ebook img

3. Okay, A.I., İşintek, İ., Altıner, D., Özkan-Altıner, S., Okay, N., 2012, An olistostrome PDF

14 Pages·2012·3.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 3. Okay, A.I., İşintek, İ., Altıner, D., Özkan-Altıner, S., Okay, N., 2012, An olistostrome

Author's personal copy Tectonophysics568–569(2012)282–295 ContentslistsavailableatSciVerseScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto An olistostrome–mélange belt formed along a suture: Bornova Flysch zone, western Turkey Aral I. Okay a,⁎, İsmail İşintek b, Demir Altıner c, Sevinç Özkan-Altıner c, Nilgün Okay d aEurasiaInstituteofEarthSciencesandDepartmentofGeology,FacultyofMines,IstanbulTechnicalUniversity,Maslak34469,Istanbul,Turkey bDokuzEylülUniversity,FacultyofEngineering,DepartmentofGeology,Tınaztepe,Buca35160İzmir,Turkey cMiddleEastTechnicalUniversity(METU),DepartmentofGeologicalEngineering,TR-06531Ankara dDepartmentofGeology,FacultyofMines,IstanbulTechnicalUniversity,Maslak34469,Istanbul,Turkey a r t i c l e i n f o a b s t r a c t Articlehistory: TheBornovaFlyschZone(BFZ)inwesternTurkeyisaregionalolistostrome–mélangebeltlocatedbetween Received2March2011 theİzmir–AnkaraTethyansutureinnorthwestandtheMenderesMassifinthesoutheast.TheBFZconsists Receivedinrevisedform31December2011 mostlyoftectonizedgravitymassflows.TheblocksareMesozoiclimestoneandophiolite,whichareenclosed Accepted7January2012 inCretaceous–Paleoceneshearedsandstoneandshale.Thelimestoneblocksareoftwotypes.Thefirsttype Availableonline31January2012 consistsofLateTriassictoCretaceousshallowmarinecarbonates.ThesecondtypehasanUpperTriassicshal- lowmarinesectionoverlainbyJurassictoCretaceouspelagiclimestones.Asemi-intactpartoftheplatform Keywords: occursintheKaraburunpeninsulaandontheislandofChios.TheophioliticblocksintheBFZincludeultra- Olistostrome Mélange maficrock,gabbro,basaltandradiolarianchertofMiddleTriassictoCretaceousinage.Theformationofthe Turkey BFZoverlapswiththeCretaceoussubductionandHP/LTmetamorphismofthenorthernpassivecontinental BornovaFlyschZone marginoftheAnatolide–TaurideBlock.Thissubductionzonewasboundedinthewestbyastrike–sliptear Stratigraphy fault. The BFZ formed in anarrow basin between this tear fault and theTethyan ocean.The mass flows Mesozoic camefromthesoutheastfromtheoverridingophioliteandaccretionarycomplex,andfromthenorthwest fromtheupliftedsegmentsoftheplatformmargin.ThismodelprovidesanexplanationaswhytheBFZis unmetamorphosed,whereastheequivalentstrataintheMenderesMassifweremetamorphosedatdepths ofover20km.Italsoexplainstheprominenceofgravity flowsandthesouthwardyoungingintheBFZ, andfortheapparentlyanomalousobservationthat,althoughtheTethyanoceanlaytothenorthwest,the ophioliticblocksaremorecommononthesoutheasternpartoftheBFZ.Regionsawayfromthetearfault, suchastheKaraburunpeninsula,wereleastaffectedbysubsidenceanddeformationduringtheCretaceous andPaleocene. ©2012ElsevierB.V.Allrightsreserved. 1.Introduction environments, even passive continental margins, have been sug- gested as regions of mélange and olistostrome formation (cf. Festa Definition of mélanges and olistostromes and their distinction etal.,2010). Here,wedescribearegionalbeltofolistostromesand havebeensubjectofdiscussions(e.g.,Festaetal.,2010;Hsü,1968, mélanges in northwest Turkey, provide new biostratigraphic data 1974; Raymond, 1984; Şengör, 2003; Silver and Beutner, 1980). fromtheblocks,andinterprettheirorigins.Wearguethattheolistos- Bothrockbodiesconsistofblocksinafragmentedfinergrainedma- tromesandmélangesintheBornovaFlyschZonehavebeendeposit- trixandarecharacterizedbyalackofstratalcontinuity.Acommon ed and deformed in a basin adjacent to a southward propagating view, adopted here, is that olistostromes are sedimentary deposits strike–sliptearfault,whichconstitutedthenorthwesternboundary produced by gravity mass flows, whereas sedimentary processes, ofacontinentalsubductionzone. faulting and tectonic shearing have a role in the formation of TheBornovaFlyschZoneislocatedinwesternTurkeysoutheastof mélanges. Especially the presence of a shear fabric in the matrix is theTethyanİzmir–Ankarasuture(Fig.1).Itisaca.60kmwideand commonlytaken as a characteristic feature of a mélange. The most ca.225kmlongbeltofmélange–olistostromeconsistingofdeformed commontectonicenvironmentfortheformationofthesefragmented Maastrichtian–Paleocene greywacke and shale with Mesozoic lime- and mixed rock bodies are subduction zones, but other tectonic stone and ophiolite blocks. The northwestern parts of the Bornova Flysch Zone are dominated by Mesozoic limestone blocks and the southeastern side by ophiolitic blocks (Fig. 2). The ophiolitic belt ⁎ Correspondingauthor.Tel.:+902122856208;fax:+902122856210. wasincludedbyBrinkmann(1966)andBrinkmannetal.