Low Emission Conversion of Fossil Fuels with Simultaneous or Consecutive Storage of Carbon Dioxide Ali Akbar Eftekhari Low Emission Conversion of Fossil Fuels with Simultaneous or Consecutive Storage of Carbon Dioxide Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op donderdag 26 september 2013 om 15:00 uur door Ali Akbar EFTEKHARI Master of Science in Chemical Engineering, Sharif University of Technology geboren te Estahban, Iran Dit proefschrift is goedgekeurd door de promotoren: Prof.dr. J. Bruinig Copromoter Dr. K.H.A.A. Wolf Samenstelling promotiecommissie: Rector Magnificus, voorzitter Prof. J. Bruining, Technische Universiteit Delft, promotor Dr. K.H.A.A. Wolf, Technische Universiteit Delft, copromotor Prof. D. Marchesin Instituto de Matemtica Pura e Aplicada, Brazilië Prof. S. Durucan Imperial College London, UK Prof. P.L.J. Zitha Technische Universiteit Delft Prof. C.P.J.W. van Kruijsdijk Technische Universiteit Delft Dr. H.J. van der Kooi Technische Universiteit Delft Prof.dr.ir. J.D. Jansen Technische Universiteit Delft, reservelid This work was partially supported by European Comission under the framework of HUGE project. Copyright © 2013, Ali Akbar Eftekhari Cover design by A. A. Eftekhari, recovery factor of a typical energy extraction process Printed by CPI-Wöhrmann Print Service – Zutphen ISBN: 978-94-6203-451-8 To Aida and Maryam, دامتعا و دیما تیاهن To my mother, and to the memory of my father Preface We have a habit in writing articles published in scientific journals to make the work as finished as possible, to cover up all the tracks, to not worry about the blind alleys or describe how you had the wrong idea at first, and so on. So there isn’t any place to publish, in a dignified manner, what you actually did in order to get to do the work. Richard Feynman This thesis was performed under the framework of a European Commission sup- ported HUGE project: Hydrogen-oriented Underground coal Gasification (UCG) for Europe. The main goal was to make coal gasification products competitive with other fossil fuels in term of CO emission, for countries with high coal reserves, such 2 as Poland. As the thesis investigates the coal gasification process and methods to reduce its CO footprint, it is divided into two parts: in the first part coal gasi- 2 fication process is studied, and in the second part important issues related to the aquifer storage of CO are discussed. 2 In the first part, simple chemical equilibrium models are used to predict quality and carbon content of the UCG product. The CO emission per unit energy of 2 UCG product is at least three times higher than natural gas. Various options were considered to lower the CO emission, including in-situ and ex-situ carbonation of 2 synthetic/natural minerals, and aquifer storage of CO . The disadvantage of these 2 options is that they require a large amount of energy, which results in a lower coal conversion efficiency. To quantify the energy penalties, based on the principles of thermodynamics and the exergy concept, a framework was designed to quantify – in a coherent and fundamental way – the effect of various process parameters on the effectiveness of an energy extraction process. The analysis shows that none of the mentioned processes are able to effectively reduce the carbon content of the UCG product. The next step was to analyze a UCG process with alternating injection of air/steam, based on a successful low pressure field experiment performed by a HUGEprojectpartnerinPoland. Theresultsofthemathematicalmodelandexergy analysis showed that alternating injection process at high or low pressure cannot compete with lower CO emission of using natural gas. 2 To reduce practically the high CO emission value of UCG process to an acceptable 2 level, the focus was shifted from coal conversion to aquifer storage of CO . 2 In the second part of the thesis, two issues related to the aquifer storage of CO 2 are investigated: (1) the permeability impairment due to salt precipitation near the CO injection wells, and its effect on the injectivity and compression power (ex- 2 ergy) requirement; (2) increased storage capacity and long-term CO sequestration 2 due to enhanced transfer rate of CO in water-saturated porous media. Exergetic 2 applicability of carbon capture and sequestration for low emission carbon dioxide fuel consumption, can presently only be achieved if the energy-intensive step of nitrogen-CO separation prior to injection can be avoided. New separation tech- 2 nology could help to make coal usage competitive with natural gas usage as to its carbon footprint. Contents Nomenclature 1 1. Introduction 9 1.1. Energy requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2. Recovery of the fossil fuels and carbon emission . . . . . . . . . . . . 