Mon.Not.R.Astron.Soc.000,1–??(2008) Printed22January2009 (MNLATEXstylefilev2.2) 3C66B as a TeV radio-galaxy ⋆ Fabrizio Tavecchio and Gabriele Ghisellini INAF/OsservatorioAstronomicodiBrera,viaE.Bianchi46,I–23807Merate,Italy 9 0 22January2009 0 2 n ABSTRACT a TheMAGICcollaborationreportedthedetectionofanewVHEsource,MAGICJ0223+430, J located close to the position of the blazar 3C66A, considereda candidate TeV blazar since 2 a long time. A careful analysis showed that the events with energies above 150 GeV are 2 centered on the position of the FRI radiogalaxy 3C66B (at 6 arcmin from 3C66A), with a probabilityof95.4%(85.4%includingsystematicuncertainties)thatthesourceisnotrelated ] h to3C66A.Wepresentamodelforthepossibleemissionof3C66Bbasedonthestructuredjet p modelalreadyusedtointerprettheTeVemissionoftheradiogalaxyM87.Themodelrequires - parameterssimilartothoseusedforM87butalargerluminosityforthelayer,toaccountfor o themoreluminousTeVemission.WealsoshowthatthespectrumobtainedbyMAGICcanbe r t interpretedasthecombinedemissionof3C66B,dominatingabove∼200GeV,andof3C66A. s a Thehigh–energyemissionfromthelattersource,beingstronglyattenuatedbytheinteraction [ withtheextragalacticbackgroundlight,canonlycontributeatlowenergies.Ifweweretosee thejetemissionof3C66Batsmallviewingangleswewouldseeaspectralenergydistribution 2 closelyresemblingtheoneofS50716+714,atypicalblazar. v 3 Keywords: galaxies:active–galaxies:individual:3C66B–BLLacertaeobjects:individual: 8 3C66A–BLLacertaeobjects:individual:0716+714–radiationmechanisms:non–thermal. 8 1 . 1 1 8 1 INTRODUCTION 2008).However,acarefulanalysisoftheMAGICdatashowsthat 0 theevents withenergies above ∼150 GeV arerather centered on Blazars represent the great majority of extragalactic objects de- : thepositionofthenear(6arcmin)FRIradiogalaxy3C66B(located v tectedinthe veryhigh energy (VHE,E > 30 GeV) γ–rayband at85.5Mpc),withaprobabilityof95.4%(decreasingto85.4%if i (Aharonianetal.2008,DeAngelis,Mansutti&Persic2008forre- X systematicuncertaintiesonthepositioningaretakenintoaccount) centreviews)1.Untilnowonlyonenon–blazarsource,thenearby r thatMAGICJ0223+430 isnotrelatedto3C66A.Theassociation (16Mpc)FRIradiogalaxyM87isanestablishedVHEsource(Aha- a with3C66Bisalsoindirectlysupportedbytherelativelyhardmea- ronianetal.2003,2006a,Acciarietal.2008,Albertetal.2008a). suredspectrum(photonindexΓ=3.1±0.3),difficulttoreconcile DuetothelimitedspatialresolutionofCherenkovtelescopesitis withtheexpectedstrongabsorptionofVHEphotons, throughin- not possible to identify the TeV emission region of M87. How- teraction with the extragalactic background light, for a source at ever,thedetectionofvariabilityonshorttimescales(∼days,Aha- theredshift af3C66A. However, contamination from3C66A (es- ronianetal.2006a,Albertetal.2008a)suggestsacompactemis- peciallyatlowγ–rayenergies)cannotbecompletelyexcluded.If sionregion,possiblyrelatedtoknotHST-1(e.g.Cheung,Harris& the association of the excess with 3C66B will be confirmed, this Stawarz 2007), to the black hole horizon (Neronov & Aharonian wouldbethesecond known TeVemittingradiogalaxy, indicating 2007)ortotheinnermostregionsoftherelativisticjetconsidered thatM87isnotanexceptionalcase. forblazars(Georganopoulos,Perlman&Kazanas2005,Lenainet In this letter we assume that the VHE emission detected by al.2008,Tavecchio&Ghisellini2008,hereafterTG08). MAGICcomesfrom3C66Bandpropose(Section2)thatitispro- Recently,theMAGICcollaboration(Aliuetal.2008)reported duced, as in the case of M87, in the misaligned inner structured the detection, during observations taking place between August jet (Ghisellini, Tavecchio & Chiaberge 2005, hereafter GTC05, andDecember2007,ofanewsource,MAGICJ0223+430,located TG08).For“structuredjet”wemeanajetcomposedbyafastin- closetothepositionoftheBLLacobject3C66A.Thisblazar(with ternalspinesurrounded byaslower layer.Boththespineandthe probable redshift z = 0.444, Miller et al. 1978, but seeFinke et layeremitandthereisastrongradiativeinterplaybetweenthetwo, al. 2008) has been considered a TeV candidate since a long time sinceonecomponent seestheradiationemittedbytheotherrela- (Neshpor et al. 1998, Stepanyan et al. 2002) and it has been re- tivisticallyboostedbytherelativevelocity.Inalignedsources(i.e. centlydetectedbyVERITAS(withasoftspectrum,Swordyetal. blazars)wepreferentiallyseetheradiationproducedbythespine. Instead,formisalignedsources,asradiogalaxies,wetendtoseethe ⋆ E–mail:[email protected] radiationproducedbythelayer,sinceitslowerbulkLorentzfactor 1 seealsohttp://www.mppmu.mpg.de/∼rwagner/sources impliesthatitsradiationiscollimatedwithinalargersolidangle. 2 F.Tavecchio & G.Ghisellini As in the case of M87, we show that, if observed under a small viewingangle,theSEDof3C66Bwouldresemblethatofatypical BLLacobject,S50716+714,alsorecentlydetectedinTeVbandby MAGIC(Teshimaetal.2008).InSection3wediscussthepossible contributionofthe(stronglyattenuated)TeVemissionof3C66Ato theobservedMAGICspectrum.Hereafterweassumethefollowing cosmologicalparameters:H0 = 70 km s−1 Mpc−1,ΩΛ = 0.7, ΩM =0.3. 2 VHEEMISSIONOF3C66BFROMAMISALIGNED STRUCTUREDJET 2.1 Themodel The spectral energy distribution (SED) of the core of 3C66B is shown in Fig.1. We use the equivalent isotropic luminosities Lν, calculated from the corresponding fluxes Fν with νrLνr = 4πd2LνoFνo (where dL is the luminosity distance) and the fre- quencyν isintherestframeofthesource,relatedtotheobserved r one by νr = (1 +z)νo. The TeV spectrum (red open squares) is taken from Aliu et al. (2008) and it has been corrected (blue opensquares)forthe(small)attenuationusingtheLowSFRmodel of Kneiske et al. (2004) which predicts a low level of the extra- galacticbackground lightclosetowhatispresentlyinferredfrom observations(e.g.Franceschinietal.2008)andindirectarguments (Aharonianetal.2006b,Mazin&Raue2007,Albertetal.2008b). Figure1. SEDofthe coreof3C66B (lower part), represented withthe In the X–rays this radiogalaxy shows a rather peculiar be- equivalent isotropic luminosityasafunctionoftherestframefrequency. haviour,withthespectrumapparently changingfromsofttovery Radio through UV data (green filled triangles) are from Trussoni et al. hard (Trussoni et al. 2003, Balmaverde, Capetti & Grandi 2006, (2003)andreferencestherein.X–raydata(bow-ties)arefromTrussoniet Evansetal.2006). Inparticular, comparingChandra andROSAT al.(2003)(cyanandorange),Balmaverdeetal.(2006)(blue)andEvanset al.(2006)(green).MAGICdata(redopensquares)havebeencorrectedfor observations, Trussonietal.(2003) concludedthattherearehints absorption(blueopensquares)withtheLowSFRmodelofKneiekeetal. thattheX–rayfluxfromthecoreofthesourcedecreasedbyafac- (2004).Thecurvescorrespondtothestructuredjetmodel,consideringthe tor ∼ 4in10 yearswithanimportant softeningof thespectrum. spine(red)andthelayer(blue)emission.Wealsoreport(upperpart)the Thisbehaviour,unusualforaradiogalaxy,isreminiscentofthatof emissionseenbyanobserveralmostalignedwiththejetaxis(θv = 2◦) blazars and could support the idea that the emission comes from with(solid)andwithout(dashed)thecontribution oftheseedphotonsof themisalignedjet.However,notethat,duetothecomplexityofthe thelayer forthescattering byelectrons inthespine. Forcomparison we observed X-ray spectrum, requiring several spectral components, alsoreporthistorical data (taken from NED,Tagliaferri etal. 2003,Fos- a strong conclusion is not possible. Optical-UV data for the core chinietal.2006,Hartmanetal.1999)describingtheSEDoftheBLLac havebeenobtainedwiththeHubbleSpaceTelescope(Chiaberge, S50716+714.Theblueopendiamondindicates theTeVfluxasdetected Celotti&Capetti1999). byMAGIC (Teshima et al. 2008). Theblack dashed line in the TeV re- gionshowstheγ–rayfluxreachingtheobserver,consideringtheabsorption There is large consensus that the radio, the optical-UV and, through theinteraction withthe extragalactic background light estimated possibly, the X-ray emission from the core of FRI radiogalaxies withtheLowSFRmodelofKneiekeetal.(2004)assumingz = 0.31for isduetosynchrotronemissionfromtheinnerjet(Chiabergeetal. theredshift ofS50716+714. The(negligible) emissionfromthelayerat 1999,2002,Hardcastle&Worrall2000,VerdoesKleijnetal.2002, smallanglesisshownbythedottedline. Balmaverdeetal.2006).For3C66Badirectpossibilitycouldthere- fore be that the VHE emission is part of the high-energy inverse Comptoncomponentfromthesameregionsofthejet.However,as Comptonemissionofbothcomponents.Eachcomponentseesthe detailedinTG08,asingle–zoneemissionmodelfailsinreproduc- emissionoftheotheramplifiedbecauseoftherelativespeed:this ingaSEDwithtwoemissionpeakshighlyseparatedinfrequency: externalradiationcontributestothetotalenergydensity,enhancing 3C66B, in fact, has the first peak in the IR and the second peak theemittedinverseCompton radiation. Depending on theparam- probablyclosetoTeVenergies.Thestructuredjetmodel,instead, eters, this “external Compton” (EC) emission can dominate over allowstocorrectlyreproducetheemissionwithparameterssimilar theinternalsynchrotronself–Compton(SSC)component that,es- tothosecommonlyinferredforblazarjets. pecially in TeV blazars, is depressed because scatterings mainly WemodeltheSEDusingthestructuredjetmodelofGTC05 occur in the Klein–Nishina (KN) regime. We refer the reader to and applied to M87 in TG08. Briefly, we assume that the jet has GTC05foramoredetaileddiscussionofthetreatmentusedtocal- ainnerfastcore(spine),withbulkLorentzfactorΓS,surrounded culatetheECterm. by a slower layer, with bulk Lorentz factor ΓL. In both regions, The model is specified by the following parameters: i) the relativisticelectronsemitthroughsynchrotronandinverseComp- spineisassumedtobeacylinderofradiusR,heightH (asmea- S tonmechanisms. Theexistenceofavelocitystructureimpactson sured inthespine frame) and inmotion withbulkLorentz factor theobservedemissionpropertiesofthejet.Specifically,theradia- ΓS;ii)thelayerismodeledasanhollowcylinderwithinternalra- tiveinterplaybetweenthelayerandthespineamplifiestheinverse diusR,external radiusR ,height H (asmeasured intheframe 2 L 3C66B asa TeV radiogalaxy 3 R H Lsyn nae B γmin γb γmax n1 n2 Γ θv cm cm ergs−1 cm−3 G deg. 3C66Bspine 5×1015 5×1015 1041 1.3×103 1.8 1 5×103 6×104 2 4 10 20 3C66Blayer 5×1015 2×1016 1041 1.4 0.8 1 3×106 2×107 1.7 3.2 3 20 M87spine 7.5×1015 3×1015 5.2×1041 140.8 1 600 5×103 1×108 2 3.7 12 18 M87layer 7.5×1015 6×1016 4.0×1038 2.04 0.2 1 6×106 1×109 2 3.7 4 18 Table1.InputparametersofthemodelsforthelayerandthespineshowninFig.1.Allquantities(exceptthebulkLorentzfactorsΓandtheviewingangle θv)aremeasuredintherestframeoftheemittingplasma.TheexternalradiusofthelayerisfixedtothevalueR2=1.2×R.Fordirectcomparison,wealso reporttheparametersusedforM87(highstate,fromTG08).a:densityoftherelativisticelectrons.Notethatthisisnotadirectinputparameter,sinceitis determinedbytheassumedLsyn. ofthelayer)andbulkLorentzfactorΓL.Eachregioncontainstan- electronsandmagneticfieldareclosetoequipartition,whileinthe gled magnetic field with intensity B , B and it is filled by rel- layerthemagneticenergydensityisabouttwoordersofmagnitude S L ativisticelectronsassumedtofollowa(purelyphenomenological) largerthantheelectronenergydensity. smoothed broken power–law distribution extending from γ to min γ andwithindicesn ,n belowandabovethebreakatγ .The max 1 2 b normalisation of this distribution is calculated assuming that the 2.2 3C66BandM87 systemproducesanassumed(bolometric)synchrotronluminosity It is interesting to compare the SED and the parameters of the L (asmeasuredinthelocalframe),whichisaninputparameter syn model obtained for for 3C66B with those of M87 (also reported ofthemodel.AsinGTC05andTG08weassumethatH > H . L S inTable1). Assaidabove,theseedphotonsfortheICscatteringarenotonly TheshapeoftheSEDofthecoreofbothradiogalaxiesinthe thoseproducedlocallyinthespine(layer),butwealsoconsiderthe radioandtheoptical-UVbandsappearsrathersimilar,withapeak photonsproducedinthelayer(spine). intheIRregion.Alsotheluminosities(between1040 ergs−1and In Fig. 1 (lower part) we report the model reproducing the 1041 ergs−1)arecomparable.IntheX-rayband,M87displaysa dataassumingtheemissionfromthespine(red),accountingforthe soft spectrum, close to that of 3C66B as measured by Chandra. datafromtheradiototheoptical–UVbands,andthelayer(blue), However,forM87therearenohintsofvariability,asinthecaseof assumed toemit the VHE radiation. In view of thepossible con- 3C66B. tributionof3C66AtotheobservedMAGICspectrum(seeSect.3), Aremarkabledifference,instead,concernstheimportanceof weassumethattheemissionfromthelayerof3C66Blies(slightly) theVHEemission.WhiletheluminosityofM87and3C66Binra- belowthepointatthelowestenergy.Parametersforthespineand dio,opticalandX–rays(assumedtobeproduced bythespine)is thelayerarereportedinTable1.ToproduceTeVphotons,electrons comparable,theVHEluminosity(fromthelayer)isverydifferent: ofthelayermust haveahighvalueof γ .Consequently, fortyp- b evenifthefluxemittedat150GeViscontaminatedby3C66A(see icalvaluesofthemagneticfieldintensity,thecorresponding syn- alsobelow)theoutputatVHEof3C66Bismorethananorderof chrotronemissionpeaksintheX-rayband,determiningahardX- magnitudelargerthanforM87.Thedifferenceintheluminosityat rayspectrum.TheSSCemissionfromthelayerisnegligible,since TeVenergiestranslatesinthedifferent(comoving)luminositiesfor mthoeshtiogfh–theenesrcgaytteerminigsssiohnapopfetnhedelaeypelyr,ianccthoeunKtiNngrefgoirmthee.Tmheearseufroerde ethrgelsa−y1erfoLrsyMn8u7s.eIdnin3Co6u6rBmothdeell:a1y0e4r1reeqrguisr−es1tfhoers3aCm6e6Bpoawnedr1o0u3t8- MAGICspectrum,isdominatedbytheECcomponent.Onthecon- putofthespine.Alltheotherparametersareinsteadverysimilar. trary,theECemissionfromthespinedoes not contributesignifi- Thevalueofγ ,differentbetweenthetwosources,isphysically cantlytotheemission(attheviewinganglesconsideredhere:see max unimportant, as long as γ ≫ γ . Of course, these values re- thediscussion inSection2.3)andthehigh–energy bumpisdom- max b fertothespecific(probablyhigh)leveloftheemissionof3C66B inated by the SSC process. Since the spine has to reproduce the attheepochoftheobservationsofMAGIC.Lowerluminositiesin optical-UVpeakthecorrespondingvalueofγ islowerthanwhat b theTeVbandarepossible.Indeed,inourscenarioimportantvari- assumedforthelayer. ationsoftheemissionfromthelayerarerequiredtoreproducethe Withtheadoptedparametersandassuming1protonperrela- variationsobservedintheX-rayband. tivisticelectrons(seee.g.Celotti&Ghisellini2008)theestimated energyfluxis4.5×1044ergs−1forthespine(dominatedbypro- tons), and 2.5×1041 erg s−1 for the layer (magnetically domi- 2.3 Pairing3C66BandS50716+714 nated). A value around few 1044 erg s−1 is within the range of energyfluxesestimatedforFRIs(e.g.Bicknell&Begelman1996, OnecanwonderwhatwouldbetheSEDcalculatedbyourmodel Laing&Bridle2002).Thevalueoftheenergyfluxforthespine, foran observer located atasmall viewingangle. Sinceweought largelydominatedbyprotons,dependsontheirnumberdensity,in toobtainaSEDsimilartotheSEDofknownblazars,thisshould turn related to γmin. In our fit we used γmin = 50. Smaller val- be considered as a consistency check for our model and for the ues of γ do not affect theshape of theSEDsand in principle derived parameters. In Fig. 1 we report the predicted SED for a min couldbeacceptable, thoughthederivedenergyfluxwouldlarger. viewingangleof2degreesandcompareittothemulti–frequency InthethespinetheratioofPoyntingfluxtoparticleenergyfluxis observationsoftheBLLacS50716+714attheredshiftz = 0.31 dominated(byafactor∼10)byparticles(coldprotons).Thelayer, (Witzeletal.1988;butpossiblylarger,Sbarufatti,Treves&Falomo instead,appearstobemagneticallydominated, withthePoynting 2005).ThisblazarhasbeenrecentlydetectedintheTeVbandby fluxabouttentimestheparticleenergyflux.Inthespine,relativistic MAGIC (Teshima et al. 2008). Although we do not pretend that 4 F.Tavecchio & G.Ghisellini themodelexactlyreproducesthedata,onecanseethatthetwoare rathersimilar.AsdiscussedinTG08,theconditionthattheSEDat smallanglesresemblesthoseofknownblazarsdictatesthechoice thattheVHEradiationcomesfromthelayer. At small angles, the emission is entirely dominated by the spine,whichischaracterisedbyalargerLorentzfactor.Thedirect emissionfromthelayer(dottedline)providesanegligiblecontri- butiontothetotalobservedemission.Animportantpointtonoteis theratherhardspectrumpredictedintheGeVband.Theemission inthisspectralbandismainlyduetotheECcomponentofthespine Comptonizingtheseedphotonsprovidedbythelayer.Forcompar- ison, the SSC component of the spine is reported by the dashed orangeline.Asalreadynoted,theECcomponentfromthespineis notprominentatlargerangles(notethedifferentshapeofthehigh energycomponentofthespineforθv =20deg).Thereasonisthat, contrarytothecaseofthelayer,theECbeamingconeofthespine isnarrowerthanthecorrespondingsynchrotronandSSCcones,an effect originally pointed out by Dermer (1995) in discussing the external inverse Compton emission in blazars. This effect is due tothefactthattheseedphotonsproducedinthelayerareseen,in the spine frame, as coming from the forward direction. The pat- Figure 2. SED of 3C66B as in Fig. 1 and of 3C66A. Data for 3C66A ternofthescatteredradiation,eveninthespineframe,istherefore (bluesquaresandbow-ties)arefromNED(radio,optical),Impey&Neuge- anisotropic: morepower isproduced indirectionsclosetothejet bauer(1988)(IRAS),Donatoetal.(2001)(ROSAT),Donatoetal.(2005) axis.Whentransformingintheobserverframe,thistranslatesinto (BeppoSAX),Foschinietal.(2006)(XMM–Newton),Hartmanetal.(1999) aradiationpatternthatismoreenhancedalongthevelocity(andjet (EGRET).Thesquareincyanreportstheaverageoptical(R–band)fluxdur- ingtheobservationsofMAGIC.TheSEDof3C66Ahasbeenreproduced axis)directionthantheoneusuallyderivedwhendealingwithra- withthe model forthe blazar emission described inCelotti &Ghisellini diationthatisisotropicinthecomovingframe(seeFig.2ofTG08 (2008).Thesolidlineisthespectrumemittedatthesource,whilethedashed thatillustratesthispoint). line reports the γ–ray emission reaching the Earth after being absorbed The presence of the layer is thus important even when the bytheinteractionwiththeextragalacticbackgroundlight(weassumedthe source is observed at small viewing angles and the entire radia- LowSFRmodelofKneiskeetal.2004andaredshiftofz = 0.444).The tion is provided by the spine. It enhances the observed radiation measuredVHEspectrumofMAGIC(cyancircles)isreproducedasthesum producedbythespineathighenergies(GeVband),justwherethe oftheemissionfrombothsources,3C66Abeingdominantbelow200GeV, suppressionoftheSSCfluxduetoKNeffectsstartstobeimpor- and3C66Baccountingfortheemissionabove200GeV.Thegreylinere- tant.Thecontributionoftheseedphotonsofthelayerisimportant portstheFermisensitivity(for1yearand5σsignificance). whenthelayerluminosityislarge,asinthecaseof3C66B.Thisis thereasonwhy,inthecaseofM87pairedwithBLLac,itwasnot datawiththemodel,thecurveoftheintrinsicemission(solidline) noticeable:thelayerluminosity,inthatcase,wasmuchsmaller. hasbeenabsorbedwiththeLowSFRmodelofKneiskeetal.(2004) (dashedline).Duetothesevereabsorption, thefluxfrom3C66A above100GeVisstronglydepressedandonly3C66Bcontributes 3 THEVHESPECTRAOF3C66A/B totheobservedspectrum.However,3C66Acouldentirelyaccount forthefluxmeasuredatthelowestenergies.Inthiscase,thecon- Wecannotexcludethatthenearby3C66Acontributestothetotal tributionof3C66Aalleviatestherequirementontheluminosityof emissionmeasuredbyMAGIC,alsoinviewoftherecentdetection thelayerof3C66Bbyafactorof3(asalreadynotedthelineforour byVERITAS(Swordyetal.2008).However,duetothe(uncertain) modelof3C66BstaysbelowthefirstbinoftheMAGICspectrum). highredhiftofthisblazar,asizeablecontributiontothemeasured Ofcourse,sincenosimultaneousdata(especiallyathighen- spectrumisexpectedonlyatthelowestenergies,∼100GeV. ergy)areavailablefor3C66A,ourmodeloftheSEDissomewhat TheSEDsof3C66AandBarecomparedinFig.2.For3C66A arbitrary.Inparticular, despitethestrong absorption, adetectable weusedhistoricaldata(seefigurecaptionforreferences),together emissionintheTeVbandisexpectedinstatesofhighactivityof with the R-band flux averaged over the period of observation of thesource. Infact,therecentdetectionbyVERITAS,withaflux MAGIC(Aliuetal.2008).Unfortunatelytherearenoobservations above10−11ergcm−2s−1(Swordyetal.2008),hasbeenobtained inthe GeV band of 3C66A around theepoch of the MAGIC ob- duringaperiodofratherintenseγ–rayactivity,detectedbyFermi servations. Therefore, inour model weassume the average spec- (Tostietal.2008). trum(bow-tie)reportedinthe3rdEGRETcatalogue(Hartmanet al.1999). Wequantifythepossiblecontributionof3C66Atothespec- trummeasuredbyMAGICmodelingtheSED,withthemodelfor 4 DISCUSSION blazarsdescribedinCelotti&Ghisellini(2008)2.Tocomparethe ThepossibledetectionofVHEphotonsfromtheFRIradiogalaxy 3C66B (at a distance of 85.5 Mpc) suggests that M87 is not an 2 Weuse the following parameters: R = 1.5×1016 cm, ∆R = R, isolatedcasebut,instead,radiogalaxiescouldrepresentanewclass L′ = 3.8×1042 ergs−1,B = 1.4G,γmin = 1,γb = 4.5×103, of extragalactic TeV sources. The fact that radiogalaxies can be γmax =105,n2 =3.6,Γ=18,θv =3deg.SeeCelottiandGhisellini relativelyluminousγ–raysourceswasproposedbyGTC05based (2008)forafulldescriptionoftheseparameters. on the idea of the existence of structured jets. According to this 3C66B asa TeV radiogalaxy 5 scenario, in sources with misaligned jets, the emission from the ACKNOWLEDGEMENTS fastregionsofthejetisdeboostedwhiletheslowerlayercanstill WethankL.Maraschi,D.Mazin,M.PersicandR.Wagnerforuse- provideanimportantcontributionbecauseofthebroaderemission ful comments and M. Chiaberge and E. Trussoni for discussions. cone. Wearegratefultothereferee,G.Bicknell,fortheconstructiveand The best VHEcandidates aretheradiogalaxies in whichthe usefulreport.ThisresearchhasmadeuseoftheNASA/IPACEx- jet axis liesat a relatively small angle with respect to the line of tragalacticDatabase(NED)whichisoperatedbytheJetPropulsion sight.M87,withananglebetween30and20degreesisprobably Laboratory,CaliforniaInstituteofTechnology,undercontractwith oneofthebestcases.For3C66Bweassumeinourmodelasimilar theNationalAeronauticsandSpaceAdministration.Thisworkwas angle,20degrees.Forlargeranglesthedeboostingbecomesmore partlyfinanciallysupportedbya2007COFIN-MiURgrant. importantandthusthepowerrequirementgrowssubstantially.The consequent increaseoftheintrinsicluminosityofthespineinthe optical-IRbandresultsinalargeopticaldepthforthepairproduc- tion process for VHE photons within the layer. Radio VLBI ob- REFERENCES servations (Giovannini et al. 2001) show a complex structure for 3C66B, with the possible presence of a counter-jet at small dis- AcciariV.A.,etal.,2008,ApJ,679,397 tances, disappearing at larger distances. Giovannini et al. (2001) AharonianF.,BuckleyJ.,KifuneT.,SinnisG.,2008,RPPh,71,096901 AharonianF.,etal.,2006a,Sci,314,1424 interpreted this behavior as the evidence that the jet accelerates, AharonianF.,etal.,2006b,Natur,440,1018 fromβ = 0.6 at 1.5mas (linear deprojected distance of about 1 AharonianF.,etal.,2003,A&A,403,L1 parsec)toβ = 0.99at4.5masfromthecoreandajetinclination AlbertJ.,etal.,2008a,ApJ,685,L23 ofabout45degrees.However,thisinterpretationisnotunique,the AlbertJ.,etal.,2008b,Sci,320,1752 sameeffectbeingproducedbyajetwithconstantspeed,β=0.83, AliuE.,etal.,2008,ApJ,submitted(arXiv:0810.4712) varyingtheangle(ofboththejetandthecounter-jet)fromθ =60 BalmaverdeB.,CapettiA.,GrandiP.,2006,A&A,451,35 degtoθ = 30deg.Moreover,thisconclusionisbasedontheim- BicknellG.V.,BegelmanM.C.,1996,ApJ,467,597 plicitassumptionthatthejetsareexactlysymmetric.Localvaria- CelottiA.,GhiselliniG.,2008,MNRAS,385,283 tions of the emissivity in one of the two jets could easily mimic CheungC.C.,HarrisD.E.,StawarzŁ.,2007,ApJ,663,L65 suchaphenomenology.Giventheseuncertaintiesweconsiderthat Chiaberge M., Macchetto F. D., Sparks W. B., Capetti A., Allen M. G., θ=20degreesfortheinnerjet(atdistancesof0.1pc)ispossible. MartelA.R.,2002,ApJ,571,247 ChiabergeM.,CapettiA.,CelottiA.,1999,A&A,349,77 AsextensivelydiscussedinTG08,themodel parametersare deAngelisA.,MansuttiO.,PersicM.,2008,NCimR,31,187 notcompletelyconstrainedbythedata.Awholefamilyofsolutions DermerC.D.,1995,ApJ,446,L63 is allowed. However, the requirement that the parameters of the DonatoD.,SambrunaR.M.,GliozziM.,2005,A&A,433,1163 spine,anditsSEDatsmallangles,aresimilartothoseofblazars DonatoD.,GhiselliniG.,TagliaferriG.,FossatiG.,2001,A&A,375,739 EvansD.A.,WorrallD.M.,HardcastleM.J.,KraftR.P.,BirkinshawM., allowsustopartlyconstraintheparameters. 