(1972)in E-mailaddresses:[email protected](A.I.Okay),[email protected](İ.İşintek), [email protected](D.Altıner),[email protected](S.Özkan-Altıner), the İzmir–Ankara Zone, whereas the carbonate-dominated north- [email protected](N.Okay). western part was regarded as part of the Pontides. In 1993 it was 0040-1951/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved. doi:10.1016/j.tecto.2012.01.007 Author's personal copy A.I.Okayetal./Tectonophysics568–569(2012)282–295 283 Fig.1.TectonicmapoftheAegeanregionshowingthesettingoftheBornovaFlyschZone. shown that this sedimentary belt extending from Balıkesir south- The orientation of the fabric (minor faults, shear zones, fracture west to the Karaburun Peninsula, attributed previously to the cleavage,cleavage,orientationoftheblocks,etc.)isvariablewithin Pontides (e.g., Akyürek and Soysal, 1981; Brinkmann, 1966, 1972; anoutcropandbetweenoutcrops,andnoattemptwasmadetosys- Brinkmannetal.,1970;Ketin,1966;ŞengörandYılmaz,1981),con- tematicallymeasuretheorientationofthefabricelements.Someof tainstypicalTaurideMesozoicsequences,andthesedimentarybelt thefabricwasproducedduringthegravitationalflow,especiallyat along with the ophiolitic zone was named as the Bornova Flysch thebaseoftheolistostromes(Fig.3AandC).However,shearingof Zone(OkayandSiyako,1993;Okayetal.,1996;Moixetal.,2008). beddedsandstoneswithnoevidenceofgravitationalflow,indicates InparticulartheTauridesequencesarecharacterizedbycarbonate semi-brittle post-depositional deformation. In many outcrops the depositionintheMiddleTriassictoLateCretaceousinterval,where- superpositionofsedimentaryandtectonicprocessesmakesthedis- astheSakaryaZoneofthePontideshasastronglydeformedUpper tinction between olistostromes and mélanges highly problematic. Triassicvolcano-sedimentarybasementunconformablyoverlainby TheBornovaFlyschZoneconsistsofmélangeswithnoevidencefor LowerJurassiccontinentalclasticrocks.Theextensiveandcoherent sedimentary processes in their genesis, olistostromes, and tecto- MesozoicsequencesontheKaraburunPeninsulaandontheadjacent nizedolistostromes. islandofChioshavealsoTaurideaffinities.TheBornovaFlyschZone The sandstones in the Bornova Flysch Zone are medium to forms a peculiar mélange–olistostrome belt between the İzmir– thickly bedded, commonly laminated greywackes with a greenish Ankara suture and the Menderes Massif, which shows Eocene re- gray, black color in fresh outcrops; they are intercalated with gionalmetamorphism(Fig.2). greenish gray laminated shales. In weathered outcrops the sand- stones andshales have a typical brownish yellow color. There are 2.ThematrixoftheBornovaFlyschZone no paleontological ages from the sandstone-shale matrix of the Bornova Flysch Zone. However, some parts of the Bornova Flysch IntheBornovaFlyschZoneblocksofvarioussizesandlithologies Zone, especially in the İzmir–Manisa region, include calcareous are surrounded by a clastic matrix of sandstone and shale. On the shales with thin pelagic limestone intercalations. These yielded mesoscopicscalethematrixrangesfromessentiallyundeformedto pelagicforaminiferaofMiddle-LateMaastrichtian–Danian(Kocaçay acrudefoliationinducedbygravitationalflow(Fig.3A)totectonical- region,locality1inFig.2,Erdoğan,1990a;İşinteketal.,2007)and ly sheared sandstones and shales with a penetrative scaly fabric Middle-Late Maastrichtian ages (Kocaçay and Spil Dağı regions, (Fig.3B).However,eveninapparentlyundeformedmatrix,thebed- localities1and6inFig.2,Erdoğan,1990a;İşinteketal.,2007)and ding in the sandstones cannot be traced along or across strike for nannofossilsofEarlyPaleoceneage(Işıklar,locality4inFig.2,Özer morethan10m;shearinghasdestroyedmostsignsofthebedding. andİrtem,1982). Author's personal copy 284 A.I.Okayetal./Tectonophysics568–569(2012)282–295 Fig.2.GeologicalmapoftheBornovaFlyschZone(compiledfromKonak,2002;KonakandŞenel,2002).ThenumbersrefertothestratigraphicsectionsinFigs.4and5. The youngest blocks in the Bornova Flysch Zone are usually