10 1.3. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4. Efficiency factors and practicality . . . . . . . . . . . . . . . . . . . . 12 1.5. The quality of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2. Exergy Analysis of UCG 19 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1. Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2. Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.3. Solution methodology . . . . . . . . . . . . . . . . . . . . . . . 25 2.3. Volume and temperature constraints . . . . . . . . . . . . . . . . . . 25 2.4. Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5. General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.1. Material streams . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.2. Exergy streams: heat and power . . . . . . . . . . . . . . . . . 32 2.5.2.1. Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.2.2. Power . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.3. Analysis of the energy recovery/conversion process . . . . . . 34 2.5.4. Exergy analysis of the UCG process . . . . . . . . . . . . . . . 37 2.6. Calculation procedure and data . . . . . . . . . . . . . . . . . . . . . 39 2.6.1. Compression exergy . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6.2. Well exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6.3. Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . 42 2.6.4. Physical parameters . . . . . . . . . . . . . . . . . . . . . . . 45 2.6.5. Calculation of exergy values . . . . . . . . . . . . . . . . . . . 45 2.6.6. Grinding exergy . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6.7. Separation of CO from flue gas . . . . . . . . . . . . . . . . . 49 2 2.6.8. Exergy of CO sequestration . . . . . . . . . . . . . . . . . . . 50 2 i Contents Contents 2.7. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7.1. Base case: air (oxygen)/water UCG . . . . . . . . . . . . . . . 52 2.7.2. Scenario 1: insitu usage of CaO . . . . . . . . . . . . . . . . . 58 2.7.3. Scenario 2: ex-situ upgrading with wollastonite . . . . . . . . 62 2.8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3. Alternating injection of oxygen/steam 67 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2. Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2.1. Mass transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.2. Energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.2.1. Coal/cavity interface . . . . . . . . . . . . . . . . . . 77 3.2.2.2. Roof/cavity interface . . . . . . . . . . . . . . . . . . 78 3.2.2.3. Rubble/cavity interface . . . . . . . . . . . . . . . . 78 3.2.2.4. Bulk gas energy balance . . . . . . . . . . . . . . . . 79 3.2.3. Boundary layer thickness . . . . . . . . . . . . . . . . . . . . . 80 3.3. Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.4. Mixing effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.5. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5.1. Comparison with chemical equilibrium model . . . . . . . . . 84 3.5.2. Comparison with field experiments . . . . . . . . . . . . . . . 85 3.5.3. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 87 3.5.3.1. Duration of steam/O injection stages . . . . . . . . 88 2 3.5.3.2. Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.5.4. Steady state results . . . . . . . . . . . . . . . . . . . . . . . . 92 3.5.4.1. Steam/O ratio . . . . . . . . . . . . . . . . . . . . . 92 2 3.5.5. Exergy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4. Salt precipitation in CO storage 105 2 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2. Phase equilibrium model . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3. Flash calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.1. Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.2. Vapor-liquid-solid flash calculation . . . . . . . . . . . . . . . 110 4.4. Thermodynamic models . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4.1. The PRSV equation of state with the MHV2 mixing rule . . . 115 4.4.2. NRTL activity coefficient model for a binary mixture . . . . . 117 4.4.3. Objective function and optimization . . . . . . . . . . . . . . . 118 4.4.4. Correction parameters of the liquid density . . . . . . . . . . . 118 4.4.5. Equilibrium results . . . . . . . . . . . . . . . . . . . . . . . . 119 4.5. Negative flash for a gas-liquid system . . . . . . . . . . . . . . . . . . 120 4.6. Molar and volumetric concentrations . . . . . . . . . . . . . . . . . . 122 ii
Description: