinearOptics 93 5.4.1 TheSlowlyVaryingEnvelopeApproximation 93 5.4.2 SolvingtheWaveEquationintheSlowlyVaryingEnvelope Approximation 96 5.5 Phase-matching 97 5.6 Phase-matchingBandwidth 102 5.6.1 DirectCalculation 102 5.6.2 Group-velocityMismatch 104 5.6.3 Phase-matchingBandwidthConclusions 106 5.7 Nonlinear-opticalStrengths 106 6 FilamentationversusOpticalBreakdowninBulkTransparentMedia 109 EugenijusGaizˇauskas 6.1 Introduction 109 6.2 ConicalWaves:TiltedPulses,BesselBeamsandX-typeWaves 111 6.3 DynamicsofShort-pulseSplittinginNonlinearMediawithNormal Dispersion:EffectsofNonlinearLosses 116 6.4 OnthePhysicsofSelf-channeling:BeamReconstructionfromConial Waves 120 6.5 Multi-filamentsandMulti-focuses 125 6.5.1 MultipleFlamentationinBulkTransparentMedia 127 6.5.2 CapillaryWaveguidefromFemtosecondFilamentation 131 6.6 FilamentationInducedbyConicalWavepacket 134 6.7 Conclusion 136 VIII Contents 7 PhotophysicsandPhotochemistryof UltrafastLaserMaterialsProcessing 139 RichardF.Haglund,Jr. 7.1 IntroductionandMotivation 139 7.2 UltrafastLaserMaterialsInteractions:ElectronicExcitation 140 7.2.1 Metals:TheTwo-temperatureModel 142 7.2.2 Semiconductors 145 7.2.2.1 UltrafastLaser-inducedMeltinginSemiconductors 145 7.2.2.2 UltrafastLaserAblationinSemiconductors 147 7.2.2.3 TheoreticalStudiesofFemtosecondLaserInteractionswith Semiconductors 148 7.2.3 Insulators 148 7.2.3.1 UltrafastAblationofInsulators 150 7.2.3.2 Self-focusingofUltrashortPulsesforThree-dimensional Structures 152 7.2.3.3 Color-centerFormationbyFemtosecondLaserIrradiation 154 7.3 UltrafastLaser-materialsInteraction:VibrationalExcitation 156 7.3.1 AblationofInorganicMaterialsbyResonantVibrational Excitation 157 7.3.2 AblationofOrganicMaterialsbyResonantVibrationalExcitation 158 7.4 PhotochemistryinFemtosecondLaser-materialsInteractions 159 7.4.1 SulfidationofSiliconNanostructuresbyFemtosecondIrradiation 160 7.4.2 NitridationofMetalSurfacesUsingPicosecondMIRRadiation 161 7.5 PhotomechanicalEffectsatFemtosecondTimescales 161 7.5.1 ShockWaves,PhaseTransitionsandTribology 162 7.5.2 CoherentPhononExcitationsinMetals 163 7.5.3 UltrafastLaser-inducedForwardTransfer(LIFT) 165 7.6 PulsedLaserDeposition 166 7.6.1 Near-infraredPulsedLaserDeposition 167 7.6.2 InfraredPulsedLaserDepositionofOrganicMaterialsonMicro-and Nanostructures 168 7.7 FutureTrendsinUltrafastLaserMicromachining 170 7.7.1 Ultrashort-pulseMaterialsModificationatHighPulse-repetition Frequency 170 7.7.2 PulsedLaserDepositionatHighPulse-repetitionFrequency 171 7.7.2.1 DepositionofInorganicThinFilms 171 7.7.2.2 DepositionofOrganicThinFilms 173 7.7.3 PicosecondProcessingofCarbonNanotubes 174 7.7.4 Sub-micronParallel-processPatterningofMaterialswithUltraviolet Lasers 174 7.8 SummaryandConclusions 175 Contents IX 8 FormationofSub-wavelengthPeriodicStructuresInside TransparentMaterials 181 PeterG.Kazansky 8.1 Introduction 182 8.2 AnomalousAnisotropicLight-scatteringinGlass 183 8.3 AnisotropicCherenkovLight-generationinGlass 185 8.4 AnisotropicReflectionfromFemtosecond-laserSelf-organized NanostructuresinGlass 186 8.5 DirectObservationofSelf-organizedNanostructuresinGlass 190 8.6 MechanismofFormationofSelf-organizedNanostructuresin Glass 192 8.7 Self-organizedFormBirefringence 195 8.8 Conclusion 198 9 X-rayGenerationfromOpticalTransparentMaterialsby FocusingUltrashortLaserPulses 199 KojiHatanakaandHiroshiFukumura 9.1 Introduction 199 9.2 Laser-inducedHigh-energyPhotonEmissionfromTransparent Materials 201 9.2.1 EmissionofExtremeUltravioletLightandSoftX-ray 201 9.2.2 FundamentalMechanismsLeadingtoHigh-energyPhoton Emission 204 9.2.3 CharacteristicX-rayIntensityasaFunctionofAtomicNumber 208 9.3 CharacteristicsofHardX-rayEmissionfromTransparent Materials 213 9.3.1 ExperimentalSetupsforLaser-inducedHardX-rayEmission 213 9.3.2 EffectsofAirPlasmaandSampleSelf-absorption 215 9.3.3 Multi-photonAbsorptionandEffectsoftheAdditionof Electrolytes 218 9.3.4 Multi-shotEffectsonSolidMaterials 219 9.3.5 Pre-pulseIrradiationEffectsonAqueousSolutions 224 9.4 PossibleApplications 230 9.4.1 X-rayImaging 230 9.4.2 ElementalAnalysisbyX-rayEmissionSpectroscopy 231 9.4.3 Ultra-fastX-rayAbsorptionSpectroscopy 234 9.5 Summary 235 10 FemtosecondLaserMicrofabricationofPhotonicCrystals 239 VygantasMizeikis,ShigekiMatsuo,SauliusJuodkazis,andHiroakiMisawa 10.1 MicrofabricationofPhotonicCrystalsbyUltrafastLasers 240 10.1.1 NonlinearAbsorptionofSpatiallyNonuniformLaserFields 242 10.1.2 MechanismsofPhotomodification 244

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.