ofsimilarsizeasthelimestoneclastsintheconglomeratearephyl- TuronianinthenortheastandCampanianinthesouthwest.However, lite, amphibolite, quartz, red and green chert, quartzite and sand- in one locality close to İzmir (Kocaçay, locality 1 in Figs. 2 and 4), stone(İşinteketal.,2007;Konuk,1977). Paleoceneshallowmarinelimestoneclastsoccurinachannelfillcon- Anupperlimittotheageofthematrix,aswellastothepenetra- glomerate(Erdoğan,1990a;İşinteketal.,2007;Konuk,1977).These tivesemi-brittledeformationoftheBornovaFlyschZoneisgivenby are 1 to 20m across, grey, biohermal limestones with abundant theundeformedLowerEocene(Cuisian)shallowmarinelimestones, corals,sponges,redalgae,dasycladeaalgaeandforaminifera.Forami- whichlieunconformablyoverthematrixandblocksoftheBornova niferaandalgaefromtwelvesamplesoutoftenblocksgiveaMiddle FlyschZonenortheastofAkhisar(Fig.2,Akdeniz,1980).Hencepale- to Late Paleocene age based on Lockhartia? sp., Miscellanea sp., ontologicaldataconstraintheageofdepositionanddeformationof Cymopoliamayaense,Broeckellabelgica,Neomerissp.,Oreoporellacf. theclasticmatrixtoMaastrichtian–Paleocene.Thestratigraphicbase malaviae,Acroporella?chiapasis,Zettelinaradoicicae.Theotherclasts oftheflyschisnotobservedinthemainbodyoftheBornovaFlysch Author's personal copy A.I.Okayetal./Tectonophysics568–569(2012)282–295 285 Fig.3.FieldphotosoftheBornovaFlyschZone.A.crudefoliationinthedebrisflowinducedbygravitationalflow.B.Tectonicallydeformedsandstone-shalematrixwithascaly fabric.C.Olistostromehorizonsdippingsteeplytotheleft.D.Ablockmorethan10-m-acrossintheolistostromes. Zone,onlyintheKaraburunPeninsulaMaastrichtiansiliciclastictur- limestoneslie unconformablyoveroldercarbonatesand commonly bidites lie stratigraphically on Campanian to Maastrichtian pelagic ontheTriassiclimestones.Withinthiscommonframeworktheblocks limestones(seebelow). can be divided into two types, called here as the platform and platform-margin(Figs.4and5). 3.BlocksintheBornovaFlyschZone 3.1.1.Platform-typelimestoneblocks TheclastsintheBornovaFlyschZonerangefromgrainstoblocks Intheplatform-typeblocks,theshallowmarinecarbonatedeposi- measuringseveralkilometersormore.Thereisevidenceinthefield tion continues from the Triassic into the Cretaceous with gaps in thatthesmallerclasts,uptoaseveralmetersinsize,aresedimentary. thestratigraphicsequence.Theseblocksarerestrictedtotheİzmir– They occur as angular clasts in a sandy silty matrix in very poorly ManisaregionclosetotheKaraburunpeninsulaandeastofAkhisar sorted mass flows (Fig. 3C). The observed thickness of the mass (localities1,3,4,5and6inFig.2,forthegeographiccoordinatesof flowsrangesfromafewmeterstotensofmeters.Forlargerblocks, the measured sections see Table 1 and for characteristic fossil taxa thecontacts between theblock and the sandymatrixare generally Fig. 6). The youngest ages from the platform carbonates of the sheared; this is probably due to post-depositional deformation, platform-type blocks are Cenomanian–Turonian in the Naldöken whichwasfocusedalongsuchcontacts(Fig.3D).Althoughthereare andKemalpaşaareas(loc.3and5inFig.2)andTuronian–Coniacian sandstoneblocks,derivedfromthefragmentationofthecompetent in the Işıklar area (loc. 4, Fig. 4, Özer and İrtem, 1982; Erdoğan, sandstonebeds,mostblocksintheBornovaFlyschZoneareexotic, 1990a;İşinteketal.,2007).Pelagicredmarlsandmicriticlimestones and are essentially of two types; limestone and ophiolite; these of LateCretaceous age lie unconformably overJurassic–Lower Creta- typesaregenerallynotmixed;thelimestoneblocksaredominantin ceouslimestonesordirectlyovertheTriassiccarbonates.Thebaseof thenorthwestandtheophioliticblocksinthesoutheast.Theageof the red pelagic limestones is Coniacian (?)–Early Campanian in the the blocks range from Middle Triassic to Late Cretaceous, and are platform-type blocks and the youngest ages are Early Maastrichtian olderthanthematrix. (PoissonandŞahinci,1988;Erdoğan,1990a;Figs.4and6). 3.1.Limestoneblocks 3.1.2.Platform-margintypelimestoneblocks By far the most common clasts in the Bornova Flysch Zone are Intheplatform-margin-typeblockstheJurassic–LowerCretaceous Mesozoiclimestones,whichrangeinsizefromafewcentimetersto ischaracterizedbyacondensedpelagicmarinesequenceofpelagic severaltensofkilometers.Inthekilometer-sizeblocks,itisdifficult limestone and radiolarian chert with a total thickness of less than toascertainwhetheroneisdealingwithasingleblockorseveraljux- 50m(Fig.5).TheyareknownonlyfromnorthofManisa.Thecon- taposed blocks. Detailed biostratigraphic studies have been carried densed series usually starts with Middle or Upper Jurassic pelagic out in a large number of limestoneblocks(Erdoğan, 1990a;İşintek limestones(Fig.6),whichrestontheUpperTriassicshallowmarine etal.,2007;OkayandAltıner,2007;OkayandSiyako,1993;Poisson carbonates. In the Urbut section, the Jurassic–Lower Cretaceous se- and Şahinci, 1988; Şahinci, 1976). Their common stratigraphic fea- quence is only 19 meters thick but includes Tithonian, Berriasian, turesare:a)aLateTriassictoCretaceousagerange,b)LateTriassic Valanginian and Albian stages as determined by the foraminifera is represented by thickly bedded to massive shallow marine lime- fauna(Fig.5,OkayandAltıner,2007).Theabsenceofsomeinterven- stones.VolumetricallytheUpperTriassiclimestonesmakeupmore ingLowerCretaceousstages(e.g.,Hauterivian,BarremianandAptian) than 80% of the carbonate blocks, c) Cretaceous red pelagic couldrepresentarealgaporcouldbeduetolackofsampling. Author's personal copy 286 A.I.Okayetal./Tectonophysics568–569(2012)282–295 Fig.4.StratigraphyoftheKaraburunpeninsulaandplatform-typeblocksfromtheBornovaFlyschZone.Datasources:Karaburun(Erdoğanetal.,1990;İşintek,2002),1.Kocaçay (Erdoğan,1990a;İşinteketal.,2007),2.Eğridere(İşinteketal.,2007),3.Naldöken(Erdoğan,1990a;İşinteketal.,2007),4.Işıklar(Özerandİrtem,1982),5.Kemalpaşa(Poissonand Şahinci,1988),6.SpilDağı(Erdoğan,1990a).ThenumbersarekeyedtothemapinFig.2.ForgeographiccoordinatesofthemeasuredsectionsseeTable1. The Triassic–Lower Cretaceous carbonates are unconformably partofthe Bornova FlyschZone.The oldestradiolaria agesfrom the overlainbyredpelagiclimestones.IntheUrbutsection,Turonianpe- cherts are Middle Triassic (Ladinian–Carnian) and the ages range lagic limestones contain several meters large Upper Triassic lime- up to the Cenomanian with an apparent gap from Late Triassic stone olistoliths, showing that the disintegration of the carbonate (Norian) to Early Jurassic (Fig. 7, Tekin and Göncüoğlu, 2007, depositionalsystemstartedalreadyintheTuronianinthenortheast, 2009).Thegeochemistryoftheassociatedbasaltsinthemélangeis whereasplatformcarbonatedepositionwascontinuingatthistime indicativeforthemid-ocean-ridgeandsupra-subductionzonetype inthesouthwest(OkayandAltıner,2007).Intheplatform-margin- tholeiites, and ocean island type alkali basalts (Aldanmaz et al., type blocks, the age of the red pelagic limestones is also older 2008).Thestratigraphicandgeochemicalfeaturesoftheophiolite (Aptian-CenomaniantoTuronian,Fig.6)thanthatintheplatform- and radiolarite blocks suggest that they were derived from a type blocks (Coniacian-Maastrichtian) again indicating a general sediment-starvedoceanicaccretionarycomplex.Agesfromtheradi- diachronous collapse of the carbonate depositional system with olarianchertsindicatethattheİzmir–Ankaraoceanhadanagerange younging towards the southwest.Thisalso implies thatthe age of fromatleastMiddleTriassictoCretaceous(TekinandGöncüoğlu, theflyschmatrixyoungsfromnortheasttosouthwest. 2007). 3.2.Ophioliteandradiolarianchertblocks 4.KaraburunandChiossequence TheophioliticblocksintheBornovaFlyschZoneincludepartially The thick and extensive Paleozoic-Mesozoic sequences in the ortotallyserpentinitizedperidotite,gabbro,diabaseandbasalt.They KaraburunPeninsulaandontheadjacentislandofChiosdifferfrom rangeinsizefromafewmeterstoseveralkilometers.Theproportion theblocksintheBornovaFlyschZonemainlybytheirsizeandtheir oftheophioliticblocksincreasessoutheastwardsattheexpenseof relativestratigraphiccoherence.TheKaraburun–Chiosseriescanbe limestone blocks, and in Sındırgı region the Bornova Flysch Zone stratigraphically divided into three parts; the lowest part is a Late consist in places of an ophiolitic mélange (Tekin and Göncüoğlu, Paleozoic mélange withSilurian,DevonianandCarboniferousblocks 2007,2009;Uz,1990). (ÇakmakoğluandBilgin,2006;Grovesetal.,2003;Kozur,1997,1998; Redradiolarianribboncherts,oftenintercalatedwithmudstones RobertsonandPickett,2000;Stampflietal.,2003;Zanchietal.,2003), andshales,andassociatedwithbasaltsarecommoninthesoutheastern which is unconformably overlain by an over 2000m thick, Author's personal copy A.I.Okayetal./Tectonophysics568–569(2012)282–295 287 NN NN NN NN heterogeneous,LowertoMiddleTriassicsequenceofpelagiccherty 1132 3642 1034 7500 limestone, radiolarian chert, mafic lava, tuff, sandstone and mud- 71 51 63 75 5151 6868 1919 3535 stone (Besenecker et al., 1968; Erdoğan et al., 1990; Jacobshagen, 52 22 33 33 –4–4 –4–4 –4–4 –4–4 1972). This series is overlain by a 2320-m-thick shallow-marine, 93E87E 96E75E 81E53E 75E25E massive to thickly bedded sequence of limestone and dolomite, 71 80 28 14 1719 3334 5150 6969 Middle Triassic to Cretaceous in age (Brinkmann et al., 1972; 55 55 55 55 00 00 00 00 Erdoğan et al., 1990; İşintek, 2002; Masse & İşintek, 2000). The B:F: B:F: B:F: B:F: platform-typeblocksintheBornovaFlyschZonearederivedfromthis part of the sequence. It is probable that pre-Middle Triassic parts of ht. theKaraburun–ChiossequencearealsopresentintheBornovaFlysch şıIklar –Cenom.Campan. ğSpilda–Cenom.Maastric Evkaftepe–NorianCenom. Gelenbe–NorianEocene 5S. mctbİşiouoiinntdnTttsdieh(unlkFeecui,hge2AM.bs0n4leu0oi,ss0pcBoik;awrzsniİonaşwirik(cndomMtueciainlakddntr,donbb2loeet0ehnt0dTea2iarftl)fiAie.a.,clsbT1upshi9lilatcae7n)tt2ofMwo;sdhriEidimtarsdhdltliloonemoğwgfTaaurnjiKmoisahaersartbsfraraiirbocnleu–.me,aCr1kulrt9sihenm9tiena0ebmc;sseetMeagootdinuarniissemxsss.iee,nwnaatetinntarhdd-- 3 ne val is represented by carbonates except some red sandstone –5681E4257948N–6230E4258473N–2304E4258516N–2756E4258582N –0881E4272711N–1327E4273232N –8681E4324903N–7718E4324333N mandlieinthezo iaJbanurtaerteueaxsrscelsiaatice.cytei1laoer7nnsv0deii0nlssAm.5tlThb0hie0taehnLmitachctk(aei,cErkTbrandronioenadsğsassataienorcse.feTbttshhyeaeepla.Ja,Mupr1raiaa9dtrs9edasd0llilec;e–flİTrLşourioinmnawtsceesoktirnhc,C–fe2oLr0reiom0atvas2iesctir)eycl.oymcTuinahsargebrckaoAUernlbpdbaopitbaneenysr- B:052F:052B:052F:052 B:053F:053 B:055F:055 8datu ccaornbgolonmateersasthe,oswiltsatnonuepawnadrdmduedesptoennein(gFicgh.4a)ra.Tctheirswanadsfaorleloowveedrlbaiynubpy- 97 lift, deformation and erosion in the Cenomanian–Santonian interval 1 n beforethe deposition oftheUpper Cretaceous series,asshown by a Naldöken –LiassicCenom. –BarremianTuron. Keçiliköy–NorianTuron. ğEmirolu–NorianTuron. TM)ontheEurope İtfclişohemireonmeutoessabtk.bosSleenyitremvoaainlbl.ta,liroo2rocn0csk0tktsr7hsa;aitrntOiagntkrhtgaaheiypnehCagainBcimdnorrpeSanailgoaynetvaiiakafornono,Fsbm1lyaa9ssEr9acea3hlr)ocl.yobZnsoTegnrrlieovasme(sdEiecrridnatotoemğEsaaalnrine,lyyu1Con9frc9eot0thnaae--; U TheUpperCretaceoussequencefromtheKaraburunisbestknown ( or fromtheBalıklıovalocalityinthecentreofthePeninsula(Fig.2).The 014N333N 602N821N 418N484N 463N550N Mercat Bataelsık,lwıohvaichUpapreeroCvreertlaacineobuys sreedqeupeonscietesdtacratsrbwonitahtebadseablrcisonfogllloomweerd- –037E4261–820E4261 –836E4255–138E4254 –668E4310–559E4310 –280E4354–400E4354 Transverse bs1iy9lt9sr0teobdn).epPeseellaaqgguiicecnflocimerae(msBtironinnifkeemsra,awdnanhtieechtthaepl.a,as1gs9e7uo7pf;tEhinleçtoireedatapslhe.,laa2lge0i–1cs0la;imnEdresdsttoooğnnaeen–s, B:0520F:0519 B:0531F:0530 B:0552F:0552 B:0570F:0570 niversal MasaeaasrtlryicChatmiapnainniaangeto(eBarrinlykmMaaansntreicthatli.a,n1;9t7h7e;oEvredrolyğianng,fl1y9s9c0hbi)s.aTlhsoe U flyschsequencewithamin.thicknessof1000metersistectonically n ei overlain by Triassic carbonates. Compared to the matrix of the ocene atesar Bfoorrmnosvaa cFolyhsecrhenZtonseeq,utehneceB;aliıtklpıorvoabaflbylyschcoirsrelsitptolenddseftoormanedeaarnldy Kocaçay –Maastricht.Pale şKemalpaa–Cenom.Coniac. ıSrtköy–NorianCenom. Urbut–NorianTuron. North.Thecoordin sFP(tFleyaingsgTic.enhhs2eou,ZfrloEaetnhlriadseetoiodoağbnneaspdenbor,etvsht1eiwte9dieo9aienn0pnbpoth)tafh.reteeThKnhteatyellmpyericecaci,aktorlphlibooxelcorooaercflnlkiyttt-yhmsseieonaqBrttturoheierxednn,sKcoeeaavrnraiiaegnbsFulutolyharfsuerctnhhcKeplaZaeBrosnaotnbisrnenus.arounuvlndaa N, blocksranginginsizefromafewcentimeterstoseveralkilometers ns. 53684N53562N42036N42260N37981N37677N46684N46583N46906N45667N 34996N34203N n;E,East; luqiuepeionnfcaeMdbeeusftootzrhomeiceredliamflryeessactlhosonmebaslotorcifkxst.hToehfesteybrplpoeecnfkotsuinanirdteei.pnIrnettdhhoeemKKiaanrlaaenbctiuklyrrumengaisodene- o 2222222222 33 o easuredsecti –0462215E4–0462735E4–0469673E4–0462360E4–0458398E4–0459258E4–0460572E4–0460324E4–0454364E4–0456948E4 –0553492E4–0553498E4 dofthesecti sflt(heEyqersducyoheoğnupacenneng,aee1nts9rtd9a0bttialnho)gec.kTiKsnhateaorracetbohnureertaudfcrnatpcbseteeluaqtrgwueiesceneilncnimetthheisseistvoTdenreireafyossrsiomircfreesCdghauaomlllaliporsawtwonsimiattrnhaormatinhgaeeel hem B:F:B:F:B:F:B:F:B:F: B:F: F,en carbonates of the Karaburun sequence in the Kalecik region. The oft on; Karaburunsequencerepresentsanintermediatestageinthedevel- Table1Geographiccoordinates Karaburun –AnisianNorian Norian –NorianLias –RhaetianAlbian –Campan.Maastricht. ıSarkaya–NorianTuron. B,beginningofthesecti o5İszop.muCmTtiohrhen–enetAataBsnoctoktfrwantrrheioatelvhasamtutiFhotéulenlyrasseMncoghwefenZi.ttdohhenereteBhsioesrMiSnnaaokscvsaoairnfyFtaaalnycZdstocithnnheZethooCefnynetcholaerdthPicownCetositdmeapslol,enixngattnhhdee Author's personal copy 288 A.I.Okayetal./Tectonophysics568–569(2012)282–295 Fig.5.Stratigraphyoftheplatform-margin-typeblocksfromtheBornovaFlyschZone.Datasources:7.Keçiliköy(İşinteketal.,2007),8.Sırtköy(İşinteketal.,2007),9.Evkaftepe (İşinteketal.,2007),10.Emiroğlu(İşinteketal.,2007),11.Sarıkaya(İşinteketal.,2007),12.Urbut(OkayandAltıner,2007),13.Gelenbe(OkayandSiyako,1993).Thenumbersare keyedtothemapinFig.2.ForsymbolsseeFig.4.ForgeographiccoordinatesofthemeasuredsectionsseeTable1. inthenortheastwiththeCretaceousblueschistsoftheTavşanlıZone thedeformedsandstoneandshaleoftheBornovaFlyschZonelietec- (Figs. 1 and 2). Most of these contacts are covered by the tonically over the Triassic metamorphic rocks of the Sakarya Zone Miocenesedimentaryandvolcanicrocks.ThecontactstotheSakarya and over the Cretaceous blueschists of the Tavşanlı Zone (Akyüz and Tavşanlı zones are only exposed northeast of Balıkesir, where andOkay,1996). Fig.6.MicrophotographsfromthemeasuredsectionsoftheMesozoiclimestoneblocksfromtheBornovaFlyschZone.Forthelocationofthesectionsandtheirbiostratigraphysee Figs.2,4and5.(1)TriasinahantkeniandAulotortusfriedlifromtheRhaetiansequenceoftheEğridereblockinBornova.Sampleno.6034,scalebar:910microns.(2)Aulotortusfriedli andTriasinahantkenifromtheRhaetiansequenceoftheEğridereblockinBornova.Sampleno.6034,scalebar:900microns.(3).PaleodasycladusmediterraneusfromtheLiassicse- quenceoftheEğridereblockinBornova.Sampleno.6060,scalebar:1041microns.(4)ThinshelledbivalviabearingredlimestonefromtheuppermostRhaetiantoLiassicofthe KeçiliköysequenceinManisa.Sampleno.6271,scalebar:2040microns.(5)CrinoidallimestonefromtheRhaetianoftheKırkağaçsequenceinManisa.Sampleno.5569,scalebar: 1692microns.(6)TriasinahantkenifromplatformtypeRhaetiansequenceofEmiroğluÇayırısequenceinKırkağaç.Sampleno.5801,scalebar:1010micron.(7)Aulotortusgr.sinuo- susfromtheRhaetianoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno.5821,scalebar:954microns(8and10)Calpionellaalpinafromtheredpelagiclimestonesfromthe EmiroğluÇayırısequenceinKırkağaç(Fig.8)andEvkaftepesequenceinAkhisar(Fig.10).Sampleno.5713and5289,scalebar:114micronsand200microns,respectively.(9and 17).Globuligerinagr.oxfordianafromtheredpelagiclimestonesfrompassivemargintypesequenceofEmiroğluÇayırısequenceinKırkağaç.Sampleno.5764and5785,scalebar: 100micronand84micronrespectively.(11)RedmondoideslugeonifromplatformtypeDoggersequenceofNaldökenblockinBornova.Sampleno.5160,scalebar:827micron.(12, 22)HedbergellatrochoideabearinglateAptianredpelagiclimestonesoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno.5776,scalebar:191micronsand378micronsrespectively. (13)MuricohedbergellarischifromthelateAptianredpelagiclimestonesoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno.5778,scalebar:185microns.(14)Gorbachikellasp.from theupperAptianredpelagiclimestonesoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno.5785,scalebar:115microns.(15)Saccocomasp.fromtheTithoniantoBerriasianred pelagiclimestonesoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno.5761,scalebar:181microns.(16)Praeglobotruncanasp.fromtheCenomanianpelagiclimestonesoftheSar- ıkayainSoma.Sampleno.5761,scalebar:141microns.(18)RudistfromtheTuroniantoprobablelowermostSantonianoftheNaldökenblockinBornova.Sampleno.5880,sca- lebar:10milimeters.(19)Helvetoglobotruncanahelveticafromthelower-middleTuronianpelagiclimestonesoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno.5806,scalebar: 132microns.(20)MarginotruncanapseudolinneianaandMarginotruncanasp.fromthelower-middleTuronianpelagiclimestonesoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno. 5818,scalebar:445microns(21,24)Caucasellasp.fromtheupperAptianredpelagiclimestonesoftheEmiroğluÇayırısequenceinKırkağaç.Sampleno.5764,scalebar:160and141 micronsrespectively.(23)Praeglobotruncanadelrioensis,RotaliporagreenhornensisandRotaliporasp.fromtheupperCenomanianpelagiclimestonesoftheSarıkayasequenceinSoma. Sampleno.5551,scalebar:478microns.(25)RotaliporacushmaniandRotaliporaapenninicafromtheupperCenomanianpelagiclimestonesoftheSarıkayasequenceinSoma.Sample no.5551,scalebar:378microns. Author's personal copy A.I.Okayetal./Tectonophysics568–569(2012)282–295 289 Author's personal copy 290 A.I.Okayetal./Tectonophysics568–569(2012)282–295 Fig.7.GeneralizedsyntheticstratigraphyoftheMenderesMassif(Dürr,1975;Gutnicetal.,1979;Özeretal.,2001),Karaburunandplatform-typeblocksintheBornovaFlyschZone, platform-margin-typeblocks(İşinteketal.,2007;OkayandAltıner,2007),andradiolarianchertsintheophioliticmélange(TekinandGöncüoğlu,2007,2009).ForsymbolsseeFig.4. NorthofGölmarmara,limestoneblocksoftheBornovaFlyschZone the platform carbonates are dated by rudists as Cenomanian and liewithalow-angletectoniccontactoverthemarbleandmicaschist Santonian–Campanian(Özer,1998).Theseneriticcarbonatesareun- of theMenderesMassif(Akdeniz etal.,1980).TheBornova Flysch conformably overlain by thinly bedded recrystallized red pelagic Zone is in contact with the Cycladic Complex north of Kuşadası limestones of Late Campanian–Maastrichtian (Özer et al., 2001) or (Fig. 2). There, flysch with limestone, radiolarite and serpentinite Paleocene(Çağlayanetal.,1980)ages,whichpassupintoaflyschse- blockslieswithasubhorizontaltectoniccontactoverthemicaschists quence with serpentinite and carbonate olistoliths (Çağlayan et al., of theCycladic Complex (BaşarırandKonuk,1981).Thecontactis 1980;Dürr,1975).Özeretal.(2001)describeaMiddlePaleocenepe- characterized by a several meters thick brittle cataclastic zone, lagicfaunafromthecarbonatelensesintheflyschandGutnicetal. which places unmetamorphosed limestone or sandstone over the (1979)mentionthepresenceofEarlyEocenenummulites.Theslight- garnet-micaschists of the Cycladic Complex. The brittle faults be- ly metamorphosed Lower Tertiary flysch of the Menderes Massif is tween the Bornova Flysch Zone and the Menderes Massif and the tectonically overlain by the Lycian Nappes (Fig. 2). The metamor- CycladicComplexpostdatetheEocenemetamorphismofthelatter phismintheMenderesMassifisBarroviantypeandofEoceneage; unitsandareprobablyextensionalbeingrelatedtotheexhumation the peak P-T conditions of the Alpine metamorphism close to the ofthemetamorphicrocks. basement-coverinterfaceinthesouthernMenderesMassifareesti- mated as ca. 8kbar and 550°C (Okay, 2001; Whitney and Bozkurt, 6.Stratigraphiccomparisonwiththeneighboringunits 2002) corresponding to burial depths of ca. 28km. The few Ar–Ar whitemicaagesdatetheBarrovianmetamorphismoftheMenderes The Mesozoic stratigraphy of the Menderes Massif shows close Massif to the range of 44Ma to 34Ma (Hetzel and Reischmann, similaritytothatobservedintheplatform-typeblocksintheBornova 1996).IncontrasttotheMenderesMassif,theCycladicComplexhas Flysch Zone (Fig. 5). It has a thick platform carbonate sequence of undergoneablueschisttoeclogitefaciesmetamorphism.Theageof TriassictoCretaceousage(Dürr,1975;Gutnicetal.,1979;Çağlayan metamorphismiswellconstrainedbyRb–Sr,Ar–Arwhitemicaand et al., 1980; Bozkurt and Oberhansli, 2001). The upper parts of Lu–Hf garnet methods as Early Eocene (ca. 52Ma, e.g., Bröcker and Author's personal copy A.I.Okayetal./Tectonophysics568–569(2012)282–295 291 Enders,2001;Tomascheketal.,2003;Putlitzetal.,2005;Lagosetal., carbonateplatform.TheisolatedophiolitebodiesintheAnatolide– 2007). Taurides exhibit petrological and structural similarities suggesting TheLycianNappestothesoutheastoftheMenderesMassifconsist thattheywerepartofalargeophiolitecomplex,comparableinsizeto ofacomplexthruststackmadeupofcontinentalmarginsediments theSemailophioliteinOman(Dileketal.,1999;OkayandWhitney, andophiolite(deGraciansky,1968;Gutnicetal.,1979;Şeneletal., 2010; Önen, 2003). The ages of the sub-ophiolite metamorphism in 1981). The basal parts of the Lycian Nappes show a low-grade HP/ the Anatolide–Taurides are also very similar (ca. 93Ma, Parlak and LT metamorphism characterized by the presence of carpholite Delaloye,1999;Çeliketal.,2006)indicatingaCenomanianinception (Rimmeléet al., 2003). The Lyciannappes are generally considered oftheophioliteobduction.TheHP/LTmetamorphismisdatedatca. torootnorthoftheMenderesMassifwiththeimplicationthatthey 80MaintheTavşanlıZone(Sherlocketal.,1999)andca.63Main