ebook img

3-Difference Cordial Labeling of Corona Related Graphs PDF

2018·0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 3-Difference Cordial Labeling of Corona Related Graphs

International J.Math. Combin. Vol.2(2018), 122-128 3-Difference Cordial Labeling of Corona Related Graphs R.Ponraj DepartmentofMathematics,SriParamakalyaniCollege,Alwarkurichi-627412,India M.Maria Adaickalam DepartmentofMathematics ManonmaniamSundaranarUniversity,Abishekapatti,Tirunelveli-627012,TamilnaduIndia E-mail: [email protected],[email protected] Abstract: Let G be a (p,q) graph. Let f :V(G)→{1,2,··· ,k} be a map where k is an integer 2≤k ≤p. For each edge uv, assign the label |f(u)−f(v)|. f is called k-difference cordial labeling of G if |v (i)−v (j)| ≤1 and |e (0)−e (1)| ≤1 where v (x) denotes the f f f f f numberof verticeslabelled with x,e (1)ande (0) respectivelydenotethenumberofedges f f labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-differencecordial graph. In this paper we investigate 3-difference cordial labeling behavior of DT ⊙K DT ⊙2K ,DT ⊙K and some more graphs. n 1 n 1 n 2 KeyWords: Differencecordiallabeling,Smarandachelyk-differencecordiallabeling,path, complete graph, triangular snake, corona. AMS(2010): 05C78. §1. Introduction All Graphs in this paper are finite ,undirect and simple. Let G , G respectively be (p ,q ), 1 2 1 1 (p ,q )graphs. ThecoronaofG withG ,G G isthegraphobtainedbytakingonecopyof 2 2 1 2 1 2 ⊙ G and p copies of G and joining the ith vertex of G with an edge to every vertex in the ith 1 1 2 1 copyofG . Ponrajetal. [3],hasbeenintroducedtheconceptofk-differencecordiallabelingof 2 graphsandstudiedthe3-differencecordiallabelingbehaviorofofsomegraphs. In[4,5,6,7]they investigate the 3-difference cordial labeling behavior of path, cycle, complete graph, complete bipartite graph, star, bistar, comb, double comb, quadrilateral snake, C(t), S(K ), S(B ) 4 1,n n,n andcaronaofsomegraphswithdoublealternatetriangularsnakedoublealternatequadrilateral snake . In this paper we examine the 3-difference cordial labeling behavior of DT K n 1 ⊙ DT 2K ,DT K etc. Terms are not defined here follows from Harary [2]. n 1 n 2 ⊙ ⊙ §2. k-Difference Cordial Labeling Definition 2.1 Let G be a (p,q) graph and let f : V(G) 1,2, ,k be a map. For → { ··· } 1ReceivedNovember26,2017,Accepted May29,2018. 3-DifferenceCordialLabelingofCoronaRelatedGraphs 123 each edge uv, assign the label f(u) f(v). f is called a k-difference cordial labeling of G if | − | v (i) v (j) 1 and e (0) e (1) 1 where v (x) denotes the number of vertices labelled f f f f f | − | ≤ | − |≤ with x, e (1) and e (0) respectively denote the number of edges labelled with 1 and not labelled f f with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. On the other hand, if v (i) v (j) 1 or e (0) e (1) 1, such a labeling is called a f f f f | − |≥ | − |≥ Smarandachely k-difference cordial labeling of