2006,ApJ,642,96 In our model we implicitly assume that the region emitting FinkeJ.D.,ShieldsJ.C.,Bo¨ttcherM.,BasuS.,2008,A&A,477,513 γ-rays from 3C66B is, as for M87, the inner jet. However, since FoschiniL.,etal.,2006,A&A,453,829 FranceschiniA.,RodighieroG.,VaccariM.,2008,A&A,487,837 novariations havebeen detected, thealternativemodelsinvoking GeorganopoulosM.,PerlmanE.S.,KazanasD.,2005,ApJ,634,L33 emission from more distant regions along the jet (e.g. Stawarz, GhiselliniG.,TavecchioF.,ChiabergeM.,2005,A&A,432,401(GTC05) Sikora & Ostrowski 2003) cannot be excluded. Further observa- GiovanniniG.,CottonW.D.,FerettiL.,LaraL.,VenturiT.,2001,ApJ,552, tionsareneededtoclarifythispoint. 508 HardcastleM.J.,WorrallD.M.,2000,MNRAS,314,359 Animportantpointtonoteistheimportantcontributionofthe HartmanR.C.,etal.,1999,ApJS,123,79 ECcomponenttothespineemissionatsmallangles.Thecontribu- ImpeyC.D.,NeugebauerG.,1988,AJ,95,30 tionisparticularrelevantabovetheGeVband,determiningahard KneiskeT.M.,BretzT.,MannheimK.,HartmannD.H.,2004,A&A,413, spectrumuptotheVHEband.InthepreviousmodelforM87this 807 component wasnot soprominent due tothelowerintrinsiclumi- LaingR.A.,BridleA.H.,2002,MNRAS,336,1161 nosityrequiredforthelayer.InBLLacsthiscomponentcouldplay LenainJ.-P.,BoissonC.,SolH.,Katarzyn´skiK.,2008,A&A,478,111 animportantroleindeterminingthehigh-energyγ-rayspectrum. NeronovA.,AharonianF.A.,2007,ApJ,671,85 In particular, since SSC dominates below and the EC above the NeshporY.I.,StepanyanA.A.,KalekinO.P.,FominV.P.,ChalenkoN.N., GeV band, variability of the layer emission could determine dif- ShitovV.G.,1998,AstL,24,134 ferent variability of the emission in the two bands. Simultaneous MazinD.,RaueM.,2007,A&A,471,439 MillerJ.S.,FrenchH.B.,HawleyS.A.,1978,inPittsburghConferenceon observationswithFermiandCherenkovtelescopescouldtestthis BLLacObjects,ed.A.M.Wolfe,176 possibility. SbarufattiB.,TrevesA.,FalomoR.,2005,ApJ,635,173 Another important point to mention is that, due to its lim- StawarzŁ.,SikoraM.,OstrowskiM.,2003,ApJ,597,186 itedangularresolution,Fermicannotdistinguishbetweenthetwo StepanyanA.A.,NeshporY.I.,AndreevaN.A.,KalekinO.R.,Zhogolev N.A.,FominV.P.,ShitovV.G.,2002,ARep,46,634 sources, 3C66A and B. However, the MeV-GeV band should be SwordyS.etal.,2008,TheAstronomer’sTelegram,1753 largelydominatedby3C66A,witharathersmallcontributionfrom TagliaferriG.,etal.,2003,A&A,400,477 the radiogalaxy only at the largest energies covered by Fermi. TavecchioF.,GhiselliniG.,2008,MNRAS,385,L98(TG08) Above100GeV,however,thesituationreverses,andthustheemis- TeshimaM.etal.2008,TheAstronomer’sTelegram,1500 sioncanbedominatedby3C66Bwhen3C66Aisatlowlevel.In TostiG.etal.2008,TheAstronomer’sTelegram,1754 theseoccasions,Cherenkovtelescopes,characterizedbyagoodan- TrussoniE.,CapettiA.,CelottiA.,ChiabergeM.,FerettiL.,2003,A&A, gularresolution,couldpossiblysimultaneouslydetectbothsources. 403,889 6 F.Tavecchio & G.Ghisellini VerdoesKleijnG.A.,BaumS.A.,deZeeuwP.T.,O’DeaC.P.,2002,AJ, 123,1334 WitzelA.,SchalinskiC.J.,JohnstonK.J.,BiermannP.L.,KrichbaumT.P., HummelC.A.,EckartA.,1988,A&A,206,245