constitutedthetectoniccoverovertheMenderesMassifduringthe theAfyonZoneandintheLyciannappes(Pourteauetal.,2010a,b)il- Eocene,andwereerodedduringtheOligocene–Mioceneexhumation lustrating the progressive burial of the Anatolide–Tauride Block oftheMassif.Platform-margin-typesequencesaredescribedfromthe undertheobductedophiolite.Theagesofdepositionanddeforma- upperpartsoftheLycianNappes,especiallyfromtheDomuzdağıunit, tionof theBornova FlyschZoneoverlapwith theHP/LTmetamor- whichformsatectonicsliceintheophioliticmélange(Şenel,1997). phismintheTavşanlıandAfyonzones(Fig.8)implyingalinkwith Shallow marine platform carbonates, Norian–Rhaetian in age, form thecontinentalsubductionandtheformationoftheBornovaFlysch the base of the Domuzdağ sequence (Fig. 7). These are overlain by Zone. Liassic limestones, about 10m thick, which are apparently lacking in the equivalent blocks in the Bornova Flysch Zone. The overlying condensed uppermost Jurassic–lowermost Cretaceous pelagic 7.2.TheBornovasegmentoftheİzmir–Ankarasuture carbonates, marking the collapse of the carbonate platform, are found in both units (Fig. 7). In the Domuzdağ and Urbut sections, Theİzmir–AnkarasutureformsthemainTethyandividebetween theTithoniantoLowerCretaceouscarbonatesshareacommoncal- thePontidesandtheAnatolide–TauridesinTurkey.Inthewestern pionellidassemblageofTintinnopsellacarpathica,Calpionellaalpina, Anatolia, it is strongly segmented with a sharp 55° bend close to Calpionellopsis oblonga, Calpionellites darderi. In the Domuzdağ se- Balıkesirandasmoother90°bendnorthwestofİzmir(Fig.1).The quence,thelowermostCretaceouspelagiccarbonatesectionextends Balıkesir bend is considerably larger than the rotation induced by down to the upper Tithonian, which is only 10cm thick (Poisson, the post-Oligocene Aegean extension,which islessthan 30°(e.g., 1977). In both the Domuzdağ and Urbut sections, the Cretaceous KisselandLaj,1988).TheBornovaFlyschZoneislocatedbetween pelagiclimestoneslieunconformablyovertheLowerCretaceous,and the Balıkesir and İzmir bends and extends parallel to the SW-NE inplacesdirectlyovertheUpperTriassiccarbonates.Similarcondensed trendingBornova segmentoftheİzmir–Ankarasuture.Similarly,the Mesozoic sequences are also described from the central Taurides trend of the internal high-pressure metamorphic belts, the Tavşanlı (Monod, 1977). The presence of platform–margin-type sequences in andAfyonzones,areeast–westandobliquetotheBornovasegment theLycianNappessupportsthenorthernoriginoftheLycianNappes oftheİzmir–Ankarasuture(Fig.1). andimpliesthatalargecomplexthrustsheetcoveredthewestern TheBornovasegmentoftheİzmir–Ankarasutureconstitutesalso AnatoliaduringtheLateCretaceous. a paleotectonic lineamentseparatingthe Early Cretaceous ophiolite obductioninGreecefromtheLateCretaceousoneinAnatolia(Okay etal.,1996).Ophioliteandoceanicsedimentaryrockswereemplaced 7.Discussion duringtheearliestCretaceous(ca.145Ma)southwestwardoverthe Pelagonian zone (e.g., Jacobshagen, 1986; Papanikolau, 2009; 7.1. Continental subduction, ophiolite obduction and the deposition of Robertsonetal.,1991).ThisearliestCretaceousophioliteobduction theBornovaFlysch can be traced as far southeast as the Sporades islands (Fig. 1, Jacobshagen and Wallbrecher, 1984), but there is no evidence for DuringtheLateCretaceous,thenorthernmarginoftheAnatolide– ophioliteobductionontheKaraburunPeninsula,wherethisperiodis Tauridecarbonate platform was subducted northward in an intra- marked by a disconformity of latest Jurassic-Early Cretaceous age oceanic subduction zone and underwent HP/LT metamorphism (Erdoğan et al., 1990; İşintek, 2002). On the other hand, the Late (e.g. Okay and Whitney, 2010). The subduction of the continental CretaceousophioliteobductionovertheAnatolide–Tauridecarbonate crustcanalsobeviewedastheobductionofophiolite,accretionary platformdidnotextendintotheAegeanwestoftheBornovasegment. complexandslicesofcontinentalmarginovertheAnatolide–Tauride Oneexplanationforthisalternatingandmutuallyexclusiveobduction Fig.8.RelationbetweenmetamorphismoftheAnatolide–TaurideBlockandthedepositionoftheBornovaFlysch.Seethetextforsourcesofdata.

Description:
strike–slip (85%) with a pitch of 15° to the north and with a transla- tion vector of 218° in present coordinates. The Bornova flysch with its olistostromes
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.