G. AdoubletriangularsnakeDT consistsoftwotriangularsnakesthathaveacommonpath. n That is a double triangularsnakeis obtained froma path u u u by joining u andu to 1 2 n i i+1 ··· two new vertices v (1 i n 1) and w (1 i n 1). i i ≤ ≤ − ≤ ≤ − First we investigate the 3-difference cordial labeling behavior of DT K . n 1 ⊙ Theorem 2.1 DT K is 3-difference cordial. n 1 ⊙ Proof Let V(DT K ) = V(DT ) x : 1 i n v′,w′ : 1 i n 1 and n ⊙ 1 n { i ≤ ≤ } { i i ≤ ≤ − } E(DT K )=E(DT ) u x :1 i n v v′,w w′ :1 i n 1 . n⊙ 1 n { i i ≤ ≤S} { i i i i ≤S ≤ − } Case 1. n is even. S S First we consider the path vertices u . Assign the label 1 to all the path vertices u i i (1 i n). Then assign the label 2 to the path vertices v ,v ,v , and assign the label 1 1 3 5 ≤ ≤ ··· to the path vertices v ,v ,v , . Now we consider the vertices w . Assign the label 2 to all 2 4 6 i ··· the vertices w (1 i n 1). Next we move to the vertices v′ and w′. Assign the label 2 i ≤ ≤ − i i to the vertices v′ for all the values of i=0,1,2,3, and assign the label 1 to the vertices 2i+1 ··· v for i = 1,2,3, . Next we assign the label 1 to the vertex w′ and assign the label 3 to 2i ··· 1 the vertices w′,w′,w′, Finally assign the label 3 to all the vertices of x (1 i n). The 2 3 4 ··· i ≤ ≤ vertex condition and the edge conditions are v (1) = v (2) = 6n−3 and v (3) = 6n−2 and f f 3 f 3 e (0)=4n 4 and e (1)=4n 3. f f − − Case 2. n is odd. Assign the label to the path vertices u (1 i n), v (1 i n 1), w (1 i n 1), i i i ≤ ≤ ≤ ≤ − ≤ ≤ − v′ (1 i n 1), x (1 i n) as in case 1. Then assign the label 3 to all the vertices i ≤ ≤ − i ≤ ≤ w′ (1 i n 1). Since e (0) = 4n 3, e (1) = 4n 4 and v (1) = v (3) = 2n 1 and i ≤ ≤ − f − f − f f − v (2)=2n 2, DT K is 3-difference cordial. f n 1 − ⊙ 2 Next investigation about DT 2K . n 1 ⊙ Theorem 2.2 DT 2K is 3-difference cordial. n 1 ⊙ Proof LetV(DT 2K )=V(DT ) x ,y :1 i n v′,v′′,w′,w′′ :1 i n 1 n⊙ 1 n { i i ≤ ≤ } { i i i i ≤ ≤ − } and E(DT 2K ) = E(DT ) u x ,u y : 1 i n v v′,v v′′,w w′,w w′′ : 1 i n ⊙ 1 n { i i Si i ≤ ≤ } {Si i i i i i i i ≤ ≤ n 1 . − } S S Case 1. n is even. Consider the path vertices u . Assign the label 1 to the path vertex u . Now we assign i 1 the labels 1,1,2,2 to the vertices u ,u ,u ,u respectively. Then we assign the labels 1,1,2,2 to 2 3 4 5 124 R.PonrajandM.MariaAdaickalam the next four vertices u ,u ,u ,u respectively. Proceeding like this we assign the label to the 6 7 8 9 next four verticesand so on. If allthe verticesare labeled then we stopthe process. Otherwise there are some non labeled vertices are exist. If the number of non labeled vertices are less than or equal to 3 then assign the labels 1,1,2 to the non labeled vertices. If it is two then assign the label 1,1 to the non labeled vertices. If only one non labeled vertex is exist then assign the label 1 only. Next we consider the label v . Assign the label 2 to the vertex v . i 1 Then we assign the label 2 to the vertices v ,v ,v , and assign the label 3 to the vertices 2 4 6 ··· v ,v ,v , . Next we moveto the vertices x and y . Assignthe label 2 to the verticesx and 3 5 7 i i 1 ··· x andweassignthe label3tothe verticesy andy . Nowweassignthe label1to thevertices 2 1 2 x and x for all the values of i = 1,2,3, . Then we assign the label 1 to the vertices 4i+1 4i ··· x for i = 0,1,2,3, . Next we assign the label 2 to the vertices x for all the values 4i+3 4i+2 ··· of i = 1,2,3, . Now we assign the label 3 to the vertices y for i=0,1,2,3,... For all the 4i+3 ··· values of i=1,2,3, . assign the label 3 to the vertices y and y . Then we assign the 4i+1 4i+2 ··· label 2 to the vertices y for i = 1,2,3, . Now we consider the vertices v′ and v′′. For all 4i ··· i i the values of i=1,2,3... assign the label 1 to the vertices v′ ,v′ . Assign the label 1 to the 4i+1 4i+2 verticesv′ for i=1,2,3, . Then we assignthe label2 to the verticesv′ for allthe values 4i ··· 4i+3 of i=0,1,2,3, . Consider the vertices v′′. Assign the label 3 to the path vertex v′′ ,v′′ ··· i 4i+1 4i+2 and v′′ for all the values of i = 0,1,2,3, . Next we assign the label 2 to the vertices v′′ 4i+3 ··· 4i for i =1,2,3, . Now we assign the label 3 to the vertices w (1 i n 1). Next we move i ··· ≤ ≤ − to the vertices w′ and w′′. Assign the label 1 to all the vertices of w′(1 i n 1) and we i i i ≤ ≤ − assignthe label2 toallthe verticesofw′′(1 i n 1). Since v (1)=v (2)=v (3)=3n 2 i ≤ ≤ − f f f − and e (0)= 11n−10 and e (1)= 11n−8, this labeling is 3-difference cordial labeling. f 2 f 2 Case 2. n is odd. First we consider the path vertices u . Assign the label 1,1,2,2 to the first four path i vertices u ,u ,u ,u respectively. Then we assign the labels 1,1,2,2 to the next four vertices 1 2 3 4 u ,u ,u ,u respectively. Continuing like this assign the label to the next four vertices and so 5 6 7 8 on. Ifalltheverticesarelabeledthenwestoptheprocess. Otherwisetherearesomeonlabeled vertices are exist. If the number of non labeled vertices are less than or equal to 3 then assign the labels 1,1,2 to the non labeled vertices. If it is 2 assign the labels 1,1 to the non labeled vertices. If only one non labeled vertex exist then assign the label 1 to that vertex. Consider the vertices v . Assign the label 2 to the vertices v ,v ,v , and we assign the label 3 to i 1 3 5 ··· the vertices v ,v ,v , . Next we move to the vertices w . Assign the label to the vertices 2 4 6 i ··· w (1 i n ) as in case 1. Now we consider the vertices x and y . Assign the label 2 to i i i ≤ ≤ − the vertices x for all the values of i=0,1,2,3, . For all the values of i=0,1,2,3,... assign 4i+1 ··· the label 1 to the vertices x and x . Then we assign the label 1 to the vertices x for 4i+2 4i+3 4i all the values of i = 1,2,3, . Next we assign the label 3 to the vertices y and y for 4i+1 4i+2 ··· all the values of i=0,1,2,3, and we assign the label 3 to the vertices y for i=1,2,3, . 4i ··· ··· Then we assign the label 2 to the vertices y for all values i = 0,1,2,3, . Next we move 4i+3 ··· to the verticesv′ andv′′. For allthe values of i=0,1,2,3, assignthe label1 to the vertices i i ··· v′ andv′ . Nowweassignthe label1tothe verticesv′ fori=1,2,3, . Nextweassign 4i+1 4i+3 4i ··· the label 2 to the vertices v′ for i = 01,2,3, . Consider the vertices v′. Assign the label 4i+2 ··· i 3-DifferenceCordialLabelingofCoronaRelatedGraphs 125 3 to the vertices v′′ and v′′ for all the values of i = 0,1,2,3, and we assign the label 4i+1 4i+2 ··· 1 to the vertices v for i = 1,2,3, . For the values of i = 0,1,2,3, assign the label 2 to 4i ··· ··· the vertices v . Finally we consider the vertices w′ and w′′. Assign the label to the vertices 4i+3 i i w′ (1 i n 1) and w′′ (1 i n 1) as in case 1. The vertex and edge condition are i ≤ ≤ − i ≤ ≤ − v (1)=v (2)=v (3)=3n 2 and e (0)=e (1)= 11n−9. f f f − f f 2 2 We now investigate the graph DT K . n 2 ⊙ Theorem 2.3 DT K is 3-difference cordial. n 2 ⊙ Proof Let V(DT K )=V(DT ) x ,y :1 i n v′,v′′,w′,w′′ :1 i n 1 n⊙ 2 n { i i ≤ ≤ } { i i i i ≤ ≤ − } andE(DT K )=E(DT ) u x ,u y ,x y :1 i n v v′,v v′′,v′v′′,w w′,w w′′,w′w′′ : n⊙ 2 n { i i i iSi i ≤ ≤ } {Si i i i i i i i i i i i 1 i n 1 . ≤ ≤ − } S S Case 1. n is even. Consider the path vertices u . Assign the label 1 to the path vertices u ,u ,u , . Then i 1 2 3 ··· we assign the labels 2 to the vertices v ,v ,v , . Next we assign the labels 3 to the vertices 1 2 3 ··· w ,w ,w ,w . Now we consider the vertices v′ and v′′. Assign the label 2 to the vertex v′. 1 2 3 4 i i 1 Then we assign the label 1 to the vertices v′,v′,v′,v′, . Now we assign the label 3 to the 2 3 4 6 ··· vertices v′′,v′′,v′′,v′′, . Next we move to the vertices w′ and w′′. Assign the label 1 to the 1 2 3 4 ··· i i vertex w′. Then we assign the label 1 to the vertices w′,w′,w′, and assign the label 2 to 1 2 4 6 ··· the vertices w′,w′,w′, . Assign the label 2 to the vertices w′′,w′′,w′′,w′′, . Finally we 3 5 7 ··· 1 2 3 4 ··· move to the vertices x and y . Assign the label 1 to the vertices x ,x ,x , and we assign i i 1 3 5 ··· the label2 to the verticesx ,x ,x , then weassignthe label3to the verticesy ,y ,y , . 2 4 6 1 2 3 ··· ··· Clearly in this case the vertex and edge condition is given in v (1) = v (2) = v (3) = 3n 2 f f f − and e (0)=7n 5 and e (1)=7n 6. f f − − Case 2. n is odd. Assignthe labelto the verticesu (1 i n), v (1 i n 1)andw (1 i n 1)as i i i ≤ ≤ ≤ ≤ − ≤ ≤ − in case 1. Consider the vertices v′ and v′′. Assign the label 1 to the vertices v′,v′,v′,v′, . i i 1 2 3 4 ··· Then assign the label to the vertices v′′ (1 i n 1) as in case 1. Now we move to the i ≤ ≤ − vertices w′ and w′′. Assign the label 1 to the vertices w′,w′,w′, and we assign the label 3 i i 1 3 5 ··· to the vertices w′,w′,w′, . Next we assignthe label to the verticesw′′ (1 i n 1) as in 2 4 6 ··· i ≤ ≤ − case 1. Now we consider the vertices x and y . Assignthe label 2 to the vertices x ,x ,x , i i 1 3 5 ··· andweassignthe label1to the verticesx ,x ,x , .Thenwe assignthe labelto the vertices 2 4 6 ··· y (1 i n) as in case 1. Since v (1) = v (2) = v (3) = 3n 2 and e (0) = 7n 6 and i f f f f ≤ ≤ − − e (1)=7n 5, this labeling is 3-difference cordial labeling. f − 2 AdoublequadrilateralsnakeDQ consistsoftwoquadrilateralsnakesthathaveacommon n path. Let V(DQ ) = u : 1 i n v ,w ,xi,y : 1 i n 1 and E(DQ ) = n i i i i n { ≤ ≤ } { ≤ ≤ − } u u ,v w ,x y ,w u , y u :1 i n 1 . { i i+1 i i i i i i+1 i i+1 ≤ ≤S− } Now we investigate the graphs DQ K ,DQ 2K and DQ K . n 1 n 1 n 2 ⊙ ⊙ ⊙ Theorem 2.4 DQ K is 3-difference cordial. n 1 ⊙ 126 R.PonrajandM.MariaAdaickalam Proof Let V(DQ K ) = V(DQ ) u′ : 1 i n v′,w′,x′,y′ : 1 i n 1 n ⊙ 1 n { i ≤ ≤ } { i i i i ≤ ≤ − } and E(DQ K ) = E(DQ ) u u′ : 1 i n u v′,w w′,x x′,y ,y′ : 1 i n 1 . n⊙ 1 n { i i ≤S ≤ } { i i iSi i i i i ≤ ≤ − } Assign the label 1 to the path vertex u . Next we assign the labels 1,1,2 to the vertices S 1 S u ,u ,u respectively. Then weassignthe labels 1,1,2to the nextthree pathverticesu ,u ,u 2 3 4 5 6 7 respectively. Proceedinglike this we assignthe labelto the next three verticesand so on. If all theverticesarelabeledthenwestoptheprocess. Otherwisetherearesomenonlabeledvertices areexist. Ifthe numberofnonlabeledverticesarelessthanorequalto2thenassignthelabels 1,1tothe nonlabeledvertices. Ifonlyonenonlabeledvertexexistthenassignthe label1only. Now we consider the vertices v and w . Assign the label 2 to the vertices v and v for i i 3i+1 3i+2 all the values of i=0,1,2,3... For all the vales of i=1,2,3, assign the label 1 to the vertices ··· v . Then we assign the label 3 to the vertices w (1 i n). Next we move to the vertices x 3i i i ≤ ≤ and y . Assign the labels 2,3 to the vertices x and y respectively. Then we assign the label 2 i 1 1 to the vertices x ,x ,x , . Now we assign the label 1 to the vertices x ,x ,x , and the 2 5 8 3 6 9 ··· ··· verticesx ,x ,x , .Assignthelabel3totheverticesy ,y ,y , .Weconsiderthevertices 4 7 10 1 2 3 ··· ··· u′. Assignthelabels2,3totheverticesu′ andu′ respectively. Nowweassignthelabel1tothe i 1 2 vertices u′,u′,u′, and we assign the label 3 to the vertices u′,u′,u′ , . Then we assign 3 6 9 ··· 4 7 10 ··· the label 2 to the vertices u′,u′,u′ , . Next we move to the vertices v′ and w′. Assign the 5 8 11 ··· i i the label 3 to the vertex w′. Now assign the label 1 to all the vertices of v′ (1 i n 1) 1 i ≤ ≤ − and we assign the label 2 to the vertices w′,w′,w′, . We consider the vertices x′ and y′. 2 3 4 ··· i i Assign the label 2,1 to the vertices x′ and y′ respectively. Also we assign the label 2 to the 1 1 verticesx′,x′,x′, andthe verticesx′,x′,x′, .Thenwe assignthe label1to the vertices 2 5 8 ··· 3 6 9 ··· x′,x′,x′ , . Next we assign the label 3 to the vertices y′,y′,y′,... The vertex condition is 4 7 10 ··· 2 3 4 e (0)=6n 5 and e (1)=6n 6. Also the edge condition is given in Table 1 following. f f − − 2 Nature of n v (1) v (2) v (3) f f f n 0 (mod 3) 10n−9 10n−6 10n−9 ≡ 3 3 3 n 1 (mod 3) 10n−10 10n−7 10n−7 ≡ 3 3 3 n 2 (mod 3) 10n−8 10n−8 10n−8 ≡ 3 3 3 Table 1 Theorem 2.5 DQ 2K is 3-difference cordial. n 1 ⊙ Proof Let V(DQ 2K )=V(DQ ) u′,u′′ :1 i n v′,v′′,w′,w′′,x′,x′′,y′,y′′ : n⊙ 1 n { i i ≤ ≤ } { i i i i i i i i 1 i n 1 andE(DQ 2K )=E(DQ ) u u′,u u′′ :1 i n v v′,v v′′,w w′,w w′′, ≤ ≤ − } n⊙ 1 nS { i i i i ≤ S≤ } { i i i i i i i i x x′,x x′′,y y′′,y y′′ :1 i n 1 . Firstweconsiderthepathverticesu . Assignthe label1 i i i i i i i i ≤ ≤ − } S S i to the path vertices u ,u ,u , and we assign the label 2 to the path vertices u ,u ,u , . 1 3 5 2 4 6 ··· ··· Clearly the lastvertex u receivedthe label 2 or 1 accordingas n 0mod 2 or n 1 (mod 2). n ≡ ≡ Next we move to the vertices v and w . Assign the label 1 to all the vertices of v (1 i n) i i i ≤ ≤ and we assign the label 3 to the vertices w ,w ,w ,... Then we assign the label to the vertices 1 2 3 x (1 i n 1) is same as assign the label to the vertices v (1 i n 1) and we i i ≤ ≤ − ≤ ≤ − assign the label to the vertices y (1 i n 1) is same as assign the label to the vertices w i i ≤ ≤ − (1 i n 1). Next we move to the vertices u′ and v′′. Assign the label 2 to the vertices ≤ ≤ − i i 3-DifferenceCordialLabelingofCoronaRelatedGraphs 127 v′,v′,v′, thenweassignthelabel3tothevertexv′′. Assignthelabel3totheverticesv′′ for 1 2 3 ··· 1 2i all the values of i=1,2,3, and we assignthe label 2 to the vertices v′′ for i=1,2,3, . ··· 2i+1 ··· Next we consider the vertices w′ and w′′. Assign the label 1 to the vertices w′,w′,w′, and i i 1 2 3 ··· we assign the label 3 to the vertices w′′,w′′,w′′, . Next we move to the vertices x′ and x′′. 1 2 3 ··· i i Assign the label 1 to all the vertices of x′ (1 i n 1) and we assign the label 2 to all i ≤ ≤ − the vertices of x′′ (1 i n 1). Now we assign the label 2 to the vertices y′,y′,y′, i ≤ ≤ − 1 2 3 ··· and we assign the label 3 to the vertices y′′,y′′,y′′, . Finally we move to the vertices u′ and 1 2 3 ··· i u′′. Assign the label 2 to the vertices u′,u′,u′, and we assign the label 1 to the vertices i 1 3 5 ··· u′,u′,u′, . Next we assign the label 2 to the vertices u′′,u′′,u′′, and we assign the label 2 4 6 ··· 1 3 5 ··· 3 to the vertices u′′,u′′,u′′, . The vertex condition is v (1)=v (2)= v (3)= 15n−12. Also 2 4 6 ··· f f f 3 the edge condition is given in Table 2. 2 Values of n e (0) e (1) f f n 0 (mod 2) 17n−16 17n−14 ≡ 2 2 n 1 (mod 2) 17n−15 17n−15 ≡ 2 2 Table 2 Theorem 2.6 DQ K is 3-difference cordial. n 2 ⊙ Proof Let V(DQ K ) = V(DQ ) u′,u′′ : 1 i n v′,v′′,w′, w′′,x′,x′′,y′,y′′ : n⊙ 2 n { i i ≤ ≤ } { i i i i i i i i 1 i n 1 andE(DQ K )=E(DQ ) u u′,u u′′,u′u′′ :1 i n v v′,v v′′,v′v′′, ≤ ≤ − } n⊙ 2 Sn { i i i i i i S ≤ ≤ } { i i i i i i w w′,w w′′,w′w′′,x x′, x x′′,x′x′′,y y′′,y y′′,y′y′′ :1 i n 1 . First we consider the path i i i i i i i i i i i i i i i i Si i ≤ ≤ − } S vertices u . Assign the label 1 to the vertex u . Then we assign the label 1 to the vertices i 1 u ,u ,u , and we assign the label 2 to the path vertices u ,u ,u , . Note that in this 2 4 6 1 3 5 ··· ··· case the last vertex u received the label 1or 2 according as n 0 (mod 2) or n 1 (mod 2). n ≡ ≡ Nextwemovetotheverticesv andw . Assignthelabel2tothevertexv . Thenweassignthe i i 1 label 3 to all the vertices of w (1 i n 1). Assign the label 1 to the vertices v ,v ,v ,... i 2 3 4 ≤ ≤ − We consider the vertices x and y . Assign the label to the vertices x (1 i n 1) is same i i i ≤ ≤ − as assign the label to the vertices v (1 i n 1) and assign the label to the vertices y i i ≤ ≤ − (1 i n 1) is same as assign the label to the vertices w (1 i n 1). Next we move i ≤ ≤ − ≤ ≤ − to the vertices v′ and v′′. Assign the label 2 to the vertices v′,v′,v′, and assign the label i i 1 2 3 ··· 3 to the vertices v′′,v′′,v′′, . Consider the vertices x′ and x′′. Assign the label 1 to all the 1 2 3 ··· i i vertices of x′ (1 i n 1). Assign the label 2 to the vertex x′′. Then we assign the label 3 i ≤ ≤ − 1 tothe verticesx′′,x′′,x′′, .Nowweassignthe label2to allthe verticesofw′ (1 i n 1) 2 3 4 ··· i ≤ ≤ − and assignthe label 3 to all the vertices of w′′ (1 i n 1). Now we move to the vertices y′ i ≤ ≤ − i andy′′. Assignthe label1 tothe verticesy′,y′,y′, andweassignthe label2to the vertices i 1 2 3 ··· y′′,y′′,y′′, . Next we move to the vertices u′ and u′′. Assign the label 1,3 to the vertices u′ 1 2 3 ··· i i 1 and u′′ respectively. Assign the label 1 to the vertices u′ for all the values of i = 1,2,3, 1 2i ··· and assign the label 2 to the vertices u for i=1,2,3, then we assign the label 2 to the 2i+1 ··· vertices u′′,u′′,u′′, . The vertex and edge conditions are 2 3 4 ··· 15n 12 v (1)=v (2)=v (3)= − f f f 3 128 R.PonrajandM.MariaAdaickalam and e (0)=11n 9, e (1)=11n 10. f f − − 2 References [1] J.A.Gallian,ADynamicsurveyofgraphlabeling,TheElectronicJournalofCombinatorics, 19 (2016) #Ds6. [2] F.Harary, Graph Theory, Addision wesley, New Delhi (1969). [3] R.Ponraj,M.Maria Adaickalam and R.Kala, k-difference cordial labeling of graphs, Inter- national Journal of Mathematical Combinatorics, 2(2016), 121-131. [4] R.Ponraj, M.Maria Adaickalam, 3-difference cordial labeling of some union of graphs, Palestine Journal of Mathematics, 6(1)(2017), 202-210. [5] R.Ponraj,M.MariaAdaickalam,3-differencecordiallabelingofcycle relatedgraphs,Jour- nal of Algorithms and Computation, 47(2016),1-10. [6] R.Ponraj, M.Maria Adaickalam, 3-difference cordiality of some graphs, Palestine Journal of Mathematics, 2(2017), 141-148. [7] R.Ponraj, M.Maria Adaickalam, R.Kala, 3-difference cordiality of corona of double alter- nate snake graphs, Bulletin of the International Mathematical Virtual Institute , 8(2018), 245-258.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.